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Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness;
absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical imple-
mentation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference,
and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the
study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV)
disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic
subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The
included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects
represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented
the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated
changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes.

1. Introduction

Noninvasive assessment of arterial stiffness has been pro-
posed for individual cardiovascular risk evaluation and early
detection of vascular damage associated with hypertension
and/or atherosclerosis [1–4]. Among the different nonin-
vasive methods used to assess arterial stiffness the carotid-
femoral pulse wave velocity (PWV) has emerged as a gold
standard due to its accuracy, reproducibility, relative easy
measurement, and low costs [3, 4]. Furthermore, PWV has
yielded prognostic value beyond and above traditional risk
factors [3, 4]. However, and in spite of its recognized value
the evaluation of PWV in the clinical practice has been

hampered among other factors by the absence of standard-
ized methodologies of study and the lack of established
normal/reference values for different populations [3–8].

PWV assessment involves measuring the pulse wave
transit time along the analyzed arterial segment and the
distance on the skin between the pulse wave recording sites.
Therefore, PWV values depend on both the path length
measurement and the algorithm used to detect “the foot”
of the analyzed waves [4]. The algorithms most frequently
used are the intersecting tangent algorithm and the point
of maximal upstroke during systole [3, 4]. The pathway
can be the direct distance measured between the carotid
and femoral measurement sites, the sternal notch-femoral
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measurement site distance, or the distance obtained by
subtracting the carotid-sternal notch distance from the ster-
nal notch-femoral distance (subtracted distance). Different
algorithms applied to the same waves can lead to differences
in PWV of 5–15%, while differences in path length alone
can result in differences in PWV of up to 30% [3, 4]. When
determining normal and/or reference values those tech-
nicality-related issues should be considered. Arterial stiffness
also depends on blood pressure levels and increases with
age [3, 4]. These latter are major determinants of PWV and
despite several factors have shown to influence PWV, in many
cases their effects would be negligible after correction for age
[3].

Reference values for PWV have been recently provided
from data mainly derived from European and/or North
American populations [3]. Given the ethnic diversity in
cardiovascular risk profile, the dissimilar risk associations,
and the differences in genetic-environmental interactions
among populations, studies performed in a given population
could not be directly applied to another. Latin America
encompasses a wide variety of geographic, ethnic, and
socioeconomic differences. Such diversity would be reflected
in the prevalence/profile of cardiovascular risk factors, athe-
rosclerotic vascular changes, and/or in the reference val-
ues for the vascular parameters [9–12]. For instance, the
CARMELA study showed large differences in the vascular
characteristics (i.e., carotid intima-media thickness) among
Latin American populations [12]. Then, considering the
value of the vascular evaluation in cardiovascular risk strat-
ification and diagnosis it is necessary to determine nor-
mal/reference levels for different vascular parameters taking
into account the differences among populations.

The present study (from CUiiDARTE Project) was car-
ried out in a Uruguayan population to (a) quantify PWV
normal/reference levels, (b) evaluate age-associated changes
in PWV, and (c) analyze and compare the differences in PWV
obtained using different wave detection algorithms and path
lengths, considering age and pressure levels.

2. Materials and Methods

2.1. Study Population and Subjects Groups. CUiiDARTE
Project is a population-based national study developed in
Uruguay [13, 14]. With an area of approximately 176,000
square kilometers, Uruguay has a population of approxi-
mately 3.5 million (1.8 million live in Montevideo and its
metropolitan area). Most Uruguayans (88%) are Caucasian
of European origin (mainly Spanish).

2.1.1. Subjects’ Selection and Groups. Our study was designed
to characterize the physiological age-associated changes in
arterial parameters considered markers of vascular disease.
Only knowing the physiological changes associated with age
it would be possible to know whether a particular value of a
vascular parameter is the result of normal aging or reflects a
diseased arterial system.

Subjects referred for cardiovascular evaluation in CUi-
iDARTE Project were considered eligible. A probability

sampling strategy (Cluster Sampling) was employed. We
aimed at analyzing aging-related vascular changes. Then, a
conservative approach was used, and we excluded subjects
with cardiovascular symptoms, history of cardiovascular
disease, diabetes mellitus or renal failure, cardiovascular risk
factors other than age and gender (i.e., smokers), atheroscle-
rotic plaques in carotid arteries (B-mode and Doppler
ultrasound evaluation), and/or taking antihypertensives or
lipid-lowering medications [13, 14]. To ensure an adequate
application of the exclusion factors, we used a medical
interview in which personal and family history and lifestyle
habits were assessed (standardized questionnaire). Anthro-
pometric and laboratory data were obtained (see below).
The study was approved by the Institutional Ethic Com-
mittee, and it was conducted according to the Declaration
of Helsinki and the Good Clinical Practice Guidelines.
CUiiDARTE Centre and Project details can be found in
http://www.cuiidarte.fmed.edu.uy/.

