
QoS support in the X11 Window Systems

Nicola Manica, Luca Abeni, Luigi Palopoli
University of Trento

Trento - Italy
nicola.manica@gmail.com, luca.abeni@unitn.it, palopoli@dit.unitn.it

Abstract

In this paper, we consider the problem of providing QoS
guarantees to the execution of applications using the X11
window system. In particular, we offer a system level anal-
ysis of the issues encountered when using X11 to serve real-
time applications. By using a tracer developed for the pur-
pose we analyse in depth the internal behaviour of the sys-
tem. The result of the analysis puts on display the adverse
effect played by a non real-time scheduler on the perfor-
mance of time-sensitive applications. Based on this anal-
ysis, we propose an alternative solution based on the CBS
scheduler and prove its effectiveness by an extensive set of
experiments on real hardware.

1 Introduction

In the past few years, we have observed a clearly es-
tablished trend toward the use of computer based devices
for multimedia applications. The growing commercial for-
tune of such networked applications as IPTV, YouTube and
video servers is a clear indicator of a paradigm shift in the
way most people use their personal computers and, gener-
ally speaking, their computer based devices. The gain of
using computers for this class of applications is evident in
terms of flexibility and cost effectiveness. A computer can
be used to run multiple and heterogeneous applications at
once. Moreover, it is easy to upgrade the software to sup-
port new multimedia compression standards and sophisti-
cated sound technologies, as soon as they become available.

This huge potential though poses formidable challenges
to the designers of Operating Systems and of network pro-
tocols. Indeed, a multimedia application is inherently time-
sensitive: uncontrolled fluctuations in latency and frame-
rate defy the patience of any user who expects to watch
TV or talk to VoIP phone with a Quality of Service (QoS)
comparable to the one experienced with traditional dedi-
cated hardware solutions. To this regard, resource sharing
is known to play an adverse role since it introduces schedul-

ing delays that are not easily predictable when designing the
application (since they depend on the workload of the sys-
tem). In contrast, what we need is that a time-sensitive ap-
plication receives a dedicated fraction of a shared resource
in time, regardless of the behaviour of other applications.
This property is called temporal protection [4] and it is the
natural complement of memory protection, which prevents
interference in the concurrent access of a set of applications
to a limited memory. For years, researchers have been con-
fronted with the challenging effort of designing scheduling
algorithms that feature temporal protection. A first impor-
tant class of algorithms designed to this purpose approxi-
mates the Generalised Processor Sharing concept of a fluid
flow allocation, in which each application using the resource
marks a progress proportional to its weight (for example,
see some Proportional Share algorithms [21]). Similar are
the underlying principles of a family of algorithms known
as Resource Reservations [13, 15, 1, 16], which associate to
each application a pair (Q, P) guaranteeing that it receives
at least Q units of time every P .

In this context a relatively marginal importance has been
attached to the problem of building a window system for
real-time applications. This lack of attention is not, in our
opinion, well deserved. Indeed, for instance, it is of lit-
tle use to have a very fine grained allocation of the CPU
time for a MPEG player if the projection of the movie into
the window can be stalled by a non real-time application
scrolling a huge amount of textual data in a different win-
dow. On the other hand, designing a real-time window sys-
tem (RTWS) is surely to be considered a challenging activ-
ity because a difficult balance has to be found between con-
trasting needs. Since the most commonly used window sys-
tems are based on a client/server paradigm, the first problem
is the so called priority inversion [19]. Mainstream window
systems (e.g., X11) execute graphical primitives in an or-
der that is irrespective of the real-time priority of the tasks
formulating the request. Thereby, real-time tasks can in-
cur a blocking time from lower priority tasks, for which it
is difficult or impossible to find an upper bound. Block-
ing times can be reduced by using appropriate scheduling

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.20

103

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.20

103

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.20

103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mechanisms but they are lower-bounded by the length non-
interruptible graphical primitives. Another non-trivial prob-
lem is that, in order to provide real-time guarantees to the
clients, we have to take into account that these requests
have to be scheduled in the slots of CPU execution time
allocated to the server. Finally, real-time policies are com-
monly regarded to reduce the system throughput and this is
hardly acceptable when a window system is used to manage
heterogeneous applications, which only in part have timing
constraints.

