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Abstract-   The spectral response of the Arrayed Waveguide Grating plays an important 

role in optical networks.  Ideally, the grating should have a rectangular transfer 

function to reduce the need for accurate wavelength control and achieve low crosstalk.  

In this paper a new technique for designing an Arrayed Waveguide Grating with flat 

spectral response is presented.  The problem of the optimization of the transfer function 

is reduced to that of adjusting the arrayed waveguide lengths and their relative 

positions on the edge of the Free Propagating Regions in order to minimize a certain 

error function.  As a result the waveguide lengths and their positions are determined 

using a rigorous mathematical procedure.  The resultant transfer function is flat with 

low sidelobes. 

     

Index Terms- Optical filters, waveguide filters, optical planar waveguide components,   gratings, 

integrated optics, wavelength-division multiplexing. 

 

I. INTRODUCTION 

 

 The performance of Wavelength Division Multiplexing (WDM) optical networks [1] 

greatly depends on the spectral characteristics of their components.  One key component of 
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WDM networks is the Arrayed Waveguide Grating  (AWG) [2] which can serve as a 

wavelength router,  multiplexer and demultiplexer.  In order to allow the concatenation of 

many such devices and  reduce the need for accurate wavelength control their filter response 

must approximate a rectangular function.    Various techniques [3-7] have been proposed in 

order to broaden and flatten the transfer function of an AWG.   In this paper a rigorous 

mathematical technique for designing the transfer function of an AWG is presented.  This 

technique, resulting in the modification of the lengths of the grating waveguides is an 

extension of the deterministic tapering technique used in the design of antenna arrays [8]. In 

fact, since the spectral transfer function of an AWG and the spatial transfer function of an 

antenna array are alike, the two problems are similar.  The deterministic tapering method 

consists of finding the optimum lengths of the grating waveguides in order to produce a 

transfer function that approximates a given ideal function.  It is based on a strict mathematical 

formalism that leads to the minimization of an error function, thus avoiding the use of 

empirical rules.  In order to achieve the same passband for all output ports the positions of the 

grating waveguides on the edge of the Free Propagating Regions (FPRs) are also adjusted. 

The 3dB bandwidth of the resultant transfer function can assume different values, according 

to the design requirements, by varying the lengths and the positions of the waveguides, 

without changing their number.  The sidelobe levels are low, resulting in a reduced crosstalk.  

The losses introduced by using this technique, compared to those introduced using other 

techniques [7], are less important.  Because of the design procedure,  the chromatic 

dispersion of the filter should be negligible. 

 The paper is organized as follows:  In Section II the theoretical background on which the 

extension of the deterministic tapering technique is based is given.  In Section III the results 

obtained by this technique are presented and commented and in Section IV they are compared 

with those of other proposed methods altering the grating arms as well. 



 

II. THEORETICAL ANALYSIS 

 

 The transfer function between the central input port of an AWG demultiplexer and its 

output port located at distance yqo from its central output port is given by [11] 
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where f is the frequency of the optical spectrum and Cm  the optical power of the mth grating 

waveguide normalized to the total power (Cm is a dimensionless quantity), located at position 

ym from the central grating waveguide (Fig.1).  Equation (1) can be derived by assuming that 

the incident mode of the waveguides can be approximated by a Gaussian distribution exp(-

y2/2σ2). It is also assumed for simplicity that the efficiency is the same for all output ports of 

the AWG.  The total number of waveguides is equal to 2P+1 and the values of the parameters 

tm are given by 
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where n is the effective refractive index of the grating, c the velocity of light in vacuum and 

Lm the difference between the length of the mth waveguide and the length of the central 

waveguide (L0=0).  Finally, the constant κ is given by 
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where R is the radius of the FPRs. It is assumed that the effective refractive indexes of the 

FPR and the grating are approximately equal due to the weak guidance approximation [9]. 

 Assuming the Gaussian approximation [10] for the waveguide modes, the coefficients Cm 

are found to obey an exponential law given by  
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where a is given by  
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In the above equation σ is the variance of the Gaussian distribution with which the 

fundamental waveguide mode profile of the grating is approximated and f0  is the central 

frequency.   