Subjects were studied in a single visit. Evaluation started
after 9–12-hour overnight fast. Exercise, caffeine, alcohol,
and vitamin C were avoided prior (at least six hours) to
the cardiovascular examination. Subjects’ height and weight
were measured, and the body mass index (BMI, weight to
height squared ratio) calculated. Subjects with a BMI higher
than 30 Kg/m2 were excluded.

2.2. Laboratory Measurements. Venous blood samples were
drawn and processed immediately using commercially avail-
able kits and/or laboratory methods. Procedures were stan-
dardized before the study initiation and during the study’s
development they were controlled for quality by a cen-
tral reference laboratory (Clinical Laboratory Department,
Clinical Hospital, School of Medicine). Total cholesterol
(TC) was determined by the spectrophotometry cholesterol
oxidase/peroxidase enzymatic method; serum triglycerides
(TG) and high-density lipoprotein cholesterol (HDL-C) were
determined by glycerol enzymatic method and the precip-
itating reactive method, respectively; low-density lipopro-
tein cholesterol (LDL-C) was calculated by the Friedewald
formula (LDL-C = [TC − HDL-C] − [TG/5], valid if
TG < 400 mg/dL) [15]. Non-HDL-C (TC − HDL-C) and
TC/HDL-C were calculated.

Lipid values were classified according to NCEP-ATP III
criteria [16]. Patients with a lipid profile with one or more of
the following conditions: TG≥ 200 mg/dL, TC≥ 240 mg/dL,
HDL-C < 40 mg/dL, and LDL-C ≥ 160 mg/dL were excluded
at the time of data analysis.

Anthropometric characteristics and laboratory data are
shown in Table 1.

2.3. Pulse Wave Velocity: Distances and Algorithms. After
blood collection, subjects were taken to the laboratory
for noninvasive vascular assessment. Vascular evaluation
consisted in measuring complementary structural and func-
tional vascular parameters. Subjects retained for the present
analysis (n = 429) are a subgroup of the CUiiDARTE Project
database [13, 14]. The database includes patients and sub-
jects in whom we evaluated (1) common (CCA), internal and
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Table 1: Clinical and hemodynamic characteristics.

Group 10–19 years 20–29 years 30–39 years 40–49 years 50–59 years 60–69 years

N 61 103 60 71 66 68

Age (years) 15± 2 24± 2a 34± 2ab 45± 3abc 54± 3abcd 64± 4abcde

Anthropometric measurements

Body height (m) 165± 9 167± 9 166± 9 165± 9 165± 8 160± 10

Body weight (kg) 57± 11 63± 12 72± 16ab 73± 16ab 71± 16ab 71± 12ab

BMI (kg/m2) 21± 3 23± 4a 26± 3ab 26± 3ab 25± 4ab 27± 2ab

Peripheral hemodynamics parameters

Systolic pressure (mmHg) 118± 13 125± 12a 126± 14 130± 13ab 132± 16abc 144± 19abcde

Diastolic pressure (mmHg) 64± 10 71± 8a 74± 11a 78± 9ab 79± 11ab 75± 10ab

Pulse Pressure (mmHg) 48± 6 51± 8 53± 10 54± 8a 56± 9a 69± 13abcde

Heart rate (bpm) 78± 13 73± 11 72± 8a 72± 12a 73± 12a 63± 10abcde

Laboratory

Total cholesterol (mg/dL) 183.7± 32.1 172.3± 23.3 189.3± 21.4 184.6± 17.0 217.0± 8.6abd 190.4± 20.3

HDL-cholesterol (mg/dL) 62.1± 7.3 63.4± 13.7 66.0± 26.6 67.4± 6.3 73.2± 19.4ab 65.2± 9.6

LDL-cholesterol (mg/dL) 101.2± 21.2 90.1± 19.3 109.5± 28.5 100.9± 5.8 126.9± 12.2abd 91.2± 12.1a

Triglycerides (mg/dL) 96.4± 47.2 83.2± 22.4 56.2± 21.0ab 58.0± 2.0ab 60.2± 21.3ab 64.2± 18.0ab

