
Konoha: Implementing a Static Scripting
Language with Dynamic Behaviors

Kimio Kuramitsu
Yokohama National University, JAPAN

kimio@ynu.ac.jp

Abstract
This paper presents the design of Konoha, a statically typed
object-oriented scripting language. Konoha is modeled to
have the same or similar scripting experience with dynamic
languages, by emulating major dynamic behaviors, such
as duck typing and eval function. At the same time, its
”run anytime” complier enables execution of incomplete
programs without the compilation stop by the static type
checker. Konoha was written in C from scratch, and is avail-
able as open-source software. We will show scripting expe-
riences, as well as better performance.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Object-oriented scripting languages

Keywords scripting, language design, dynamic languages

1. Introduction
Dynamic languages such as Python, Ruby and JavaScript
have gained broad acceptance in industry, especially in web
application development. One of the major reasons lies in
their rapid software update cycle in both the development
and deployment phase. In particular, dynamic behaviors fit
well with the rapid catch-up with changed user demands.

On the other hand, the lack of static types in existing
scripting languages has received growing attention, as their
scripts are larger and more complex especially in web ap-
plication development. Since static languages such as C++
and Java have a rich history that enables a program to be
robust and efficient, many language developers are moti-
vated to make an attempt to add static typing features into
existing dynamic languages. The development of Diamond-
back Ruby[4] and Restricted Python[1] are two interesting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop on Self-sustaining Systems (S3) 2010
September 27–28, 2010, The University of Tokyo, Japan
Copyright c© 2010 ACM 978-1-4503-0491-7/10/09. . . $10.00

attempts to the integration of static typing features into Ruby
and Python, respectively.

We take a different approach to integrating dynamic
language features into a statically typed object-oriented
scripting language — our newly designed language named
Konoha. This paper present the design and implementation
status of Konoha.

In this paper, we aim at language design for providing
the same or similar scripting experience with Perl and Ruby.
This experience is in general regarded as attributes enabling
“ease of programming”. We argue that these attributes are
not exclusive to dynamic typing and can be modeled in a
static language.

In order to model dynamic language features, we focus
on four major dynamic behaviors that are commonly recog-
nized in existing scripting languages. These are: dynamic al-
teration of object behaviors, duck typing, handling of strings
as executable programs, and non-check cycle of program ex-
ecution. In Konoha, we have implemented these program-
ming features with some static-typing considerations:

• Growing class allows the runtime alteration of object
behaviors while keeping type safety.

• Type inference allows the use of non-declared variables
in an integrated manner with statically typed variables.

• Dynamic type allows the duck typing style of program-
ming.

• “Run anytime” compiler allows the execution of partially
written programs by automated replacement of error code
with code throwing a runtime exception.

Konoha is developing as open source software. The
reader can download the latest version from the following
sites:

http://code.google.com/p/konoha
http://konoha.sourceforge.jp/

The paper is organized as follows. Section 2 discusses
the programming experiences in dynamic languages. Section
3 presents our language design, implemented in Konoha.
Section 4 reports implementation details with some earlier

21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance results. Section 5 reviews related work. Section
6 concludes the paper.

2. Dynamic Behaviors in Dynamic
Languages

Over decades, dynamic languages have gained popularity
with a very large fraction of application developers, mainly
because scripting languages are considered to offer some
“ease of programming” attributes. Although this reputation
seems too subjective to discuss, we would like to start by
rethinking what enables “ease of programming” in dynamic
languages.

2.1 “Ease of Programming” Attributes in Scripting
Languages

Our motivation is the language design of a statically typed
scripting language sharing the same, or very similar, pro-
gramming experience with existing dynamic languages such
as Python and Ruby. The programming experience that we
focus on in this paper is unclearly recognized as “ease of pro-
gramming” attributes that are enabled by dynamic typing.
We argue that these attributes are not exclusive to dynamic
languages and can be modeled on top of a static language.

To begin with, we focus on the following four dynamic
behaviors that commonly appear in existing dynamic lan-
guages.

