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ABSTRACT

Steady-state evolutionary algorithms are often favoured over
generational ones due to better scalability in parallel and
distributed environments. However, in certain conditions
they are able to produce results of better quality as well.

We consider several ways to introduce various “degrees of
steadiness” in the NSGA-II algorithm, some of which have
not been known in literature, and show experimentally (on a
corpus of 21 test problems) the presence of a general trend:
algorithms with more steadiness yield better results.
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1. INTRODUCTION
For multi-objective evolutionary algorithms, steady-state

versions typically have significantly higher computation com-
plexity, measured as number of supporting operations per
evaluation, than generational versions. This happens be-
cause procedures which update algorithm’s computation state
have to be run not once per generation but once per indi-
vidual. For example, the NSGA-II algorithm [3], which has
an O(N2K) complexity of its generational version (where N
is the generation size and K is the problem dimension), or
O(N logK−1 N) if implemented more efficiently [1], becomes
Θ(N) times slower when implemented as steady-state [5].

This problem limits both theoretical and practical interest
in steady-state approaches for this area. However, recent
advances introduced algorithms and data structures which
made certain steady-state approaches efficient in theory and
practice, which motivated further research.

The historically first approach to decrease computational
complexity for steady-state NSGA-II is called“Efficient Non-
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dominated Level Update”and described in a technical report
by Li, Deb, Zhang and Kwong [4]. Although the worst-case
complexity of a single element insertion is still O(N2K), a

worst-case complexity of O(N
√
NK) was proven in [4] if el-

ements are distributed evenly among non-dominated layers.
Another approach is based on an algorithm called “Incre-

mental Non-Dominated Sorting” (INDS), which is currently
works for bi-objective problems only. The algorithm and
the data structure are presented in [7], and an INDS-based
steady-state version of NSGA-II is presented and analysed
in [2]. The insertion and removal complexities are at most
O(N) and are provably lower under several conditions.

Nebro and Durillo [5] showed that the steady-state ver-
sion of the NSGA-II algorithm typically demonstrates better
convergence and diversity than the generational one (within
equal budgets for fitness function evaluations). In this pa-
per we experimentally show that this trend spreads over
many different ways of introducing steadiness to this algo-
rithm: the “more steady” the algorithm is, the better results
it yields. As we use the approach from [2], computational
running times are almost the same regardless steadiness, so
we concentrate on result quality only.

This work was financially supported by the Government
of Russian Federation, Grant 074-U01.

2. DEGREES OF STEADINESS
On a very high level, the classical NSGA-II algorithm (and

possibly many other algorithms) can be described as an it-
erative algorithm where each iteration manipulates with a
set of solutions S of size N in the following way:

1. A← a set of N solutions sampled from S.

2. B ← individuals from A after crossover and mutation.

3. S ← best N individuals of S ∪B.

Note that the last line can be read as bulk insertion of
new individuals into S and then bulk removal of individuals
which are worse by rank or by crowding distance.

However, bulk removal can remove many promising in-
dividuals. For example, consider individuals A = (0, 1),
B = (0.3, 0.7), C = (0.6, 0.4), D = (0.65, 0.35), E = (1, 0).
If two worst individuals have to be removed, then bulk re-
moval deletes C and D. However if we remove worst individ-
uals one by one, e.g. remove the worst one and then again
remove the worst one, then the first individual to remove is
C, and the second one is B. The resulting set {A,D,E} has
a better value of the hypervolume indicator than {A,B,E}.
We call this approach bulk insertion, steady removal.
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Table 1: Results of experiments. Notation: PSS – pure steady state, SISR – steady insertion, steady removal,
BISR – bulk insertion, steady removal, BIBR – bulk insertion, bulk removal (the classical scheme).
Problem PSS SISR BISR BIBR Problem PSS SISR BISR BIBR
DTLZ1 4.927 · 10−1 4.927 · 10−1 4.924 · 10−1 4.915 · 10−1 DTLZ2 2.108 · 10−1 2.108 · 10−1 2.104 · 10−1 2.092 · 10−1