Mean value ± SD. N : number of subjects, BMI: body mass index, HDL and LDL: high and low density cholesterol, respectively.
Statistics: a,b,c,d,e: P < 0.05 with respect to 10–19, 20–29, 30–39, 40–49, and 50–59 years, respectively (ANOVA + Bonferroni Test).

external carotid arteries plaque presence, (2) CCA intima-
media thickness and instantaneous diameter waveforms, (3)
CCA stiffness (percentual pulsatility, compliance, distensi-
bility, and stiffness index), (4) aortic stiffness (PWV), and
(5) peripheral and central (aortic) pressure levels and pulse
wave analysis, together with medical history and laboratory
analysis. PWV recordings are analyzed in this work.

Carotid and femoral pulse waves were recorded using
mechanotransducers simultaneously placed on the skin over
the carotid and femoral arteries (subjects in supine position)
[13, 14]. Once quality pulse waveforms were obtained, dig-
itization was finished and the time delay between the
waveforms (pulse transit time) was measured. To this end we
considered the two most popular algorithms used to detect
the wave foot: the intersecting tangent algorithm (tang)
and the point of maximal upstroke during systole (max.up)
(Figure 1). Direct, sternal notch-femoral, and subtracted
distances were used (Figure 1). Then, six PWV values were
obtained: PWVdirect/tang, PWVdirect/max.up, PWVsn-fem/tang,
PWVsn-fem/max.up, PWVsubtracted/tang, and PWVsubtracted/max.up.
The “real” PWV (PWVReal) was calculated according to a
recently proposed method [3]. PWVReal is a standardized
PWV, obtained multiplying by 0.8 the PWV calculated using
the direct distance and the intersecting tangent algorithm (to
reach more realistic stiffness values) [3]. In all cases, the PWV
was automatically calculated as the quotient between the
distance and the pulse transit time difference. The reported
value was always the average of at least 8 consecutive beats.
Brachial pressure and heart rate were quantified (Omron
HEM-433INT Oscillometric System; Omron Healthcare
Inc., IL, USA).

2.3.1. Statistical and Group Analysis. Considering our aim,
the population characteristics, the prevalence of cardiovas-
cular disease and risk factors in the Uruguayan population,
and considering an α = 0.05 (C.I. = 95%), the number
of subjects included was enough to perform statistical
inference about age-related changes in PWV. We used a
probability sample strategy (cluster sampling). The “ref-
erence value population” was represented by all included
subjects; subjects with optimal/normal blood pressures levels
represented the “normal value population” [3]. To determine
diagnostic thresholds for men and women combined, we
rounded the 95th prediction bands. Subjects were catego-
rized according to the age decade (10–19, 20–29, 30–39,
40–49, 50–59, and 60–69 years old) and blood pressure
levels (at the time of the study): optimal (<120/80 mmHg),
normal (≥120/80 mmHg and <130/85 mmHg), high normal
(≥130/85 mmHg and <140/90 mmHg), grade I hypertension
(≥140/90 mmHg and <160/100 mmHg), and grade II/III
hypertension (≥160/100 mmHg). Differences among groups
were tested by means of ANOVA and Bonferroni’s post-test.
Statistical analyses were done using Statistical Package for the
Social Sciences 17.0 for Windows software.

3. Results

Table 1 summarizes clinical and hemodynamic character-
istics of the studied subjects. As was expected, there was
an aging-associated increase in systolic blood pressure
(P < 0.05). Diastolic pressure showed lesser aging-associated
changes, but it decreased beyond 60 years. Heart rate showed
a tendency to decrease with age.
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Figure 1: (a) Algorithms employed to determine the carotid-femoral pulse transit time (PTT): intersecting tangent algorithm (tang) and
maximal upstroke during systole (max.up). (b) Distances employed to determine the carotid-femoral PWV. Distance A: direct distance
between the carotid and femoral region (direct). Distance B: distance between the sternal notch and the femoral region (sn-fem). Distance
C: subtracted distance, obtained as B minus the carotid to sternal notch distance (subtracted). Combing the two PTT algorithms and the three
distances, six PWV were quantified: PWVdirect/tang, PWVdirect/max.up, PWVsn-fem/tang, PWVsn-fem/max.up, PWVsubtracted/tang, and PWVsubtracted/max.up.
In addition the real PWV was calculated (see text).