 In a conventional AWG, shown in Fig 1, the values of tm are given by  

FSR
mtm =                      (6) 

where FSR  is the Free Spectral Range of the AWG and is related to the central frequency f0 

by 
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with N  the order of the grating.  The transfer function of a conventional AWG has a 

Gaussian shape and very low sidelobes.  

 In the proposed design tm are unknown quantities and their optimal values are determined 

so that the transfer function H(f) between the central input waveguide and the central output 

waveguide, obtained from (1) by setting yqo=0,  
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 approximates a rectangular function 

⎩
⎨
⎧ Δ≤−

=
otherwise

fff
fH p

0
2/1

)( 0
0             (9) 

where Δfp is the width of the rectangular function. Towards this end an extension of the 

Deterministic Tapering Method [8] is employed.  First of all it is required that  
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where the im are integers.  The analysis is facilitated by setting F=f-f0 (F is the frequency 

measured from the central frequency f0). Substituting (10) to (8) the transfer function H(F) 

can be written as 
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where exp(jπim) has been substituted by ma)1(−  and the exponents am are determined by 
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In (12) mod(x,y) represents the modulus of the division of x by y.  The exponents am 

determine the sign of each term of the sum in (11). The objective is to make (11) as close as 

possible to H0(F)  

 It is required that 

  mm CC −=  , mm tt −−=  and mm aa −=                          (13) 

which ensures that H(F) is real, 
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The first constraint in (13) is implied by equation (4) when the waveguides are positioned 

symmetrically with respect to the central waveguide and dictates that the optical power of the 

grating waveguides is also symmetric.  The physical significance of the second constraint in 

(13) is that the distribution Lm of the differences of the waveguide lengths from the length of 

the central waveguide in the array, is antisymmetric, while the third constraint means that if 

the phase of the signal in the mth waveguide is rotated by π radians (am=1) then the phase of 

the signal in the waveguide found in the symmetric position with respect to the central 

waveguide is also rotated by π (a-m=1).   

Following the deterministic tapering method, H(F) and H0(F) are expressed in terms of their 

Fourier transforms h(t) and h0(t) respectively,  
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δ(t) denotes the Dirac function  (measured in s-1) and sinc denotes the sinc function. Using 

(15) and (16), the symmetry of h(t) and h0(t) and integrating by parts, it can be shown that  
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Both A(t) and A0(t) are dimensionless. Applying Parseval’s theorem [12] to (19) the following 

result is obtained 
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where E  is the error function between H(F) and H0(F).   This last result suggests that in order 

to match H(F) to H0(F),  tm must be chosen to minimize the difference between A(t) and A0(t).  

Differentiating  (22) with respect to tm and setting the result of the differentiation equal to 

zero, the following solutions for tm are obtained: 
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 To solve equation (23) the values of Cm  must be determined using (4).  In order to ensure 

that the transfer functions of the other output waveguides also match a rectangular function 

the positions, ym, of the waveguides, must be set proportional to tm 
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where u is given by 

       
out

ch

yΔnf
fΔcR

u
0

=                     (25) 

with Δfch the adjacent channel frequency spacing and Δyout the center to center separation of 

the adjacent output waveguides. This technique is known as Double Chirping [11].  

Substituting (24) and (25) to (1)  Hq(f)=H(f-qΔfch) is obtained, H(f) being the transfer function 

of the central output waveguide and Hq(f) the transfer function of the qth waveguide. By 

substituting (24) and (25) in equation (4) and using (5), the following relation between Cm 

and tm is obtained:  
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where the attenuation constant b is given by 
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Equation (23) can now be solved numerically in order to determine the values of tm.  The 

solution is divided in P steps and at the end of  step m,  a solution for tm is obtained by 

solving recursively the following equations: 
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The exponents am which have been defined in (12), are determined by the solution algorithm  

so that A(t) and A0(t) come as close as possible. An example is  illustrated in Fig. 2, where 

A0(tΔfp) and A(tΔfp) are plotted.  For )1,0(∈Δ pft  A0(tΔfp) is increasing with t and steps must be 

added (am=0) to A(tΔfp) in order to follow A0, and for )2,1(∈Δ pft  where A0(tΔfp) is decreasing, 

steps must be subtracted (am=1) from A(tΔfp).  The points where A(tΔfp) and A0(tΔfp) intersect 

are equal to tmΔfp.  Since there is a finite number P of  Cm, A(tΔfp) is set constant for 

tΔfp>tPΔfp (tP corresponds to the last waveguide).  The value of tP is determined by the 

attenuation constant b, the initial step C0 and the number of waveguides (2P+1).    