• Runtime alteration of objects, including field addition,
method overriding, and missing method

• (Dynamic) structural typing (as known as duck typing)
• Handling of strings as executable programs (via eval())
• Execution of partially written programs

We consider that these four dynamic features are strongly
related to programming functions that enables “ease of pro-
gramming” in a scripting language. As shown in Table 1,
these features are well shared in typical scripting languages,
such as Perl, Python, Ruby, Lua, and Groovy.

In the remainder of this section, we would like to review
each of these programming features with some remarks on
design considerations for static typing. For readability, we
write all sample sources with a Java-based grammar.

2.2 Runtime Alteration of Objects
Most dynamic languages provide a means for altering a
member of existing objects at runtime. The class design in
programming can be flexible, by allowing objects to be al-
tered differently depending on branched program execution
paths. The usefulness of this feature is known in several
practical programming scenarios, especially in case of han-
dling semi-structured data, such as XML and JSON.

Here is an example of field addition, commonly appear-
ing in dynamic language programming. The age field that

is not declared in the Person class is implicitly added to a
Person object by the field accessor.

class Person {
String name;
Person(String name) {
this.name = name;

}
}

Person p = new Person("naruto");
p.age = 17; // implicit addition (not type error)

In addition to the field addition, method overriding at
runtime and handling missing methods are widely used in
some of dynamic languages.

Dynamic languages, on the other hand, provide no pro-
tection for object alteration both at compilation time and run
time. As can be easily imagined, the alteration of method
types is likely to cause significant inconsistency, which
would be usually observed as unexpected runtime errors.
In a static language, type safety must be preserved after the
alteration of object members.

2.3 Type Declaration
The absence of explicit type declaration is the most remark-
able part of programming in dynamic languages. Non-static
constraint between types and variables allows programmers
to bind any types of values to arbitrary existing variables.
This allows the reuse of variables for different typed values,
although it is hard to distinguish from careless mistakes.

s = "string";
s = 1; // bugs? reuse ??

Local type inference is known to provide implicit type
declaration, which is nearly the same style in appearance and
facilitates an agile style of programming as well. In addition,
the static analysis of JavaScript programs reported in [10]
indicates that the reuse of variables across different types is
not a main part of dynamic language programming.

It is important to note that dynamic typing is by nature
based on the structural type system. The type equivalence
is different from that in the nominative type system. To
illustrate the difference, suppose the following two unrelated
classes: Person and Dog.

class Person {
String name;
Person(String name) { .. }

}
class Dog {
String name;
Dog(String name) {.. } ;

}
void hello(w) {
print w.name;

}

Person p = new Person("Naruto");
Dog d = new Dog("Hachi");
hello(p)
hello(w)

22

Behaviors Perl Python Ruby JavaScript Lua Groovy Java Scala Konoha
typing dynamic dynamic dynamic dynamic dynamic gradual static static static
field addition + + + + + + +
method addition + + + + + +
method rewriting + + + + + +
missing method + + + +
duck typing + + + + + + static, explicit Any
eval + + + + + + +
non-check execution + + + + + + +

Table 1. Comparison of language supports for dynamic behaviors

The structural type system tries to check type equivalence
by the structure of object members. In a statically typed lan-
guage, an abstract class or an interface class to type the vari-
able w in hello() is necessary, while in a dynamic lan-
guage it is not necessary because the type of the variable w
is checked at runtime when w.name is called. As we de-
scribed above, the possibility of object alterations can create
a variety of similar objects at runtime — probably resulting
in more difficult declaration of interface classes. Because dy-
namic languages requires no declared types for object class,
as a result they better deal with the abstraction of unrelated
objects. This feature is called duck typing among dynamic
language programmers1. Although duck typing is nearly a
dynamic structural subtyping, we use the term duck typing
in this paper.

2.4 Handling of Strings as Executable Programs
Many dynamic languages allow us to transform a string form
of source code into executable program at runtime. More-
over, the transformed executable can be executed with bind-
ings of variables and other symbols in the context of trans-
formation. This mechanism is called eval, and is typically
provided through the eval() function.

eval("a = f(1)")
print a;

The eval() function is not new in the programming
language literature, but it provides significant advantages of
program delivery and software updates over static languages,
whose code generation is usually decoupled from code ex-
ecution environments. The popularity of JavaScript on the
Web is considered to a typical case showing these advan-
tages.