Table 2 shows PWV values (reference levels) for the dif-
ferent age groups considering the algorithms used. Figure 2
shows the PWV nomograms for the whole reference pop-
ulation. There were no gender-related statistical differences
in PWV when an isobaric analysis was performed. The
expected age-associated increase in PWV was observed in
our population (P < 0.05) (Table 2 and Figure 2). PWV
percentiles differed among the different methods of calculus
(P < 0.05) (Figure 2 and Table 2). Such differences varied
depending on the algorithms and age considered (P < 0.05).

In Figure 2, the dashed areas illustrate the differences
between the age-related threshold (percentile 97.5) defined
from our population and the fixed unique threshold pro-
posed in the ESH/ESC Guidelines (PWV = 12 m/s or 9.6 m/s)
[1]. Note that a fixed threshold of PWV = 12 m/s (or 9.6 m/s
for PWVReal) would underestimate or overestimate arterial
wall damage depending on the subjects age. The under-
estimation or overestimation would differ if the algorithm
used to determine the threshold PWV is not considered, and
hence the PWV levels are not corrected accordingly.

Figure 3 and Table 3 show the percentile 97.5 for PWV
obtained using different distances and algorithms. Note that
the differences in PWV among the methods of calculus
varied depending on the subjects’ age (P < 0.05). Differences

between maximum and minimum values were higher in
elderly individuals than in young subjects (P < 0.05).

For a given distance, maximal PWV values were obtained
with the intersecting tangent (tang) algorithm. Additionally,
as was expected, for a given algorithm PWV was higher when
the direct distance was considered (Figure 3). The referred
differences increased with age.

Table 4 shows PWV levels (normal and reference values)
for the whole population and the different methods used,
considering age and blood pressure levels. Subjects with
optimal or normal blood pressure had the lowest PWV levels
(normal population). In general terms, subjects with normal
blood pressure had PWV values higher than those of subjects
with optimal blood pressure (P < 0.05).

4. Discussion

The definition of normal and reference values represents
a critical step in the implementation of PWV as a clinical
tool for detecting subclinical organ damage in routine
patient workup. Reference values have been defined for
European populations [3]. However, given the population-
based differences in the vascular behavior in physiological
and pathological conditions, values obtained in a given pop-
ulation may not be applicable to another one. On the other
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Table 2: PWV levels (reference population).