 

III.  DESIGN RESULTS 

 

 It becomes evident that the three major factors that determine the design are: a)  the 

number of grating waveguides to be used b) the initial step size, equal to C0, and c) the 

damping rate of the steps Cm determined by the constant b in equation (26).  Using this 

method the objective is the transfer function H(f) to approximate H0(f).  In order to measure 

the performance of the method, the flatness of the 3dB bandwidth and the sidelobe level must 

be calculated. The sidelobe level is related to the crosstalk between the various channels.  

 To measure the flatness of the transfer function, the ripple 2
3dBσ  [7] is calculated within the 

3dB bandwidth  using:  
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where H denotes the average amplitude of H(F) in the 3dB bandwidth ( Δf3dB ). 
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 In (14) some terms appear with negative sign. It is expected that the tapered design 

introduces some losses LdB due to these negative terms given by 
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Also, since the waveguides are not equidistant some insertion loss will be added.  The total 

losses due to the tapered design could be made less than –3dB.   

 The transfer function H(F) is real because the tm are antisymmetric as required by (13) and 

is also expected to match a positive rectangular transfer function H0(F).  As a consequence 

the transfer function H(F) will be positive within its main lobe and the dispersion of the filter 

should be negligible since the group delay, determined by the derivative of the phase will be 

equal to zero.    

 In order to illustrate the effect of the various parameters, a tapered AWG is designed with 

8 channels equally spaced by Δfch=0.2THz. The 3dB bandwidth of the transfer function is 

required to be approximately Δfp=0.16THz. The central channel is located at λ0=1.55μm 

(f0=193.55THz).  P is chosen equal to 40 corresponding to a total of M=2P+1=81 

waveguides in the grating.  

 

A. Sidelobe level and 3dB ripple. 

 



Figure 3 describes, for different values of the attenuation coefficient b, the behavior of the 

sidelobe level with respect to the magnitude of the step C0  (corresponding to t=t0=0), from 

which all Cm depend (eq. 26).  It is evident that the sidelobe level is strongly dependent on 

these quantities. When the step C0 is too small the main lobe of the transfer function of the 

tapered AWG is found to resemble that of the conventional AWG.  As the step C0 increases 

the tapered transfer function attempts to approximate H0(f) but the sidelobes are higher.  

Increasing C0  results in larger steps Cm and, for a given P, the function A(tΔfp) follows 

A0(tΔfp) in a larger interval (Fig. 2). The attenuation coefficient b is important because it 

determines how the function A(tΔfp) approximates A0(tΔfp) in the region tΔfp>1 where A0(tΔfp) 

oscillates.  From Fig. 2, it is deduced that the steps Cm (depending on b) of A(t) in this region 

must be smaller than those in the region tΔfp<1 in order to follow these oscillations.  

However, the steps should not be made too small since in this case many more steps would be 

required in order to follow A0(tΔfp) in the region [1,2]Δ ∈pft . Consequently, b should not be 

too large.  

 The above remarks are illustrated in Fig. 4, where the normalized tapered transfer function 

is plotted for a value of b=0.09THz and for three different values of C0. In Fig. 4(a) 

(C0=0.016) the sidelobes are low (–24.2dB) and  the shape of the transfer function resembles 

that of a conventional AWG, but has higher sidelobes.  The increase in sidelobe level is 

attributed to three reasons:  First, as shown in Fig 2, the function A(tΔfp) approximates 

A0(tΔfp) in a finite interval of tΔfp only.   Second, A(tΔfp) is equal to A0(tΔfp) only on 

tΔfp=tmΔfp.  The third reason is the fact that the integrand in (22) has an 1/F2 frequency 

dependence.  This means that H0(F) approximates H(F) near F=0 but as F becomes larger 

there can be some difference between them.  In Fig. 4(b) (C0=0.02) the sidelobes are higher 