A first remarkable attempt to cope with these challeng-
ing issues is called Artifact [18], and it was developed in the
early nineties as part of the real-time Mach project. Even if
the authors use a single thread to manage all real-time re-
quest (potentially introducing priority inversion), they alle-
viate the problem by restricting to a small set the graphical
primitives usable by real-time tasks. In this way the prior-
ity inversion is limited, but the authors themselves concede
that a more satisfactory solution can only be found using
different approaches (e.g., a multithreaded approach).The
authors also consider the problem of coordinated schedul-
ing of server and client by creating scheduling models for
client and server upon a connection request, subject to a
global admission test. In a more recent proposal called
DOPE [9] (based on the DROPS kernel),the authors use
a time-triggered thread to refresh the widgets belonging to
real-time applications. An interesting idea is the introduc-
tion of resource managers that map basic resources to higher
level ones, e.g., DOPE maps CPU cycles and main mem-
ory to refresh bandwidth. A different viewpoint is taken
in EWS, a window system built in the context of the EROS
kernel [20]. In this case the authors make a strong point that
a WS with fast graphical primitives may provide good real-
time performance without the need for an adequate schedul-
ing support. In our evaluation, this statement is arguably
true only when the system is not heavily loaded by a large
number of client requests.

The proposals reported so far have a very important com-
monality: they are based on research systems, built from
scratch to the purpose of displaying issues of interest, or
to show the effectiveness of a specific solution. Research
on CPU scheduling followed a similar path in the past, and
the development of specialised real-time kernels, aimed at
demonstrating some novel technique or scheduling algo-
rithm, has been popular for some years producing solutions
such as Nemesis [16], Real-time Mach [24], Hartik [5],
YARTOS [10]. However, the absence of a strong connection
with main-stream technologies such as Windows or Linux
has severely hindered maintenance and porting across dif-
ferent hardware platform, reducing the impact of these pro-
posals and ultimately causing their obsolescence. There-
fore, there has been a paradigm shift toward architectural
constructions tacked on general purpose kernels (typically

Linux). As a result, the real-time performance of such gen-
eral purpose operating systems as the Linux kernel has im-
proved impressively [14], to a point where today Linux is
considered as a viable solution for both real-time research
and industrial embedded software.

In this spirit, we believe that research on RTWSs should
also move from writing research systems from scratch to
modifying commonly used solutions; for this reason, we
propose to introduce limited changes to the X11 server to
make it suitable to real-time applications. The first contri-
bution of this paper is a very thorough analysis of the X
server to clearly identify the scenarios in which it fails to
provide an adequate support to real-time applications. To
this end, we have constructed a tracing tool that allows us
to expose the timing behaviour of the X-server in different
workload conditions. The conclusion of the first part of this
work is that the effects of the scheduling policy are indeed
quite heavy on real-time performance, and their importance
outweighs the problems generated by the length of the non-
interruptible primitives (which is being reduced by the new
generation of accelerated graphical cards). This experimen-
tal observation is in perfect accordance with a similar con-
jecture formulated in [6]. In this case, case the authors pro-
pose a modification of the X11 server to support fixed pri-
ority scheduling. In our evaluation, this solution is not suf-
ficient to lend robustness to the temporal behaviour of such
soft real-time applications as continuous media, for which,
as noted above, temporal protection plays a prominent role.
Therefore, we have built a solution based on a particular
flavour of the resource reservation algorithms, the constant
bandwidth server (CBS).

The rest of the paper is organised as follow: Section 2
precisely identifies the problem and provides an analysis of
its causes based on our tracing tool; Section 3 describes our
solutions and Section 4 presents the obtained results. The
conclusion and the future possibilities are explained in Sec-
tion 5.

2 The Problem

The window system traditionally used in Unix-like sys-
tems is based on a client-server paradigm, where an X server
acts as a manager for the video and for the input devices
(keyboard and mouse). The X server forwards input events
to some client applications and executes the requests re-
ceived from the clients drawing on the screen.

Unfortunately, the X server is not aware of real-time re-
quirements of time-sensitive clients, its only design goal be-
ing to maximise the global throughput. Indeed, it is possible
to observe that the refresh rate of each window decreases
with the number of active windows. This is hardly accept-
able for real-time applications, for which a fixed refresh rate
(independent of the workload of the server) is required. For

104104104

instance, in a media player, the users perceives this effect as
a slowdown of the movie whenever some clients require a
heavy operation.

In terms of the real-time scheduling theory, this prob-
lem can be classified as a priority inversion. The video
card is accessed by a resource manager (the X server) that
serves the different requests in an order that is not dictated
by their real-time priorities. The duration of this priority in-
version can be very long (potentially unbounded). The prac-
tical consequence is that even if the CPU is not overloaded
and all the applications are properly scheduled by the CPU
scheduler, time-sensitive applications can still be unable to
perform their graphical operations with the correct timing.
For example, a media player is not able to play a movie at
the correct frame rate even if it is scheduled with the highest
priority on the CPU (or if the CPU load - as measured by
some utilities like top - is low).