All
10–19 20–29 30–39 40–49 50–59 60–69

PWV direct/tang

Mean 7.7 8.8a 10.2a,b 10.7a,b 11.1a,b 14.8a,b,c,d,e

SD 1.1 1.5 1.4 1.5 1.5 5.8

P 25 7.2 7.7 9.1 9.6 10.2 12.5

P 50 7.5 8.8 10.4 10.9 10.9 13.2

P 75 8.2 9.7 11.3 11.5 11.7 13.7

P 90 9.0 10.8 11.7 12.5 13.1 15.1

PWV sn-fem/tang

Mean 7.7 7.7 8.6 9.5a,b 9.9a,b,c 13.1a,b,c,d,e

SD 1.1 1.4 1.4 1.7 1.6 4.7

P 25 7.2 6.6 7.7 8.3 8.7 10.8

P 50 7.5 7.6 8.9 9.5 9.5 11.5

P 75 8.2 8.5 9.6 10.3 10.3 13.0

P 90 9.0 9.5 10.0 11.9 12.6 14.4

PWV subtracted/tang

Mean 5.3 6.4a 7.4a,b 8.0a,b 8.3a,b 10.7a,b,c,d

SD 1.2 1.4 1.3 1.6 1.5 4.0

P 25 4.9 5.4 6.2 6.8 7.2 8.9

P 50 5.1 6.3 7.3 7.8 7.9 9.5

P 75 5.6 7.3 8.2 9.0 8.7 10.3

P 90 6.3 8.1 8.7 9.9 10.7 11.1

PWV direct/max.up

Mean 7.3 8.3a 9.3a,b 9.8a,b 10.2a,b,c 12.4a,b,c,d,e

SD 0.9 1.2 1.1 1.3 1.4 2.7

P 25 6.9 7.4 8.3 8.9 9.3 10.9

P 50 7.2 8.3 9.3 9.8 9.8 11.4

P 75 7.7 9.1 10.1 10.3 11.0 12.4

P 90 8.5 9.9 10.5 11.5 12.4 14.4

PWV sn-fem/max.up

Mean 7.2 7.1 7.9b 8.4a,b 8.8a,b,c 10.6a,b,c,d,e

SD 0.9 1.1 0.9 1.2 1.4 2.4

P 25 6.9 6.2 7.0 7.5 7.9 9.3

P 50 7.2 7.1 7.9 8.4 8.5 9.7

P 75 7.6 7.9 8.7 9.0 9.5 10.8

P 90 8.1 8.6 8.9 10.0 10.7 12.3

PWV subtracted/max.up

Mean 5.0 6.0a 6.7a 7.1a,b 7.3a,b 8.8a,b,c,d

SD 1.0 1.1 1.1 1.2 1.4 2.0

P 25 4.6 5.1 5.9 6.2 6.6 7.7

P 50 4.9 5.9 6.7 6.8 7.0 8.2

P 75 5.2 6.6 7.3 7.8 7.7 9.1

P 90 5.9 7.3 7.6 8.5 9.0 10.2

PWV real

Mean 6.1 7.2a 8.2a,b 8.9a,b 9.4a,b,c 12.5a,b,c,d,e

SD 0.9 1.3 1.2 1.6 1.8 4.3

P 25 5.7 6.2 7.3 7.8 8.2 10.3

P 50 6.0 7.1 8.4 8.9 8.9 10.8

P 75 6.5 7.9 9.0 9.5 10.1 12.1

P 90 7.2 9.0 9.6 11.1 12.2 15.1

Statistics: a,b,c,d,e, P < 0.05 with respect to 10–19, 20–29, 30–39, 40–49, and 50–50 years, respectively (ANOVA + Bonferroni).



6 International Journal of Hypertension

4

6

8

10

10 20 30 40 50 60 70

12

14

16

P
W

V
 (

m
/s

)

PWV direct/tang

Age (years)

p97.5

p2.5

p50

4

6

8

10

10 20 30 40 50 60 70

12

14

16

P
W

V
 (

m
/s

)

PWV direct/max.up

Age (years)

p97.5

p2.5

p50

4

6

8

10

10 20 30 40 50 60 70

12

14

16

P
W

V
 (

m
/s

)

PWV sn-femt/tang

Age (years)

p97.5

p2.5

p50

4

6

8

10

10 20 30 40 50 60 70

12

14

P
W

V
 (

m
/s

)

PWV sn-femt/max.up

Age (years)

p97.5

p2.5

p50

4

2

6

8

10

10 20 30 40 50 60 70

12

14

P
W

V
 (

m
/s

)

PWV subtracted/tang

Age (years)

p97.5

p2.5

p50

4

2

6

8

10

10 20 30 40 50 60 70

12

P
W

V
 (

m
/s

)

PWV subtracted/max.up

Age (years)

p97.5

p2.5

p50

4

6

8

10

10 20 30 40 50 60 70

12

14

16

P
W

V
 (

m
/s

)

PWV real

Age (years)

p97.5

p2.5

p50

Figure 2: PWV nomograms for the reference population with percentiles (p) 97.5, 50, and 2.5. Broken lines indicate mean confidence
interval. The dashed areas illustrate differences between the threshold defined from our population and the fixed unique threshold proposed
in the ESH/ESC Guidelines. For PWVReal the fixed unique threshold proposed by Boutouyrie et al. (9.6 m/s) was included [3]. Note that the
fixed threshold of PWV = 12 m/s or 9.6 m/s determines an underestimation and overestimation to detect preclinical arterial wall damage in
young and old subjects, respectively. Underestimation or overestimation would differ depending on the subjects’ age and the algorithm used
to assess PWV.
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Table 3: PWV thresholds (reference population).

≤19 y. 20–29 y. 30–39 y. 40–49 y. 50–59 y. 60–69 y.

PWV direct/max.up 9.1 10.9 11.0 12.3 13.7 14.7

PWV direct/tang 9.8 11.7 12.5 13.5 14.2 16.5

PWV sn-fem/max.up 8.9 9.1 9.4 10.7 12.2 12.6

PWV sn-fem/tang 9.8 10.5 10.6 12.6 13.7 16.0

PWV subtracted/max.up 7.6 8.7 8.8 10.0 10.4 10.6

PWV subtracted/tang 8.2 9.5 10.1 11.4 11.4 12.0

PWV real 7.9 10.0 10.1 11.8 13.6 15.6

Statistics: regardless the PWV calculus, thresholds differed (P < 0.05) among the different age groups.
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Figure 3: PWV thresholds (percentile 97.5) differences considering different combinations of distances and algorithms used to calculate
PWV.

hand, values previously reported were obtained considering
a single PWV methodological approach, restricting their
applicability to specific measurement protocols or devices.
In this work, PWV values were obtained in a Uruguayan
population considering different path lengths and algorithm
of calculus.