(–20.3dB) but the flattest 3dB bandwidth is achieved. Fig 4(c) presents a compromise 

between the previous cases with sidelobes not exceeding –23dB.  In Fig. 4(d) the functions 



A(tΔfp) and A0(tΔfp) in each case are shown.  As the interval in which A(tΔfp) follows A0(tΔfp) 

increases, H(f) tends to become more rectangular. However, as the flatness of H(f) becomes 

better its sidelobes increase.   For the cases a, b and c of Fig. 4 the ripple is 0.0370, 0.0204 

and 0.0266 respectively. Fig. 5 depicts the variation of tmΔfp for the case of Fig 4(b), which 

practically shows the positions ym of the grating waveguides (eq 24). 

 

B. Design Losses. 

 

As discussed before, the deterministic tapering method introduces some losses due to the 

design itself. In Fig 4(d) it is shown that some terms )t2cos()1( FC m
a

m
m π− , of the sum in (14), 

have negative sign at F=0 because of the exponents am defined in (12). The losses, which are 

caused by the negative sign of Cm, depend on  C0. The dependence of the losses with respect 

to C0  is depicted in Fig. 6. In the case of Fig. 4(a),  the transfer function resembles that of the 

conventional grating and most of the terms of the sum in (14) are positive.  Consequently, the 

losses are very low (-0.31dB). For the cases of Fig. 4(b) and 4(c), where some of the 

coefficients are negative, the losses are higher ( –2.16dB and –2.06dB respectively). 

 

C. The 3dB bandwidth. 

 

 In Figure 7(a) the dependence of the 3dB bandwidth on the step C0 is shown.  As C0 is 

increasing the 3dB bandwidth quickly reaches 0.14THz and after that tends slowly to the 

ideal value of 0.16THz. In Figs 7(b)-7(d) the normalized transfer functions of the same cases 

as in Figs. 4(a)-4(c) (C0=0.016, C0=0.02 and C0=0.022) are shown, in the frequency region 

[-2Δfp,2Δfp].  The dashed lines correspond to the transfer function of an AWG with C0=0.015 

for which all the terms in (14) are positive at f=f0 (F=0). In Figure 7(b) the transfer function 



of a conventional AWG is plotted with heavier dotted lines.  It is observed that even in the 

case of a transfer function with small C0 which has only positive terms at F=0, the sidelobes 

are higher than those of a conventional AWG.  This is due to the fact that while the tm are 

nearly equidistant as in the conventional AWG, only a portion of the original Gaussian power 

distribution of the conventional AWG is covered by the Cm. The 3dB bandwidths of the 

transfer functions of Fig 7(b)-7(d) are 0.1THz, 0.139THz and 0.136THz, respectively.  It is 

seen that the flattening of the passband is due to the negative terms the presence of which 

results in a better approximation of A0(tΔfp).   

 The deterministic tapering technique allows the design of the 3dB bandwidth of the 

transfer function simply by adjusting the value of Δfp and Δfch and computing the 

corresponding tm and Cm. An example is shown in Fig. 8 where the case of Fig 7(d) has been 

plotted along with the transfer function obtained for Δfp=0.32THz instead of 0.16THz, 

Δfch=0.4THz instead of 0.2THz, b=0.09THz and C0=0.0185.  This tapered transfer function 

has  3dB bandwidth of 0.272THz which is (as Δfp) twice the 3dB bandwidth of the case 

illustrated in Fig. 7(d). 

 

D.  Reduction of Sidelobe Level. 

 

 As mentioned before, the transfer function H(f) can have substantial sidelobes far from the 

central frequency.  One approach in order to reduce the sidelobes is presented below. 

 The transfer function H(F), given by (14), is a sum of P cosine terms and 1/(2tm) 

determines the distance between two consecutive zeroes of the mth term.  Some of these terms 

take their maximum values in the vicinity of the positive sidelobes of H(F) and their 

minimum values in the vicinity of the negative sidelobes.  Therefore, the sidelobe level can 

be improved by omitting these terms from the sum of the transfer function (14).  However, 



some losses can be introduced in the vicinity of the central frequency and the flatness of the 

transfer function may also be affected. The number of  removed terms must consequently be 

small (typically two or three out of 41).  The terms to be removed are determined numerically 

in a way to minimize the level of the maximum sidelobe of H(F) without introducing 

significant losses.   