Used together with dynamic alteration of object behav-
iors, runtime evaluation of program becomes a more cru-
cial part in modern software updates cycle. However, a tra-
ditional eval mechanism is not so perfect to fit with the Web
age. Apparently, the eval() function in an existing script-
ing language has several difficulties in security and program
safety. The eval() function is increasingly necessary and
needs to be improved by static typing in terms of software
safety.

1 —If it waddles like a duck, and quacks like a duck, it’s a duck!

2.5 Non-Check Cycle of Program Execution
Dynamic languages were originally designed to run on an
interpreter. Although many of today’s modern implementa-
tions adopted a compiler-based code generation for virtual
machine’s bytecode or native CPU instructions, they still run
programs in an interpreted and interactive style of program
execution. That is, programs can be run without explicit
compiler’s breaks, because the integrated compiler cannot
check type errors.

The advantage of fewer compiler checks lies in its rapid
development cycle from coding to testing. Because code
generation is rarely aborted at compilation time, program-
mers can almost always execute the interesting parts of their
incomplete programs, and understand program behaviors at
a very earlier stage.

We argue that this “non-check” cycle brings a lot of
impacts on “ease of programming” in dynamic languages,
although it might deny benefits of static type checking.

3. Static Scripting with Konoha
We have been developing a static scripting language, named
Konoha2, since 2006. The design goal of Konoha is, say,
it ”looks like Java, runs like Python”. Indeed, most of
Konoha’s grammar is clone of Java’s, but some of the re-
mainder are properly simplified to program.

3.1 Konoha Basics
Konoha is a static scripting language, written in C from
scratch. As we are still improving Konoha every day, the
latest version of Konoha 0.7 has the following features:

• Imperative language (C/C++, Java-style grammar)
• “pure” object-oriented programming (“everything is an

object”, a name-based class system, single inheritance,
and generics)

• Python-style interactive shell
• open source, running on various platforms, including

Linux, and MaxOS X, Windows, Android OS.

2 Konoha means leaves of tree in Japanese. We named it after the Hidden
Village of Konoha on Naruto.

23

The language design of Konoha is chiefly influenced
by Java. Most of the control statements and all the op-
erators in Java are imported to Konoha without any se-
mantic changes. Basic types, such as Object, Boolean,
Integer, and Float3 and basic classes such as System
and InputStream are named after Java class libraries.
Thus, the readers may read all the Konoha’s sample sources
as if it is Java.

Here is the first Konoha sample for a Person class,
written as compatible with Java at the source level.

class Person {
// fields
String name;
int age;
// constructor
Person(String name, int age) {
this.name = name;
this.age = age;

}
// methods
String getName() { return this.name; }

}

In addition, Konoha provides us with a Python-style in-
teractive shell, where >>> is a command prompt to eval an
inputted statement or expression, and the resulting evaluated
value is printed out on the next line.

$ konoha
Konoha 0.7(aomori) source (rev:1751, Jul 29 2010)
[GCC 4.2.1 (Apple Inc. build 5659)] on macosx
Options: rcgc thread used_memory:353 kb

>>> int n = 1;
>>> n + 1
2

The above Person class can be instantiated on a Konoha
shell. First, we declare a new class Person, and then use the
new operator to construct a new object of Person.

>>> class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;

}
String getName() { return this.name; }

}
>>> Person p = new Person("Naruto Uzumaki", 18)
>>> p.getName()
"Naruto Uzumaki"

Konoha is open source software and available at the fol-
lowing site.

http://codes.google.com/p/konoha
http://konoha.sourceforge.jp/

3 For the compatibility with Java, Konoha defines some aliasing rules for
primitive types(e.g., boolean as Boolean, int as Integer).

3.2 Dynamic Alteration of Objects
As we described in Section 2.2, the runtime alteration of
object behaviors is a crucial part of dynamic languages. At
the same time it is likely to destroy type safety. As Konoha
must be type safe, we have to avoid some kinds of alterations
that violate type safety.