To contribute to overcome limitations in the clinical use
of PWV and other vascular parameters, CUiiDARTE Project
was developed, with financial support from the National
Agency for Research and Innovation (ANII, http://www.anii
.org.uy/). The project aimed at building a National Database

integrating noninvasive vascular parameters considered
markers of subclinical arterial damage [13, 14]. In this work,
we obtained and analyzed data from CUiiDARTE to establish
normal/reference values for PWV.

This work main contribution is the establishment of
normal/reference PWV values for Uruguayans, obtained in a
population-based study and considering age, blood pressure
levels, and different methodological approaches. Our work has
the strength of being the first in Latin America that applies an
integrative approach to characterize age-related changes and
determine normal/reference PWV values. The obtained data
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Table 4: PMV levels considering age and blood pressure.

Blood pressure category

Optimal Normal High normal Grades I/II HTA

PWV direct/max.up

10–19 years 6.9 (5.8–7.9) 7.4 (5.2–9.6)# 7.8 (5.9–9.8)#& (—)

20–29 years 8.0 (5.6–10.4)a 8.1 (5.7–10.6)a# 8.7 (6.8–10.7)a#& 9.1 (6.1–12.0)#&%

30–39 years 8.4 (7.7–9.2)ab 8.7 (5.6–10.5)ab# 9.7(8.9–10.6)ab#& 10.4 (9.6–11.2)b#&%

40–49 years 8.9 (7.2–10.5)abc 9.6 (8.8–10.0)abc# 10.0 (7.6–12.5)abc#& 10.6 (5.6–15.5)b#&%

50–59 years 9.7 (8.0–11.4)abcd 9.9 (7.8–12.0)abcd# 10.4 (6.9–13.9)abcd#& 10.5 (7.6–13.4)b#&

PWV direct/tang

10–19 years 7.2 (5.9–8.5) 7.9 (5.0–10.7)# 8.2 (6.3–10.1)#& (—)

20–29 years 8.6 (5.5–11.7)a 8.7 (5.5–11.9)a# 9.4 (6.8–12.1)a#& 10.0 (5.9–14.1)#&%

30–39 years 9.6 (7.6–11.5)ab 9.7 (3.5–15.9)ab# 10.8 (9.6–12.0)ab#& 11.8 (10.5–13.1)b#&%

40–49 years 9.8 (7.4–12.1)ab 10.9 (9.6–12.2)abc# 11.5 (8.0–15.0)abc#& 12.5 (7.2–17.9)bc#&%

50–59 years 10.7 (8.4–13.0) abcd 11.1 (8.9–13.3)abc# 11.6 (8.4–14.9)abc#& 13.0 (8.2–17.2)bcd#&%

PWV sn-fem/max.up

10–19 years 6.8 (5.8–7.9) 7.2 (5.1–9.3)# 7.4 (6.2–8.6)#& (—)

20–29 years 6.9 (4.8–9.0) 7.2 (5.4–8.9)# 7.6 (6.0–9.2)a#& 7.9 (5.2–10.6)#&%

30–39 years 7.2 (6.4–8.0)ab 7.5 (3.6–11.3)ab# 8.3 (7.5–9.2)ab#& 8.8 (8.2–9.5)b#&%

40–49 years 7.6 (5.8–9.5)abc 8.3 (7.5–9.2)abc# 8.6 (6.4–10.7)abc#& 9.3 (4.4–14.1)bc#&%

50–59 years 8.3 (6.9–9.8)abcd 8.5 (6.5–10.4)abc# 8.9 (5.8–12.0)abcd#& 9.6 (7.6–11.5)bcd#&%

PWV sn-fem/tang

10–19 years 7.2 (5.9–8.5) 7.6 (5.0–10.3)# 7.8 (6.1–9.6 )#& (—)

20–29 years 7.4 (4.6–10.2)a 7.6 (5.1–10.1)# 8.1 (5.7–10.4)a#& 8.7 (5.0–12.4)#&%

30–39 years 7.9 (5.7–10.2)ab 8.7 (7.4–12.8)ab# 9.2 (8.1–10.4)ab#& 10.1 (9.0–11.2)b#&%

40–49 years 8.4 (6.0–10.8)abc 9.4 (8.3–10.5)abc# 9.8 (6.7–12.8)abc#& 10.7 (3.9–17.5)bc#&%

50–59 years 9.3 (7.2–11.5)abcd 9.6 (6.8–12.5)abcd# 10.2 (5.6–14.8)abcd#& 11.1 (7.6–14.6)bcd#&%