 Figure 9(a) depicts the normalized transfer function obtained for the case of Fig 4(b), but 

when the coefficients corresponding to C0, C33 and C35 are set equal to zero.  The sidelobe 

level in Fig. 9(a) is –24.3dB compared to –20.3dB in Fig. 4(b), while the losses introduced by 

removing the three coefficients is very small ( –0.34dB ).  This technique can be used to 

improve the sidelobe levels and can be easily implemented in practice by omitting the 

waveguides that correspond to the removed terms.   

 

E.  Coupler Radius and Output Waveguide Spacing. 

 

 Because of the double chirping technique the distribution of Cm is related to the 

distribution of tm and the constant b as shown in (26).  The value of the constant b, given by 

(27), is inversely proportional to the spacing Δyout of the output ports. (Fig 1).  Since Δyout can 

not be made too small in order to avoid coupling effects between adjacent output ports, there 

is a maximum value of b that can be obtained. Coupling can also occur between the grating 

waveguides.  The positions of the centers of the grating waveguides are determined by (24) 

and (25) and are proportional to the FPR radius R. In order to avoid coupling when the 

difference between two consecutive tm is small, R can be adjusted accordingly as in the case 

of a conventional AWG. Assuming that the length of the core of the waveguides is d=2μm, 

that the cores have refractive index equal to nw=3.3 and that the waveguide index step is 

Δnw=0.02, then σ≅1μm. It is therefore reasonable to set the center to center spacing of the 



waveguides at least Δyout=4μm (Fig. 1(a)). If Δfch=0.2THz, then the maximum value of b is 

found to be bmax=0.254THz.  For the case of Fig. 9(a),  where the value of b was set equal to 

0.09THz, the spacing of the output waveguides should be 14μm. For the case of Fig. 9(a) 

where the waveguide corresponding to C0 is omitted the minimum value Δtmin of tm-tm-1, 

occurs for m=2 that is Δtmin=t2-t1 as can be verified from Fig. 2. From (24) we find that the 

minimum separation between the grating waveguides Δymin is Δymin=u(t2-t1). Requiring that 

Δymin=4μm, one finds u=32 for the case of Fig. 9(a).  Substituting the value of u in equation 

(25) and assuming n≅3.3, it is found that the coupler radius should  be greater than 

Rmin≅4800μm.  In this way the minimum radius Rmin of the FPR can in general  be calculated. 

 

F. Position of the Waveguides and Number of Arms. 

 

 The spacing of the grating waveguides is determined by ym.  For the case of Fig 9(a) the 

positions of the grating waveguides is depicted in Fig 9(b) (solid line), along with those  of an 

ideal periodic grating whose waveguides have center to center distances equal to 6.3μm 

(dashed line).  The spacing of the ideal grating is chosen so that the difference of the two 

curves is minimized.  As shown in the above figure, there is some deviation of the waveguide 

positions from those of a perfectly periodic array.  The center of the waveguides are 

positioned 4μm apart up until the 28th waveguide and after that their spacing increases.  This 

could add insertion loss.  This insertion loss can be reduced by a proper choice of the 

parameters b and C0 in the initial design and secondarily by adding some waveguides where 

the gap between the waveguides is found to be large.  Using the above techniques the total 

losses (including the losses, LdB, introduced by the negative terms) compared to those of  an 

ideal AWG can be kept close to –3dB.  



 AWGs with more channels can also be designed using deterministic tapering by 

employing a larger number of grating arms.  The transfer function of a flattened 40-channel 

AWG is shown in Fig 10.  The number of grating arms is P=200.  The waveguides 

corresponding to C0,C78,C91,C92 and C94  have been excluded in order to reduce the maximum 

sidelobe at –23dB. 