Here are three kinds that can be safe in the alteration.

• The addition of new methods to existing classes
• The addition of new fields to existing classes
• The modification of existing methods with no alteration

of function interfaces

3.2.1 Addition of a Method
Konoha allows us to define an additional method outside of
its class declaration. Here is a new method isChild() that
is added to the Person class. Due to the object privacy, only
public field accessors such as this.age are allowed.
boolean Person.isChild() {
return (this.age <= 21);

}

The addition of a new method affects all instantiated ob-
jects. The following demonstrates the addition of the method
Person.isChild() that is undefined in the Person be-
fore the addition.
>>> p = new Person("Naruto Uzumaki", 18);
>>> p.isChild()
- [(eval):1]:(error) undefined method:

Person.isChild

>>> boolean Person.isChild() {
return (this.age <= 21);

}
>>> p.isChild()
true

Adding fields can be done in the same fashion. To start,
Konoha provides programming transparency between gett-
ter/setter methods and field accessors. That is, p.firstName
is simply a syntax sugar of p.getFirstName().
>>> String Person.getFirstName() {
return this.name.split()[0];

}
>>> p.name
"Naruto Uzumaki"
>>> p.firstName
"Naruto"

A small trick is required in adding an undeclared field.
First, we suppose there exists a dictionary map that is able to
store any values with associated string keys. Although this
map can be placed on a global variable in theory, we assume
that for convenient setMetaData()/getMetaData()
are defined to wrap the access to the map. Using these
functions, we emulate a virtual field accessor whose field
does not exist in the class declaration.

Here is an example of explicitly adding the mother field
to the Person class.

24

void Person.setMother(Person p) {
void setMetaData(this, "mother", p);

}
Person Person.getMother() {
return (Person)getMetaData(this, "mother");

}

>>> p.mother = new Person("Kushina", null);
>>> p.mother
Person{name: "Kushina", age: 0}

3.2.2 Modification of a Method
In Konoha, the redefinition of compiled methods means the
modification of its compiled body. This is said the runtime
method overriding on the same object. The control of over-
riding is unnecessary, because the affection of modified code
is propagated to all instantiated objects as a replacement of
old code.

>>> p = new Person("Naruto Uzumaki", 18);
>>> p.isChild()
true
>>> Boolean Person.isChild() {

return this.age <= 17;
}
>>> p.isChild()
false

Konoha disallows the update for different types of method
interface. If a method interface is altered, compiled code
calling the modified method causes type errors. That is, we
have to keep the equivalence of method interface in the
method overriding — which is easy to check because all
defined methods in Konoha are well typed.

3.2.3 Deletion of a Method
Deletion of fields or methods has a disruptive influence on
the type safety of already compiled code. Meanwhile, the be-
haviors of deleted method calls are not common in dynamic
languages. For example, Ruby calls missing methods, oth-
ers just raises a no such method exception at runtime. The
problem is that static languages usually have no dynamic
checking supports in method calls, and additionally protect
the redefinition of deleted method as different method types.

Konoha allows abstract method call due to an agile style
of development, which is supposed to return just a default
value with some warning message. Deletion of a method can
be done the redefinition of its method as an abstract method
to preserve types of method parameters and return value.

// redefinition as abstract method
>>> boolean Person.isChild();

// abstract methods are defined
>>> p.isChild()
false

Note that Konoha has adapted the null object pattern,
where null is defined as default values of each types. In
the above, isChild() method returns null of boolean
(false).

3.3 Local Type Inference
As Konoha is a static language with Java-style grammar,
types can be declared in a form that variable names follow
its type.

>>> String s1;
>>> s1
null

Basically, variables are available only if their types are
statically declared. However, this rule is often cumbersome,
especially in an agile style of development, because some
types are apparent from contexts. We allow one exception
in the assignment of undefined variables by using a simple
local type inference of the left-hand variable from its right-
hand expression.