To expose the problem and study it, we used an X testing
application, called ocbench [23]. Ocbench is a very sim-
ple application which periodically updates a spinning wheel
on the screen, using a very small amount of CPU time (so, it
generates a large number of X requests that must be served
in a timely fashion, but it creates a very low CPU work-
load). The application simply consists of an infinite loop
that sleeps for a fixed amount of time (10ms in our tests)
and then refreshes the image on the screen, and it lends
itself to an immediate performance assessment. Indeed,
when ocbench undergoes the interference of other X ap-
plications the user immediately notices a slowdown of the
spinning wheel motion. In order to have a quantitative eval-
uation of this effect, we instrumented the code, by insert-
ing a call to gettimeofday() right before the execution
of the redraw operation. So, the progress of the measured
times can be used as an indicator of the performance of the
X server. The ideal evolution of this quantity is given by the
k(a + T), where k is the activation number, T = 10ms is
the periodicity of the requests and a ≈ 2ms is the duration
of the redraw operation. To introduce interference on the
execution of ocbench, we used the x11perf application
(a standard test for the X server performance) that creates a
large volume of X requests.

Table 1 shows the average and the standard deviation
of the differences between two consecutive time read-
ings of the instrumented ocbench. In particular, the
first row refers to an execution of ocbench on a lightly
loaded X server, whereas in the second one we consid-
ered the disturbing effects of an instance of x11perf
-getimagexy100 executing in background,.

As shown in the table, when the X server is not loaded
the average distance between the start of two consecu-
tive redraw operations is about 12ms, and the variance
is about 0.182ms (in close accordance with the ideal be-
haviour). However, when the X server is heavily loaded

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500

R
ed

ra
w

 s
ta

rt
 ti

m
e

(m
s)

Redraw operation number

ocbench progress

Low X load
Overloadex X server

Figure 1. Evolution of the ocbench periods,
with lightly loaded or overloaded X server.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 500 1000 1500 2000 2500

T
im

e
ne

ed
ed

 to
 r

ed
ra

w
 (

m
s)

Redraw operation number

X latency

Low X load
Overloadex X server

Figure 2. Evolution of the time needed by X
to serve a request (X latency), with lightly
loaded or overloaded X server.

by the x11perf application, the average distance increases
and becomes much less stable (the variance increases to
28ms). This behaviour is well depicted in Figure 1, which
plots the evolution of the time readings as a function of the
activation of ocbench. In case of a low workload the
progress is exactly linear. In case of heavy workload, we
have a piecewise linear plot. In particular, in correspon-
dence with the 200th activation of ocbench, the slope be-
comes steeper (meaning a slower progress) due to the acti-
vation of x11perf. When x1perf is terminated (650th
activation of ocbench) the slope becomes again equal to
12ms.

To cast some light on this big variation in ocbench
speed noticed in the second case, we measured the time
needed by X to serve the redraw requests, inclusive of the

105105105

Workload level on the server average ocbench period standard deviation
low 12005 µs 182 µs
heavy 35606 µs 28475 µs

Table 1. ocbench periods with lightly loaded or overloaded X server.

execution time of the operation and of the scheduling de-
lays. The result is plotted in Figure 2, in which the time
required to complete the requests scales by orders of mag-
nitude wen x11perf is activated.

2.1 Problem Analysis

As a first step to solve the priority inversion problems,
we performed an in-depth analysis on the way the X server
schedules the requests of its clients. To do this, we have
written a patch of the X server that introduces a tracing
mechanism to record the arrival of requests from the clients,
their executions, and the times when each request is termi-
nated. In particular, the following events are traced (each
event is described by an event type, the event time, and the
client id):

• begin: indicates the starting time for a trace;

• end: end of the trace;

• creation: a new client connects to the server;

• destruction: a client terminates, or disconnects from
the server;

• activation: a new request from a connected client ar-
rives (and is inserted into the queue of ready clients);

• deactivation: a request has been served, and is termi-
nated;

• dispatch: the server starts to serve a request from a
client (selected by the server’s scheduler).

This tracer can be used to identify the sequence of events
generated by the X server when it serves a client: for exam-
ple, Figure 3 shows the trace of an instance of ocbench
served by a lightly loaded X server. From the figure it is
easy to see that the program periodically generates a burst
of requests (corresponding to a redraw operation), which
are immediately served by the X server (in about 2.5ms /
3ms). As a result, ocbench can execute at a constant rate,
and all the timing constraints are clearly respected. Note
that each burst starts about 10ms after the end of the previ-
ous one, as expected (ocbench sleeps 10ms between two
redraw operations).