 The increase in number of arms ensures that the sidelobes remain low for a larger 

frequency range as compared to the sidelobes of a grating with a smaller number of arms.  It 

should be noted that although there is an increase in the number of arms, and hence in the 

number of terms in (14), the maximum sidelobe level has not been reduced.  This is because, 

as discussed in section III.A the sidelobe level is caused by other reasons as well, primarily  

by the fact that the function A(tΔfp) approximates A0(tΔfp) only in a finite interval  

 

IV. COMPARISON WITH OTHER TECHNIQUES. 

 

  For the problem of passband flattening several solutions have been proposed.  Two of them, 

the spatial filtering and the use of sub-parabolic chirp, described in [6] and [7] respectively,  

alter the grating arms as in the proposed method. Spatial filtering is based on the fact that, in 

the conventional AWG, the transfer function H(f) is the Discrete Fourier Transform of Cm [3].  

In order  H(f) to be approximately rectangular, Cm should resemble a sinc function.  This is 

achieved by making half of the Cm negative as shown in Fig 11(a) while the parameters tm  are 

those of a conventional AWG, given by (6). In Fig 11(b) the normalized transfer function of 

[6] is shown. The function A(tΔfp), calculated with the values of Cm and  tm used in [6], has 

been plotted in Fig. 11(c) where 
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The ideal A0(tΔfp) is also plotted with dashed line.  It is obvious from Fig 11(c), that there is 

some difference between A(tΔfp) and A0(tΔfp) which is responsible for the high level of 

sidelobes (higher than 15dB).  This sidelobe level was reduced considerably in [6], by 

modifying the coefficients Cm in order to achieve smoother transition from the region of 

positive values to that of negative values.  This was achieved by inserting extra losses in the 

grating waveguides which has the disadvantage of complicating the design. 

 Additionally, in the above method, the number of waveguides M practically  determines 

the value of  Δfp  for a given FSR.  Indeed, Δfp is determined by the first maximum of A(tΔfp).  

Since A(tΔfp) approximates the function A0(tΔfp), its first maximum occurs near tmaxΔfp=1.   

This is the point of the last positive Cm which from Figure 11(a) is found to be CM/4, 

corresponding to tM/4Δfp.  So, tM/4Δfp=1, or, using (33): 

 M/FSRfΔ p 4=        (34) 

With this particular method the number of waveguides must be changed in order to change 

the value of  Δfp, while with the deterministic tapering method, Δfp can change without 

affecting the number of waveguides.  

 Another method, suggested in [7], employs sub-parabolic chirp in the waveguide lengths. 

In this method the tm are equal to  

( )K
m mBm

FSR
t +=

1                (35) 

where K≤2.  The sub parabolic chirp forces the transfer function to broaden.  If CP <<C0 then 

the transfer function is approximately Gaussian.  In the case where CP is not negligible the 

transfer function is a convolution of a sinc and a Gaussian distribution which produces a 

flatter passband. This technique can produce large 3dB bandwidths by varying the strength of 

the chirp B.  The flatness  depends on the value of K.  Their optimal values can not be 

computed beforehand and various cases must be examined. The main feature of this 

technique is that the passband to stopband transition period is larger than that of the proposed 



technique.  Furthermore, the losses introduced are also higher.  These are illustrated in Fig. 

12 where the normalized transfer function of a flattened AWG is plotted (dashed line) along 

with the transfer function obtained using the sub-parabolic chirp technique (solid line) with 

M=41, B=1.8x10-5 and K=1.90. The transfer function of the solid line is normalized with 

respect to the one of the dashed line. The values of K and B are chosen so that the transfer 

function obtained by the sub-parabolic chirp technique has minimum ripple and passband 

equal to the passband of the transfer function obtained by the deterministic tapering 

technique. The losses  inserted due to the first method (solid line) are equal to -6.4dB.  The 

parameters used in the design procedure of the second method (dashed line) are b=0.15, 

Δfp=0.16, and C0=0.03 and were chosen in order to decrease the insertion losses.  Some 

waveguides were also added to further decrease the insertion losses while others were 

removed in order to decrease the sidelobe level without significantly affecting the 3dB 

bandwidth. The total losses of the flattened AWG in the dashed line, compared to an ideal 