>>> s2
- [(eval):1]:(error) undefined variable: s2
>>> s2 = "naruto"
"naruto"
>>> typeof(s2)
konoha.String

>>> s2=1
- [(eval):1]:(type error) not numeric: String

In addition, Konoha has the generics support, such as
Array<String> and Iterator<String>, which en-
ables more precise type inference for elements of the given
collection class. In the following example, variable s is in-
ferred as String from Iterator<String>.

foreach(s in ["a", "b", "c"]) {
print s; // s is inferred as String

}

The local type inference seems similar to dynamic typing
for variables, but it is significantly different in terms of
variable scope and duck typing.

3.3.1 Scope of Local Variables
Many dynamic languages have adopted a function-wide
scope because of no explicit type declaration. Thus, the fol-
lowing local variable s is accessible at any blocks in the
whole function.

String typeofnum(int n) {
if(n % 2 == 0) {
s = "even";

}
else {
s = "odd";

}
return s;

}

Konoha, on the other hand, have adopted the block-wide
scope that is very common in most static languages. That
is, the local variable s above is regarded as undefined at the
last return statement. This might decrease the agility of
programming to some extent. However, the consistency of
scope rule leads to less misunderstanding. In addition, the

25

block-wide scope allows the safe reuse of differently typed
variables, as follows:

{
a = []; // Array
{
int a = 1; // re-declaration as int

}
print a[0] // a can be access as a

}

3.3.2 Any type for Dynamic Type Checker
While the local type inference allows the omission of explicit
type declarations like dynamic typing, the types of variables
are decided at compilation time, and variables do not accept
values of another type. In [10], the analysis of JavaScript
indicated that almost all variables are used as if a single static
type. In many cases, we consider that static typing by type
inferences has no crucial impacts on “ease of programming”.
However, as we discussed in Section 2.3, dynamic typing is
useful for the abstraction of structurally similar objects.

In Konoha, we define Any type to incorporate dynamic
typing into a part of static type system. As its name implies,
Any type accepts arbitrary type at compilation time. Instead,
a dynamic type checker is inserted before the access to
values of Any type. The dynamic type checker raises a type
error at runtime if the operation is undefined.

>>> Any p = new Person("sasuke", 18);
>>> p.getName()
"sasuke"

>>> p.getFriends()

** NoSuchMethodException: Person.getFriends()

3.4 “Run anytime” Compilation
A static type checker provides a strong means for assuring
some parts of program correctness. However, writing a cor-
rect program takes long time, meaning the program can of-
ten not be executed when a programmer wants to test their
unfinished program. As we described in Section 2.5, this be-
comes an considerable obstacle for doing an agile style of
development in static languages.

Although Konoha’s compilation process includes static
type checking, it is also designed to allow the same develop-
ment cycle with existing dynamic languages. Detected errors
at compilation time are all reported to users, as other static
languages do. At the same time, detected errors are replaced
with some safely executable code instead of canceling the
entire compilation process. Thus, Konoha can run a program
anytime as scripting languages do.

Let us suppose that readLine() must return String
value. Therefore, the following function includes a type error
at the first block of the if statement.

int newSerialNum (int n) {
if(n == 0) {
InputStream in = new ("serial.txt");
n = in.readLine(); // a type error

in.close();
}
return n + 1;

}

In Konoha, the detected type error is replaced with code
throwing an runtime exception Source!!. The following is
a rewritten version of the above. Note that !! is a shorthand
for -Exception.
int newSerialNum (int n) {
if(n == 0) {
throw new Source!!();

}
return n + 1;

}

We consider that a program catching a SourceException
is not regular.

The throwing code would be inserted at the top of the
branched block where the occurrence of a type error is in-
evitable. We do this to avoid the partial execution of a path
that leads to an error. On the other hand, execution paths
where the occurrence of a type error is not deterministic
are compiled as usual. Accordingly, we can run the func-
tion newSerialNum () correctly if the error path is not
hit.
>>> newSerialNum(1)
2
>>> newSerialNum(0)

** Source: in Script.newSerialNum

4. Implementation of Konoha
We have incrementally improved the design and the imple-
mentation of Konoha, since we released the first version as
konoha 0.1 in 2008. Here we describe the implementation
based on the latest version (konoha 0.7), which is not offi-
cially released yet.