Figure 4, on the other hand, shows a trace of ocbench
when it competes with x11perf (that creates a heavy
workload on the X server as discussed above). Right after

being started, x11perf runs a calibration phase, which
in this trace ends at time 260ms. During this phase,
x11perf does not significantly affect the time execution
of ocbench, which runs smoothly as in Figure 3. Around
time 260, the calibration phase terminates, and x11perf
starts to overload the X server: as a result, ocbench re-
quests are not served in time. This phenomenon is easily
detectable on the trace dedicated to ocbench; the bursts
are no longer executed with regularity and some of them
are delayed by a long time.

This effect has a clear explaination: since the schedul-
ing mechanism adopted by X11 is a variant of the classical
round-robin used in traditional time sharing systems, an ap-
plication able to generated a large number of requests like
x11perf is able to engage the server for arbitrarily long
times starving other graphical applications. As shown next,
the scheduling algorithm proposed in this paper allows us
to radically alleviate this problem.

2.2 Interactions with the CPU Scheduler

The test applications used in the previous examples do
not consume CPU time other than the one required for sub-
mitting request to X, so their real-time performance is only
affected by the X scheduler (and the CPU scheduler con-
tained in the kernel does not really matter, because the CPU
load is low).

In more realistic situations things will likely be more
complex, and there will be stronger interactions between
the CPU scheduler and X scheduler: a request from an X
client will only be served when the CPU scheduler selects
the X server for execution, and the X scheduler selects the
client. This means that performing real-time guarantees for
X clients could potentially be quite difficult.

However, we believe that the complex system composed
by the CPU scheduler, the X scheduler and the X clients’
requests can be modelled as a hierarchical system. As a
consequence, if both the X scheduler and the CPU sched-
uler provide predictable performance their combined effect
can be analysed by applying the hierarchical scheduling the-
ory [17, 11, 8]. This approach permits to simplify the anal-
ysis of the system, by considering the two schedulers in
isolation, and composing their real-time guarantees. Since
CPU schedulers have been studied at long in the past, and
various theoretical frameworks for hierarchically compos-
ing scheduling guarantee exist in literature, in this paper we
only focus on the behaviour of the X scheduler in isolation.

106106106

10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340
ocbench

Figure 3. ocbench trace with non-loaded X server.

x11perf

10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

ocbench

Figure 4. ocbench trace with overloaded X server.

3 A Possible Solution

As shown in the previous section, the absence of an ap-
propriate scheduling mechanism inhibits the use of X11 for
real-time clients. On the other hand, fixed priority mech-
anisms based on classical real-time scheduling theory [12]
like the one adopted in linux-SRT [6] have evident short-
comings when the task set encompasses both real-time and
non real-time tasks. In particular, a design based on the
worst case requirements of the tasks can be overly conserva-
tive. On the other hand, if we use a design based on the av-
erage resource requirements, a high priority real-time task
consuming more than expected can cause deadline misses
in other (unrelated) real-time tasks [4]. This problem is
well known in the context of CPU scheduling, and a num-
ber of different solutions has been proposed. In particu-
lar, we based our work on a scheduling algorithm, called
the Constant Bandwidth Server (CBS) that implements the
Resource Reservations paradigm. In the development of
this scheduler, we considered the X server as an Open Sys-
tem [7]. An Open System is a system in which applications
dynamically enter and exit the system in an unpredictable
(or hard to predict) way. Tasks (X clients, in this case) can
dynamically be activated at any time and are characterised
by variable execution times, so the scheduler cannot make
any restrictive assumption on the characteristics of the task
set.

Resource Reservations [13] have emerged as an effec-
tive technique to support time-sensitive applications on gen-
eral purpose operating systems (GPOS). This technique
provides support for time-sensitive applications by allow-
ing the integration of classical real-time techniques, devel-
oped to meet timing constraints on real-time operating sys-
tems (RTOSs), with the general-purpose allocation strate-
gies used on GPOSs. In particular, CPU reservations have
been traditionally implemented by using a dedicated aperi-

odic server (the Deferrable Server [22]) to serve each re-
served task [13, 15]. Unfortunately, this implementation
strategy generates some scheduling anomalies when tasks
block and unblock dynamically [22]. This particular prob-
lem has been solved by the CBS algorithm [1], which uses
dynamic priorities to correctly cope with dynamic aperiodic
arrivals. Therefore the CBS can provide a predictable QoS
to both periodic and aperiodic real-time activities [2].

Since X requests are generally non periodic (for exam-
ple, in Figure 3 we can see that requests arrive in bursts),
the CBS appeared as a very natural choice for our reference
implementation. However, the original version of the al-
gorithm is fully preemptive. Thereby, it cannot be directly
used in the X server (in which each request is substantially
uninterruptible). For the sake of clarity, we will first briefly
recall the original algorithm. Then we will review the most
important features of the X server architecture (to discuss
how our solution has been implemented). Finally, we will
discuss the modification required to the CBS algorithm to
adapt it to the X server.