DTLZ3 1.387 · 10−1 7.812 · 10−2 8.089 · 10−2 5.233 · 10−2 DTLZ4 2.108 · 10−1 2.108 · 10−1 2.105 · 10−1 2.092 · 10−1

DTLZ5 2.108 · 10−1 2.108 · 10−1 2.104 · 10−1 2.092 · 10−1 DTLZ6 2.107 · 10−1 2.107 · 10−1 2.107 · 10−1 2.093 · 10−1

DTLZ7 3.089 · 10−1 3.089 · 10−1 3.089 · 10−1 3.087 · 10−1

WFG1 2.066 · 10−1 2.433 · 10−1 2.403 · 10−1 2.470 · 10−1 WFG2 5.577 · 10−1 5.577 · 10−1 5.577 · 10−1 5.573 · 10−1

WFG3 4.416 · 10−1 4.416 · 10−1 4.414 · 10−1 4.408 · 10−1 WFG4 2.105 · 10−1 2.105 · 10−1 2.101 · 10−1 2.089 · 10−1

WFG5 1.791 · 10−1 1.791 · 10−1 1.789 · 10−1 1.780 · 10−1 WFG6 2.004 · 10−1 2.039 · 10−1 2.029 · 10−1 2.017 · 10−1

WFG7 2.106 · 10−1 2.106 · 10−1 2.102 · 10−1 2.089 · 10−1 WFG8 1.479 · 10−1 1.481 · 10−1 1.481 · 10−1 1.471 · 10−1

WFG9 2.088 · 10−1 2.090 · 10−1 2.085 · 10−1 2.070 · 10−1

ZDT1 6.617 · 10−1 6.613 · 10−1 6.610 · 10−1 6.596 · 10−1 ZDT2 3.284 · 10−1 3.279 · 10−1 3.277 · 10−1 3.265 · 10−1

ZDT3 5.156 · 10−1 5.154 · 10−1 5.153 · 10−1 5.148 · 10−1 ZDT4 6.574 · 10−1 6.567 · 10−1 6.567 · 10−1 6.560 · 10−1

ZDT6 3.970 · 10−1 3.913 · 10−1 3.914 · 10−1 3.907 · 10−1

The next degree of steadiness would be to add individuals
from B one at a time and to remove the worst individual
immediately after each insertion. We call it steady insertion,

steady removal. Finally, the last degree of steadiness is the
usual steady-state version, or pure steady-state. The only
difference between the latter two versions is that the former
samples many elements at a time before their insertion, while
the latter samples one element at a time.

3. EXPERIMENTS
We evaluated1 four mentioned versions of NSGA-II with

different degrees of steadiness on 21 test problems (ZDT1–
ZDT4 and ZDT6, DTLZ1–DTLZ7, WFG1–WFG9, all men-
tioned in [5]). There were 1000 runs of each version on each
problem. Median values of the hypervolume indicator (eval-
uated as in papers [2,5]) are presented in Table 1.

One can see that in all problems except six (DTLZ3,
WFG1, WFG6, WFG8, WFG9, ZDT6) the median values
do not decrease as steadiness increase. If we exclude the pure
steady state version, there are only three problems (DTLZ3,
WFG1, ZDT6) where the order is “broken”.

In order to compare the results in a more proper way, we
conducted the Wilcoxon signed rank test for all pairs of al-
gorithms for every single problem. Each test was performed
thrice: with “two sided”, “less” and “greater” alternative hy-
potheses (in notation of the R [6] language). If for the “two-
sided”test the p-value is less than 0.008 (this is how we adapt
the usual value of 0.05 to six tests per problem), we consider
the difference to be significant, and in this case exactly one
of “less” and “greater” tests, which produces the p-value less
than 0.008 shows which algorithm is better. The problems
could be split into four classes:

• all statistical comparisons are strict and have the“right”
directions: DTLZ2, DTLZ5, DTLZ7, WFG5, WFG7,
ZDT1–ZDT3 (8 problems);

• all strict statistical comparisons have the “right”direc-
tions: DTLZ1, DTLZ3, DTLZ4, WFG2–WFG4, ZDT4,
ZDT6 (8 problems);

• there is exactly one strict comparison which has the
“wrong” direction: DTLZ6, WFG9 (2 problems);

• other problems: WFG1, WFG6, WFG8 (3 problems).

1Source code is available at GitHub: https://github.com/
mbuzdalov/papers/tree/master/2015-gecco-nsga-ii-ss

We also noticed that for non-pure steady-state approaches
no statistical comparison showed the“wrong”direction (that
is, all “broken” differences between the corresponding medi-
ans were statistically insignificant).

We hope that the presented results will encourage the
multi-objective evolutionary community to pay more atten-
tion to steady-state algorithms, as they are capable of pro-
ducing better results, and nowadays they are not as time-
consuming as they used to be.

4. REFERENCES
[1] M. Buzdalov and A. Shalyto. A provably

asymptotically fast version of the generalized Jensen
algorithm for non-dominated sorting. In International

Conference on Parallel Problem Solving from Nature,
number 8672 in Lecture Notes in Computer Science,
pages 528–537. 2014.

[2] M. Buzdalov, I. Yakupov, and A. Stankevich. Fast
implementation of the steady-state NSGA-II algorithm
for two dimensions based on incremental
non-dominated sorting. In Proceedings of Genetic and

Evolutionary Computation Conference, 2015 (to
appear).

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
Fast Elitist Multi-Objective Genetic Algorithm:
NSGA-II. Transactions on Evolutionary Computation,
6:182–197, 2000.

[4] K. Li, K. Deb, Q. Zhang, and S. Kwong. Efficient
non-domination level update approach for steady-state
evolutionary multiobjective optimization. Technical
report, 2014.

[5] A. J. Nebro and J. J. Durillo. On the effect of applying
a steady-state selection scheme in the multi-objective
genetic algorithm NSGA-II. In Nature-Inspired

Algorithms for Optimisation, number 193 in Studies in
Computational Intelligence, pages 435–456. Springer
Berlin Heidelberg, 2009.

[6] R Core Team. R: A language and environment for
statistical computing. http://www.R-project.org/,
2013.

[7] I. Yakupov and M. Buzdalov. Incremental
non-dominated sorting with O(N) insertion for the
two-dimensional case. In Proceedings of IEEE Congress

on Evolutionary Computation, 2015 (to appear).

750