4.1 Konoha System and eval()
As with scripting languages, Konoha is designed to have in-
tegrated code generation with its code execution engine. The
eval() function is an interface of the integrated compiler
and execution process, chiefly including:

• a parser that tokenizes scripts and then constructs ASTs,
• a type checker that types each of AST nodes (using type

inference),
• a code generator (including a simple optimization pro-

cess),
• a code execution engine, called Konoha virtual machine

The eval() function accepts three forms of scripts,
namely, declarations (i.e, classes and methods), expressions
(i.e., operators and function calls) and statements (i.e., if,
while, etc). The eval of declarations just adds the structure
information of classes and the compiled code of methods
into the class table. The eval() of expressions and statements

26

>>> Any n = 1 // global variable, needs dynamic type checking
>>> n++

L1(1): MOVx sfp[3] sfx[0]+0 // move global variable to stack[3]
L2(1): TYPECHK sfp[3] Int // typecheck because of stack[3] is typed Any
L3(1): UNBOX sfp[3] // unbox
L4(1): iINC sfp[3] // increment sfp[3]
L5(1): BOX sfp[3] Int // box sfp[3] as Int
L6(1): XIMOV sfx[0]+0 sfp[3] // move an object stack[3] to the global

Figure 1. Compiled virtual machine code that includes dynamic type checking

Table 2. Micro benchmark: score indicates million operations per second. (Larger is faster.) Java VM was run without the JIT
compilation.

Microbench g++4.2 (O0) Java6 (VM) konoha 0.7 Lua 5.1 ruby1.9.1 python2.6 Perl 5.8
SimpleLoop 299 66.9 209 53.2 10.08 11.4 13.0
LocalVariable > 1000 386 526 32.1 45.2 65.8 25.6
GlobalVariable > 1000 141 239 25.8 29.1 23.2 27.0
StringAssignment 30.7 167 280 22.3 4.13 58.6 22.7
IntegerOperation > 1000 531 585 13.5 21.34 12.7 21.3
FloatOperation > 1000 127 425 13.5 6.01 11.7 17.2
FunctionCall > 1000 89.4 130 12.4 12.48 6.92 5.71
FunctionReturn > 1000 30.9 98.1 7.66 10.60 5.71 5.37
CFunctionCall > 1000 N/A 121 8.20 4.42 5.53 9.52
FunctionObjectCall > 1000 N/A 33.4 10.9 4.42 6.04
ObjectCreation 2.76 7.43 9.30 0.88 1.61 1.73 0.38
FieldVariable 273 108 183 7.06 4.85 6.88 7.52
MethodCall 145 56.4 68.2 12.6 3.38 3.30

are once transformed to an anonymous function internally,
then a compiled form of virtual machine instructions, and fi-
nally a evaluated result by executing the transformed anony-
mous function on a virtual machine.

As described in Section 3.4, a static type checker protects
compiled code from unsafe code updates via eval(). In
addition, we introduce the Script class to model the set
of global variables and functions. Since the eval function
is executed with the association of a Script object, we can
isolate unexpected behaviors that result from the execution
of eval by switching another script object.

In Konoha, Script is a prototye-based singleton class
specially designed. The new Script generates a new sub-
class of script and its instance. All functions and global
variables are defined as methods and fields respectively in
Script. If we dispose a Script object, all functions and
variables over that script are eliminated safely.
Script scr = new Script();
scr.eval """
int fibo(int n) {
if(n < 3) return 1;
return fibo(n-1) + fibo(n-2);

}
"""
scr.fibo(30);

scr = null; // dispose the script

4.2 Virtual Machine
The code execution engine of Konoha is a register-based
virtual machine [11], with a newly designed instruction set.
The instructions set ranges from control flows (e.g., call and
jmp), to type-specific operations (e.g., iadd and fadd) —
similar to CPU instruction sets. Some unique instructions are
added: typechk for checking Any value at runtime, box for
boxing an integer or a float value, and unbox for unboxing
an integer or a float object.

Figure 1 illustrated the complied virtual machine instruc-
tions that evaluate the expression n++, where the variable
n is a global variable of Any type, requiring dynamic type
checking.