PWV subtracted/max.up

10–19 years 4.6 (3.8–5.4) 4.8 (3.4–6.3) 5.0 (4.2–5.8)#& (—)

20–29 years 5.7 (3.7–7.7)a 5.9 (3.2–8.5)a 6.3 (4.0–8.6)a#& 6.5 (4.0–9.0)#&%

30–39 years 6.1 (4.9–7.4)ab 6.2 (2.8–9.6)ab 6.9 (6.1–7.8)ab#& 7.3 (5.4–10.3)b#&%

40–49 years 6.1 (5.0–7.2)ab 7.0 (5.9–8.2)abc# 7.3 ( 5.6–9.0 )abc#& 7.7 (3.5–12.0)bc#&%

50–59 years 6.9 (5.7–8.2)abcd 7.0 (5.3–8.8 )abc 7.4 (4.7–10.2)abc#& 8.0 (5.9–9.6)bcd#&%

PWV subtracted/tang

10–19 years 4.8 (3.9–5.8) 5.1 (3.4–6.9)# 5.4 (4.3–6.4)#& (—)

20–29 years 6.3 (3.5–9.0)a 6.3 (3.0–9.6)a 6.8 (3.9–9.7)a#& 7.1 (3.8– 10.4)#&%

30–39 years 6.7 (5.2–8.2)ab 6.9 (2.2–11.6)ab 7.7 (6.6–8.7)ab#& 8.4 (7.6–9.3)b#&%

40–49 years 6.8 (5.2–8.4)ab 7.7 (6.8–8.7)abc# 8.2 (5.7–10.7)abc#& 8.9 (3.0–14.8)bc#&%

50–59 years 7.8 (6.0–9.5)abcd 8.0 (5.5–10.5)abcd# 8.5 (4.5–12.4)abcd#& 8.8 (5.4–12.2)bc#&%

PWV real

10–19 years 5.8 (4.7–6.8) 6.3 (4.0–8.5 )# 6.3 (4.8–7.7) (—)

20–29 years 6.9 (4.4–9.4)a 7.0 (4.4–9.5)a 7.6 (5.4–9.7)a#& 8.0 (4.7–11.2)#&%

30–39 years 7.7 (6.1–9.2)ab 7.8 (2.8–12.7)ab 8.6 (7.7–9.6)ab#& 9.5 (8.4–10.5 )b#&%

40–49 years 7.8 (6.0–9.7)ab 8.7 (7.5–10.1)abc# 9.2 (6.4–12.0)abc#& 9.9 (7.9–15.7)bc#&%

50–59 years 8.9 (6.4–11.5)abcd 9.0 ( 7.6–11.0)abcd# 9.5 (5.3–13.7)abcd#& 10.4 (6.9–13.7)bcd#&%

Statistics: a,b,c,d,e, P < 0.05 with respect to 10–19, 20–29, 30–39, 40–49, and 50–59 years, respectively (ANOVA + Bonferroni).
#,&,%, P < 0.05 with respect to optimal, normal, and high normal blood pressure level, respectively (ANOVA + Bonferroni).
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could be used in the vascular diagnosis to define/differentiate
normal changes (i.e., due to haemodynamic conditions) and
abnormal or disease-related vascular variations. In addition,
they could aid in the individual cardiovascular risk definition.

4.1. PWV Normal and Reference Values: Algorithm and
Path-Length Consideration. As was mentioned, PWV values
depend on the algorithm used to detect the so-called “foot
of the wave” and the path length considered. In real terms
most of the systems used to assess PWV do not detect the
“foot of the wave,” but the pulse transit time is determined
as the time difference between similar singular points in the
carotid and femoral waves (Figure 1). The singular point
chosen depends on the wave considered (flow, pressure, or
diameter) and the algorithm used. The most used algorithms
are the intersecting tangent (i.e., used by the SphygmoCor
system) and the point of maximal upstroke during systole
(i.e., used by the Complior system).

When applying different algorithms to the same waves we
obtained differences in PWV mean values even higher than
20%. The differences varied depending on age, with major
differences in elderly subjects. Then, age-related changes in
PWV could be influenced by the methods used to assess
PWV [17, 18]. To explain the mechanism underlying the
described finding was beyond our work aim. However, at
least in theory, the algorithm-dependent differences in PWV
could be explained by dissimilar effects of wave propagation
changes on the singular points detected by the algorithms.
For instance, the foot of the wave identified by the intersect-
ing tangent method is least likely to be influenced by the wave
distorsion during its propagation. Our finding agrees with
Millasseau et al. who described that the differences in PWV
attributable to the timing algorithm used varied depending
on the stiffness levels [18]. The higher the PWV levels, the
higher the differences. Related with this, it is noteworthy that
PWV increased with aging.