3.1 The Constant Bandwidth Server

In the sequel an X client issuing a request to the server
will be considered as a real-time task and referenced as τi;
when receiving requests from multiple clients, the X server
selects the request to be served according to some parame-
ters and variables.

Each client τi is characterised by two parameters Qi and
Ti (we say that τi is associated to a reservation RSVi =
(Qi, Ti)), meaning that it is reserved a time Qi in a period
Ti. According to the original (fully preemptive) CBS al-
gorithm, when a request from client τi is served, the time
needed by the X server for serving such request is accounted
by decreasing a variable qi called budget, and clients are
scheduled based on their scheduling deadlines ds

i (the client

107107107

with the earliest scheduling deadline is scheduled). When a
request from client τi arrives to the X server at time t, we
say that τi is activated. On the first activation of τi, qi is
initialised to Qi and di is initialised to t + Ti, and when
qi arrives to 0 τi is said to be depleted. On depletion, two
different behaviours are possible:

• the budget is immediately replenished to Qi and the
scheduling deadline is postponed to ds

i + Ti (so, the
client remains schedulable). This is known as soft
reservation behaviour

• the client is not schedulable until time ds
i , when the

budget will be replenished and the deadline will be
postponed as above (so, the client cannot be scheduled
until ds

i). This is known as hard reservation behaviour

The CBS is guaranteed to execute respecting the real-time
properties of the tasks inasmuch as the following condition
is respected:

∑

i

Qi

Ti
≤ 1 (1)

For a further discussion on the CBS algorithm and on its
properties, the reader is referred to the original paper [1].

3.2 The X Server Architecture

The X server is a single thread application, in which a
single flow of execution cyclically intercepts input events
and receive clients’ requests, selects the action to process,
and processes it. While a multithreaded server (creating a
thread per client) can easily delegate to the CPU scheduler
(in the OS kernel) the selection of the client to be served,
a single-threaded server like X must explicitly contain a
scheduler for this purpose. On the hand, retaining the single
threaded structure allows us to reduce the modifications re-
quired on the X server to implement the real-time scheduler
and facilitates porting across the different versions of X.

The X server is logically structured in four layers - an OS
dependent layer (OS), a device independent layer (DIX), a
device dependent (DDX), and an Extension interface - and
the scheduler is located in the DIX layer.

As said, the X server is implemented according to an
event-based paradigm, with a main loop waiting for events,
scheduling an event to be served, and serving it. There are
three different kinds of events:

• connections from a new client;

• input events from the user (mouse click, ...);

• requests from an already connected client (clients’ ac-
tivations).

Events are served in a non-preemptable way, and the
selection of the event to be served is performed by the
scheduling function SmartSchedule(), which imple-
ments a variation of the round robin algorithm. So, when
an event representing a request from client τi is selected
(τi is scheduled), it executes until completion; moreover, to
improve the throughput when τi scheduled it can execute a
burst of requests (and not only one). In particular, a global
variable called isItTimeToYield is used by the server
to decide when new scheduler invocation are needed. In the
standard implementation of X, isItTimeToYield is set
when there are no more requests from a client (the client is
deactivated), or when a maximum number of requests have
been served.

3.3 Implementing the CBS on the X
server

A modified (non fully-preemptable) version of the CBS
scheduler has been implemented in the X server as an
extension that can be enabled at compile time. When
the feature is enabled, our implementation replaces the
SmartSchedule() function with a CBS scheduler. First
of all, we extended the information maintained for every
client to store the CBS parameters and runtime variables:

• rt period: the reservation period Ti;

• rt deadline: the scheduling deadline ds
i ;

• rt capacity: the current budget qi;

• rt maxcapacity: the maximum budget Qi.

Then, we modified the X scheduler introducing a real-
time queue (RTQ) ordered by scheduling deadlines, in
which requests from clients associated to a CBS are stored.
If there are requests in the RTQ, then the first one (i.e., the
one having the earliest scheduling deadline) is selected, oth-
erwise the original X scheduler is used.

Notice that since events are served in a non-preemptable
way, the accounting can only be performed after serving
an event, so qi is updated when the request has been com-
pletely served. This means that after serving long requests
qi can become negative (if the maximum time C needed to
serve a request was known in advance, we could consider
qi exhausted if qi < C, but such assumption is not reason-
able in an open system). If after performing the accounting
qi ≤ 0, then

• qi = qi + Qi, ds
i = ds

i + Ti, and the RTQ is reordered
(soft reservation behaviour), or

• the client is removed from the RTQ, and will be re-
inserted only at time ds

i when budget and scheduling
deadline will be updated as above (hard reservation be-
haviour)

108108108

T

Q

T

Q

Q

Figure 5. Original and modified accounting
and replenishment mechanisms.