Note that integers and floats are usually unboxed because
all the arithmetic instructions are designed for unboxed val-
ues. However the dynamic type checker needs type informa-
tion that are recorded at the header of an object. The com-
piler controls the insertion of boxing/unboxing before the
typechk instruction. The static type system helps removing
unnecessary box/unbox, or typechk from compiled code,

27

!" #" $" %" &" '" (")" *" +" #!"

,-./01234516"

6247.38150"

258.4/9"

4857:"

;85<&!="

>?8:#@+"

A:0954%@#"

B?2'@#"

C54592!@)"

D2E2#@("

#(!

F*!!

$'!

$(!

$(!

Figure 2. Performance of Java1.6, Lua5.1, Python3.1, Ruby1.9 in relation to Konoha 0.7.

leading to improved performance results, as shown in the
next section.

4.3 Performance Study
Good performance is a general concern although it is not our
main focus in this paper. In this final subsection, we would
like to report our earlier results on the performance study of
a statically typed scripting language written in C.

As the development of Konoha is still at the earlier stage,
we have used micro benchmark tests mainly designed to im-
prove the virtual machine implementation. Although these
tests are primitive and not suitable for the estimation of total
application performance, they are well designed to measure
each of simple operations such as variable assignment, inte-
ger operation, and function calls. Table 2 illustrates the com-
parison of benchmark scores, obtained by running bench-
mark tests several times on Mac OS X 10.6 (Core2 2.16Ghz).

In addition to our micro benchmarks, we translated sev-
eral benchmarks from the Computer Language Benchmark
Game [9] into Konoha and compared the result existing
benchmarks running on Python 3.1, Lua 5.1 (known as a
very fast scripting language), Ruby 1.9.1 and Java 1.6 (de-
picted in Figure 2). The translated scripts are based on the
sources of Java version, not added to any Konoha-specific
tuning at the source code level.

Several conclusions can be drawn from this experiment.
We found that Konoha enjoyed the performance advantage
over major implementations of existing dynamic scripting
languages. A runtime type checker is a small part of the
whole scripting engine including an object memory allo-
cator and a garbage collector. As shown in the experience
of StrongTalk, static types are not necessarily required for
achieving good performance. We consider that this result is
due to the fact that static typing allows to implement a sim-
pler virtual machine that runs faster.

Compared with Java, Java runs fibo about 3x faster than
Konoha, and runs nbody 100x faster than Konoha. We con-
sider that this is mainly because of the lack of program op-
timization at compilation time. Because the compiler opti-
mization is available on Konoha, we conclude that a static
scripting language could provide high-performance execu-
tion and ease of programming in the future.

5. Related work
Due to the popularity of JavaScript and Ruby on the Web,
scripting languages have received both industrial and aca-
demic attention more recently[8]. In this respect, the lack of
static types has been regarded as a major pitfall of its lan-
guage design, resulting in their poor performance and less
program robustness. Several attempts have been made to the
integration of static typing features into the existing dynamic
language[1, 4, 5, 12].

On the other hand, some statically typed languages have
increasingly imported dynamic language features to improve
the programming experience. Scala has a several features,
including type inference and an interactive shell, which are
in part available as a scripting language[7]. C# 4.0[13] and
Boo[3] introduced dynamic and duck type, respectively,
in order to integrate a runtime type checker into statically
compiled code.

We argue that ”ease of programming” attributes in script-
ing languages are not exclusive to dynamic typing. We se-
lected major dynamic language features to model them on
top of our newly designed static language. In designing
Konoha, we examined a variety of dynamic or static pro-
gramming languages: Perl, Python, Lua[6], Ruby, Groovy,
JavaScript, Thorn[2], Scala[7] and others. The dynamic fea-
tures of Konoha are influenced primaryly by Python.

28

6. Conclusion
The lack of static types in scripting languages reveals sev-
eral difficulties in terms of development such as software
evolution and poor performance as its use is largely grow-
ing. This paper presented the design and implementation
status of Konoha, a static-typing object-oriented scripting
language written in C from scratch. Konoha is designed to
model dynamic language behaviors, including runtime alter-
ation of object behaviors, duck typing, runtime program up-
dates through the eval function, and execution of incomplete
program without compiler stops.