The evaluation of the meaning of a given PWV value
regardless of the algorithm used could lead to mistakes. On
the other hand, and related with that stated above if a PWV
value is used as a cut-off value to define vascular damage, it is
necessary to know the method used to determine it and the
corresponding values for other algorithms. Anyway, the use
of a single cut-off value has limitations (see below).

When considering the different path lengths at the time
of calculating PWV, we found that, for a given algorithm, the
longer the path length considered, the higher the PWV. Then,
as was stated for the algorithms of calculus, an adequate
interpretation of a PWV value requires the knowledge of the
distance used in its determination. In addition, when using a
cut-off value the distance considered to calculate it must be
known.

Our work was not developed to determine which is the
best method for measuring PWV (if there is one). To this end,
it would be useful to compare the different methodological
approaches with a “gold standard” (definitive) method, but
there is no consensus about which would be such method.
There are works that support the use of a given approach.
For instance, it was described that PWV values, measured

using magnetic resonance imaging (MRI), were in agreement
with absolute PWV values noninvasively obtained using the
subtracted distance [5]. Additionally, in a recent invasive
study the same distance (subtracted) was the closest to
the PWV measured during catheter withdrawal from the
ascending aorta to the aortic bifurcation [6]. In addition,
compared with invasive studies the direct distance resulted in
a PWV overestimation of 2-3 m/s [6]. Then, it was proposed
by Weber et al. that for the purpose of standardization
and comparability between different noninvasive systems
(devices), the method that employs the subtracted distance
should be recommended for noninvasive PWV measurement
[7]. The topic remains controversial since the use of the
direct is proposed by other authors [17]. In our opinion,
until there is no consensus as to what constitutes the
definitive method to assess PWV, we must be aware of the
importance of considering the methodological issues for
an adequate interpretation of the PWV evaluation. Tables
including normal/reference PWV values for the different
methods should be constructed.

4.2. PWV Normal and Reference Values: Aging and Blood
Pressure Levels Consideration. Aging is associated with an
increase in vascular stiffness. Accordingly, when using PWV
to evaluate the vascular system (i.e., as target organ damage
indicator) the expected changes (increase) in PWV due to
normal aging should be known. On the other hand, as it
is widely known, the arterial stiffness depends on blood
pressure levels. The higher the pressure levels the stiffer the
artery (higher PWV). Then, if PWV is to be used as target
organ damage marker, the PWV levels explained by haemo-
dynamic conditions should be known. This is not a minor
issue since hypertension associates changes in the vascular
wall that result in stiffening of the vessel. Establishing PWV
reference levels for different blood pressure values would help
to identify individuals in whom an increased PWV represents
the presence of vascular damage or subjects with PWV values
explained by the pressure levels. In this work, and as was
previously described by Boutouyrie and Vermeersch [3], we
defined PWV normal/reference values as a function of age
and blood pressure levels. The contribution of risk factors
other than age and blood pressure to PWV is either small
or nonsignificant. Then standardizations considering other
factors were not necessary [3, 8].

The aging-associated changes in PWV and the pressure
dependence reinforce the referred limitations of using a
single PWV value as cut-off level. About this, as can be
seen in Figure 2 if a single cut-off value (i.e., 12 m/s as
the European Society of Hypertension suggests) is selected
regardless of the subject age, the vascular damage and/or
the cardiovascular risk would be underestimated in young
subjects and overestimated in old subjects. Beyond 60 years
old 50% of the subjects fall at or above the threshold (12 m/s)
when PWVDirect/tang method was employed.

5. Conclusions

Age-related PWV profiles were obtained in the context of
the CUiiDARTE Project for a Uruguayan asymptomatic
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population. Taking into account the importance of the meth-
odological approach, the subject age, and the pressure levels
for an adequate evaluation of the PWV, we defined PWV
normal/reference values for our population considering (a)
the subjects age, (b) the pressure levels, and (c) the algorithm
and (d) the distance used to calculate the PWV.

The work has the strength of being the first in Latin
America that applies an integrative approach to characterize
age-related changes and normal and reference values of
PWV. The obtained data could be used in the vascular diag-
nosis to define/differentiate normal changes and abnormal
or disease-related vascular variations and/or in detecting
increased risk of cardiovascular complications.
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