Note that since qi can become negative, the replenishment is
performed by setting qi = qi+Qi, and not qi = Qi. Finally,
when the scheduling deadline is postponed the RTQ must be
reordered, and a different client is selected for service (note
that this only happens after finishing to serve a request).

Figure 5 shows the effects of the modified accounting
mechanism: the upper part depicts the behaviour of the
original accounting and replenishment rules (for soft CBS)
, while the the lower part shows the modified rules in ac-
tion. When a new request arrives, it is assigned a deadline
equal to the arrival time plus T ; after some time the request
is scheduled and its budget starts to decrease. In the orig-
inal algorithm, when the budget arrives to 0 it is recharged
to Q (remember that we are considering the soft incarnation
of the CBS algorithm) and the deadline is postponed by T .
Note that since the deadline is postponed, the client can be
preempted (in the example, it is actually preempted, and
is scheduled again only after some time). In the X imple-
mentation of the CBS, since the request is not preemptable
it cannot be interrupted when the budget arrives to 0, and
the request runs to completion. When it is finally served,
the budget is negative, and is recharged by Q, postponing
the deadline by T as above. Finally, note that the non-
preemtpability of the requests can be modelled through the
concept of blocking time: each request can cause a blocking
time as long as the maximum time needed by X to serve it.
So, if an upper bound B for the time needed by the X server
to serve a request is known, it is possible produce an update
of the admission test in Equation 1:

∀i,
i∑

j=1

Qj

Tj
+

B

Ti
≤ 1

(see [3] for more details).
Clients can manage their CBS parameters (Qi, Ti) by us-

ing three new functions:

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500

R
ed

ra
w

 s
ta

rt
 ti

m
e

(m
s)

Redraw operation number

ocbench progress

CBS with Overloadex X server

Figure 6. ocbench progress with lightly
loaded or overloaded X server.

• XRTInitialize(): initialise the RT structure and
check if this extension is installed;

• RTSetProperty(): transform the client in real-
time (CBS) and set the reservation parameters

• RTGetProperty(): return some real-time infor-
mation about the client

As a final remark, this scheduler could be plugged into
the structure of X11 with a small effort. All these functions
have been developed as X extensions strictly conforming to
the guidelines provided by the Xorg foundation (that is, by
properly extending the xext protocol and by implementing
the functions in the Extension Layer) and without interfer-
ing with the normal functionalities of the window systems.
Therefore, it is possible to rely on the hardware support for
a plethora of graphic cards offered by the most commonly
used X11 servers (Xfree86 and xorg) and to use the legacy
applications without any porting effort (the API of the Win-
dow Systems has been totally unaffected).

4 Experimental Results

To test the effectiveness and the efficiency of the pro-
posed solution, we performed an extensive set of experi-
ments on a real implementation of our scheduler, consider-
ing different types of X clients (both real-time and not). All
the experiments have been run on a standard PC based on
an Intel core duo CPU at 1.66GHz equipped with an ATI
Radeon X1300 graphic card and 1GB of RAM. The sys-
tem is running Ubuntu Festy with a standard 2.6.20 Linux
kernel, and the X server from current git.

109109109

4.1 Serving Time-Sensitive Applications

The objective of a first set of experiments was to ver-
ify that the CBS scheduler implemented in the X server
properly addresses the problems exposed in Section 2. To
this end, we considered the same situation depicted in Fig-
ure 1, in which a time-sensitive application (ocbench) is
scheduled while an instance of x11perf overloads the X
server and a measure of the system time is taken for each
ocbench activation right before executing the redraw op-
erations. Contrary to what we did before, the ocbench ap-
plication is scheduled using a CBS server, both in the hard
and in the soft version, with parameters (3ms, 10ms). The
result is reported in Figure 6 and the difference with the
results displayed in Figure 1 is evident. In this case even
after the activation of x11perf, which occurs after 200
ocbench cycles the time marks a perfectly proportionate
progress in time. The speed of this progress is only affected
by the choice of parameters for the CBS.

Since the amount of X time reserved to ocbench is
enough for properly serving its requests, the hard and soft
CBS schedulers provide the same performance, so the fig-
ure displays only one set of results. The correctness of the
timing behaviour is confirmed by Figures 7 and 8, which
represent the traces obtained when scheduling ocbench with
a hard or soft CBS. As it is possible to see, reserving a cor-
rect bandwidth to the client allows the server to fulfill all
requests with the proper timing.