Our implemented Konoha showed good scripting experi-
ences, as well as better performance. Future research direc-
tion includes the refinement of static scripting constructors
to type theoretic formalization of dynamic object behaviors.
Now we are intensively developing Konoha as open source.
Any comments and helps are welcome.

Acknowledgments
The work was founded by Japanese Ministry of Economy,
Trade and Industry: IPA ”unexplored domain of software
challenge” program, Japanese Ministry of Internal Affairs
and Communications: SCOPE-R for younger researcher
fund, a Japan Science and Technology Agency: CREST
”Dependable Embedded Operating System for Practical
Use” (led by Mario Tokoro). Many people helped the de-
velopment of Konoha. We also thank the S3-10 reviewers
and our shepherd, Carl Friedrich Bolz, who helped us to
improve the paper.

References
[1] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython: a

Step Towards Reconciling Dynamically and Statically Typed
OO Languages. In OOPSLA 2007 Proceedings and Compan-
ion, DLS’07: Proceedings of the 2007 Symposium on Dynamic
Languages, pages 53–64. ACM, 2007.

[2] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards,
R. Strniša, J. Vitek, and T. Wrigstad. Thorn: robust,
concurrent, extensible scripting on the jvm. In OOP-
SLA ’09: Proceeding of the 24th ACM SIGPLAN con-
ference on Object oriented programming systems lan-
guages and applications, pages 117–136, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-766-0. doi:
http://doi.acm.org/10.1145/1640089.1640098.

[3] R. B. de Oliveira. The boo programming language.
http://boo.codehaus.org/.

[4] M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided
static typing for dynamic scripting languages. In OOP-
SLA ’09: Proceeding of the 24th ACM SIGPLAN con-
ference on Object oriented programming systems lan-
guages and applications, pages 283–300, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-766-0. doi:
http://doi.acm.org/10.1145/1640089.1640110.

[5] N. Haldiman, M. Denker, and O. Nierstrasz. Practical,
pluggable types for a dynamic language. Comput. Lang.

Syst. Struct., 35(1):48–62, 2009. ISSN 1477-8424. doi:
http://dx.doi.org/10.1016/j.cl.2008.06.003.

[6] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes.
The evolution of lua. In HOPL III: Proceedings of
the third ACM SIGPLAN conference on History of pro-
gramming languages, pages 2–1–2–26, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-766-X. doi:
http://doi.acm.org/10.1145/1238844.1238846.

[7] M. Odersky. The scala experiment: can we provide better lan-
guage support for component systems? In POPL ’06: Con-
ference record of the 33rd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 166–
167, New York, NY, USA, 2006. ACM. ISBN 1-59593-027-2.

[8] L. Prechelt. An empirical comparison of seven programming
languages. Computer, 33(10):23–29, 2000. ISSN 0018-9162.
doi: http://dx.doi.org/10.1109/2.876288.

[9] D. Project. The computer language benchmarks game.
http://shootout.alioth.debian.org/.

[10] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis
of the dynamic behavior of javascript programs. In PLDI
’10: Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, pages 1–
12, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0019-3. doi: http://doi.acm.org/10.1145/1806596.1806598.

[11] Y. Shi, D. Gregg, A. Beatty, and M. A. Ertl. Virtual
machine showdown: stack versus registers. In VEE ’05:
Proceedings of the 1st ACM/USENIX international confer-
ence on Virtual execution environments, pages 153–163, New
York, NY, USA, 2005. ACM. ISBN 1-59593-047-7. doi:
http://doi.acm.org/10.1145/1064979.1065001.

[12] S. Tobin-Hochstadt and M. Felleisen. The design and im-
plementation of typed scheme. In POPL ’08: Proceedings
of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 395–406, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-689-9. doi:
http://doi.acm.org/10.1145/1328438.1328486.

[13] M. Torgersen. New features in c# 4.0.
http://code.msdn.microsoft.com/csharpfuture.

29