AWG are –3.1dB and the maximum sidelobe level is -21dB. The total number of waveguides 

in the array is M=81  

 The losses of the sub-parabolic chirp technique are due to the fact that with this method, 

the initial transfer function of a conventional AWG has to broaden in order to become flat, 

while conserving the energy of the transfer function in the spectral domain, ∫|H(f)|2df,  as a 

consequence of Parseval’s identity. This forces the peak of the passband to lower. Due to this 

specific design procedure, the spectral energy of the transfer function is smaller than that 

obtained using the deterministic tapering method,  because in the latter case, the transfer 

function is designed to be broad from the beginning.  The losses associated with the 

broadening of the transfer function obtained using the sub-parabolic chirp technique are 

-5dB.  There are some additional losses (approximately -1.4dB) due to the fact that a part of 

the incident beam at the first star coupler is not intercepted by any grating waveguides (since 



CP must not be too small compared to C0)  It should also be noted the distribution of (35) may 

not be optimal, in the sense that other distributions may produce better results. 

 

V.  CONCLUSION 

 

 A novel method for shaping the transfer function of an AWG has been described.  The 

method reduces the optimization of the transfer function to the problem of adjusting the 

waveguide lengths in order to minimize a certain error function. It uses simple mathematical 

formulas and is not based on empirical rules. In order to achieve the same passband on each 

output port the positions of the grating waveguides on the edge of the FPRs is also adjusted. 

The technique does not require a large number of waveguides, results in low values of 

sidelobe level and can easily be used to design transfer functions with a given 3dB 

bandwidth. It should also be noted that using this technique one can also shape the transfer 

function in form other than rectangular by modifying the function to be approximated.  
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Figure 1:  A conventional NxN AWG. 
 

Figure 2:  The functions A0(tΔfp) (drawn with dotted lines) and A(tΔfp) (drawn with solid 
lines).  The initial step size is chosen C0=0.05, the attenuation constant b is equal to 0.05THz 

and Δfp=0.16THz. 
 

Figure 3:  Dependence of the sidelobe level from the initial step C0  for different attenuation 
constants b. 

 
Figure 4:  The normalized transfer function of the tapered AWG for b=0.09THz and for 
different values of the initial step C0: (a) C0=0.016 (b) C0=0.02 (c) C0=0.022.  (d) A(tΔfp) 

(solid lines) and A0(tΔfp) (dashed line) for the three cases. 
 

Figure 5:  The variation of tmΔfp for C0=0.02 and b=0.09THz. 
 

Figure 6:  The variation of loss LdB defined by  (32), as a function of  the step C0  ( 
b=0.09THz ). 

 
Figure 7:  (a) The 3dB bandwidth as a function of  the initial step C0.  Figures (b) (c) and (d) 

illustrate  the normalized transfer functions of the tapered AWG for the cases of Fig. 4(a), 
4(b) and 4(c). The transfer function of a tapered AWG with C0=0.015 is also shown with 

dashed lines.  In Fig 7(b) the heavier dashed lines represent the transfer function of a 
conventional AWG. 

 
Figure 8: Two normalized transfer functions designed with different Δfp.  The dashed line 

represent the design of Fig 7(d) and  the solid line the design with Δfp twice that of Fig 7(d). 
 

Figure 9: (a) The normalized transfer function obtained using C0=0.02, b=0.09THz and by 
setting the terms corresponding to C0, C33 and C35 equal to zero. (b) The positions of the 

grating waveguides ym for the previous case (solid line) and for an ideal periodic grating with 
spacing equal to 6.3μm (dashed line). 

 
Figure 10: The normalized transfer function of a flattened AWG with 40 channels.  Fig 10(a) 
depicts the transfer function in a range of 16THz around the central frequency f0=193,55THz.  

Fig 10(b) depicts the transfer function in a region of 0.3THz around f0.  
 

Figure 11:  Design of an AWG transfer function using spatial filtering. (a) The coefficients 
Cm of the transfer function, (b) The resultant normalized transfer function and (c) the function 

A(tΔfp) (solid) in comparison with A0(tΔfp) (dashed). 
 

Figure 12:  The transfer function of  flattened AWGs using the methods of deterministic 
tapering (dashed line) and sub-parabolic chirp (solid line).
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