4.2 Impact on Throughput

One of the problems encountered when applying real-
time techniques in general-purpose systems is that they of-
ten have a bad impact on the throughput of non real-time ap-
plications. To show that the CBS implementation presented
in this paper does not suffer from this problem, a second
batch of experiments has been performed to gauge the ef-
fects of the CBS on the throughput of non time-sensitive
applications. To this end, the throughput (number of opera-
tions per second) achieved by instance of x11perf served
by a CBS has been measured (relying on the numbers re-
ported by the x11perf program to compute the through-
put).

First of all, x11perf has been scheduled through a soft
CBS, obtaining an average throughput of 360 operations per
second with a standard deviation of 1.73, while the through-
put obtained using the standard X scheduler is 357 oper-
ations per second with standard deviation 2.28. We per-
formed several experiments of this type obtaining consistent
results: in all cases the CBS did not worsen the throughput
(sometimes the results with the soft CBS were even better
than the standard X11 scheduler 1).

1This surprising result is probably due to the fact that scheduling

X throughput

 20 40 60 80 100 120 140 160 180 200 220
CBS period (T) 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

CPU bandwidth (Q/T)

 50

 100

 150

 200

 250

 300

 350

Figure 9. x11perf throughput when scheduled
by a CBS with different parameters, in 3D.

Note that serving non time-sensitive applications with a
CBS allows to have some degree of control on the appli-
cations’ throughput. Hence, a third batch of experiments
was designed to show the ability of the CBS to control the
fraction of time devoted by the X server to serve requests
from a specified client. In this case we used a hard CBS to
schedule an instance of x11perf with different schedul-
ing parameters. For each choice of parameters Q and T me
measured the throughput achieved through 5 trials. The re-
sults (average and standard deviation) are shown in Table 2
and Figure 9. The achieved throughput increases propor-
tionally to the bandwidth Q/T . It is worth noting that the
performance obtained with the soft CBS was remarkably
better (360 operations per second, as measured in the pre-
vious experiment). This is perfectly consistent with our ex-
pectations, since the hard CBS is used exactly to the pur-
pose of allocating a hard bound to the time dedicated to the
application (e.g., to avoid starvation of other applications
running in background).

4.3 Scheduling a Media Player with the
CBS

To show how the CBS can improve the performance
of more complex time-sensitive applications2, some of the
previous experiments have been repeated using a media
player. To this purpose, a media player based on FFMPEG
and GTK/GDK has been ran together with an instance of
x11perf (used to create a high load on the X server). The
player has been configured for not skipping video frames,

x11perf with a CBS gives him a higher priority over non real-time
clients, such as the window manager

2remember that ocbench is a very simple application, designed to be
only used as a benchmark

110110110

x11perf

10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

ocbench

Figure 7. trace of an ocbench scheduled by a hard CBS, with overloaded X server.

x11perf

10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

ocbench

Figure 8. trace of an ocbench scheduled by a soft CBS, with overloaded X server.

and the Inter-Frame time (defined as the difference between
the display times of two consecutive frames) has been used
as a measure of the QoS perceived by the user.

Figure 10 shows the Inter-Frame times obtained when
playing a video at 25 frames per second (fps) when using
the standard X scheduler (this player will be referred as nrt
player), and when serving the player with a properly di-
mensioned CBS (rt player). Until arond frame 110, the X
server is not overloaded and all the frames from both the
player instances are displayed in time (note that the Inter-
Frame times are arond 40ms = 1/25). Then, an instance
of x11perf is started around frame 110, and overloads the
X server causing a large increase in the Inter-Frame times
experienced by the nrt player. The rt player instead, is not
affected by the x11perf load and its Inter-Frame time re-
main stable all the time. During x11perf execution, the
video frames from the nrt player are not displayed in time,
and are queued by the X server; when x11perf stops, such
frames are displayed at a high speed until the X queue is
empty and the Inter-Frame times return to 40ms.

5 Conclusions

In this paper, we analysed the performance of the X11
server when it is used to serve real-time requests, showing
some anomalies caused by the priority inversions that stem
from a substantially round-robin mechanism in managing a
shared resource (the video card), which do not account for
real-time priorities.

To solve this problem, we devised our own scheduling
solution based on a CBS server. Advantages of our ap-
proach are: 1) the containment of priority inversion, 2) tem-
poral isolation between the different applications, 3) easy

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000 2500

In
te

r-
F

ra
m

e
tim

e
(u

s)

Frame number

Inter-Frame times for a video player

Standard X scheduler
CBS

Figure 10. video player served by the stan-
dard X scheduler and by a CBS.

portability across different X versions, 4) negligible effects
on the global throughput.

As a future work, we plan to study the interactions be-
tween the X scheduler and the CPU scheduler contained in
the kernel, and to formally analyse the complex hierarchical
system composed by the X server and its clients. As far as
architectural aspects are concerned, we will test our solution
on a wide class of applications to cover the whole gamut of
graphical primitives and propose it as a full-fledged alterna-
tive to the standard scheduler.

111111111

Q = 1/6T Q = 1/3T Q = 1/2T Q = 2/3T Q = 5/6T
Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

T = 30 67 1.14 132 3.64 193 2.40 264 2.3 318 2.48
T = 60 66.2 0.96 133 0.55 192 1.78 251 1.58 313 1.34
T = 90 66 0.55 128 1.51 189 2.04 253 1.30 310 1.48
T = 120 65.8 1.01 126 1.22 186 2.28 248 1.92 310 1.82
T = 150 63.7 1.12 126 1.34 187 2.28 248 2.49 306 2.30
T = 180 62.5 0.99 126 1.64 188 2.34 245 3.36 308 2.00
T = 210 62.8 1.04 125 1.08 187 2.30 246 2.60 305 4.1833

Table 2. x11perf throughput when scheduled by a CBS with different parameters.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the IEEE
Real-Time Systems Symposium, Madrid, Spain, December
1998.

[2] L. Abeni and G. Buttazzo. QoS guarantees using probabilis-
tic dealines. In Proceedings of the IEEE Euromicro Confer-
ence on Real-Time Systems, York, England, June 1999.

[3] T. P. Baker. Stack-based scheduling of real-time processes.
Real-Time Systems, (3), 1991.

[4] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft
Real-Time Systems: Predictability vs. Efficiency. Springer
Verlag, 2005.

[5] G. C. Buttazzo. Hartik: A real-time kernel for robotics ap-
plications. In Proceedings of the IEEE Real-Time Systems
Symposium, December 1993.

[6] S. Childs and D. Ingram. The Linux-SRT integrated mul-
timedia operating system: Bringing qos to the desktop. In
Proceedings of the IEEE Real-Time Technology and Appli-
cations Symposium, Taipei, Taiwan, 2001.

[7] Z. Deng and J. W. S. Liu. Scheduling real-time applications
in open envirovment. In Proceedings of the IEEE Real-Time
Systems Symposium, San Francisco, California, December
1997.

[8] X. A. Feng and A. K. Mok. A model of hierarchical real-
time virtual resources. In Proceedings of the IEEE Real-
Time Systems Symposium, page 26, Austin, Texas, 2002.

[9] N. Feske and H. Hartig. Dope - a window server for real-
time and embedded systems. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 74–77, Cancun, Mex-
ico, 2003.

[10] K. Jeffay, D. Stone, and D. Poirier. Yartos: kernel support
for efficient, predictable real-time systems, 1991.

[11] G. Lipari and E. Bini. A methodology for designing hierar-
chical scheduling systems. Journal of Embedded Comput-
ing, 1(2):257–269, 2004.

[12] C. L. Liu and J. Layland. Scheduling alghorithms for mul-
tiprogramming in a hard real-time environment. Journal of
the ACM, 20(1), 1973.

[13] C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves for multimedia operating systems. Technical
Report CMU-CS-93-157, Carnegie Mellon University, Pitts-
burg, May 1993.

[14] I. Molnar et al. Real-time linux wiki.
http://rt.wiki.kernel.org.

[15] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source kernels: A resource-centric approach to real-time and
multimedia systems. In Proceedings of the SPIE/ACM Con-
ference on Multimedia Computing and Networking, January
1998.

[16] D. Reed and R. F. (eds.). Nemesis, the kernel – overview,
May 1997.

[17] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.
Klein. Analysis of hierarchical fixed-priority scheduling.
In Proceedings of the IEEE Euromicro Conference on Real-
Time Systems, Vienna, Austria, July 2002.

[18] J. E. Sasinowski and J. K. Strosnider. ARTIFACT: A plat-
form for evaluating real-time window system designs. In
IEEE Real-Time Systems Symposium, pages 342–352, 1995.

[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9), September 1990.

[20] J. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the eros trusted window system. In Proceedings
of the 13th USENIX Security Symposium, 2004.

[21] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
Proceedings of the IEEE Real-Time Systems Symposium,
December 1996.

[22] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
hard-real-time environments. IEEE Transactions on Com-
puters, 4(1), January 1995.

[23] W. Tarreau. The ocbench scheduler benchmark.
http://linux.1wt.eu/sched.

[24] H. Tokuda, T. Nakajima, and P. Rao. Real-time mach:
Toward a predictable real-time system. In USENIX Mach
Workshop, pages 73–82, October 1990.

112112112

