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Shapes and shape transformations of two-component membranes of complex topology

Wojciech T. Góźdź* and Gerhard Gompper
Max-Planck-Institut fu¨r Kolloid und Grenzfla¨chenforschung, Kantstrasse 55, 14513 Teltow, Germany

~Received 1 October 1998!

The properties of two-component membranes, which form doubly periodic surfaces of complex topology,
are studied in the strong-segregation limit. The membrane is described within the framework of curvature
elasticity; the two components are distinguished by their spontaneous curvatures in this case. Four different
domain morphologies are considered for a square lattice of passages: rings of componenta inside the passage
and caplets of componenta outside the passage, as well as rings and caplets of componentb. The depen-
dences of the shape of the membrane and of the shape of the domain boundary are calculated as a function of
composition. On the basis of a calculation of the curvature energy we conjecture the existence of doubly
periodic, piecewise constant-mean-curvature surfaces. For small and intermediate line tensions, we predict
several phase transitions between the investigated morphologies. We also discuss briefly the existence and
shapes of vesicles of piecewise constant mean curvature.@S1063-651X~99!02304-1#

PACS number~s!: 64.60.2i, 68.10.Cr, 87.16.Dg
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I. INTRODUCTION

Membranes made of amphiphilic molecules are presen
many soft-matter systems@1,2#. Typical examples are surfac
tant monolayers, which assemble at the oil-water interfac
at the water-air interface in ternary amphiphilic systems, a
lipid bilayers, which form the walls of all biological cells
Biological membranes are not homogeneous, but consis
many different components@3,4#. These components are se
eral species of lipids, but also include many kinds of me
brane proteins. In order to understand the role of the vari
components in biological membranes, model systems h
been developed for studying pure lipids, lipid mixtures, a
reconstituted lipid-protein mixtures.

The presence of several components in a membrane l
to the possibility of lateral phase separation. The molecu
demix and form domains, in which one or more compone
are enriched. Two-component mixtures have been stu
experimentally in considerable detail for monolayers at
air-water interface. In particular, mixtures of phospholipi
and cholesterol show clear fluid-fluid coexistence@5,6#, and
phase diagrams have been determined@7#. The case of two-
component bilayers is more complicated. Although there
strong evidence for cluster formation on small length sca
@8,9#, the evidence for macroscopic phase separation is
rather indirect@10–15#. Fluid-fluid coexistence could als
occur between a protein-rich and a protein-poor phase
membrane proteins embedded in a homogeneous amphi
layer @16,17#; a similar two-phase coexistence may be fou
in mixtures of lipids and polymers with lipid anchor
@18,19#.

Since the composition and shape of a membrane
coupled locally, phase separation leads to domain-indu
shape changes or shape transitions. The effect of phase
ration on the shapes of almost planar membranes@20–22#
and of vesicles of spherical topology@23–27# has been stud
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ied theoretically in some detail. Again, monolayers and
layers have to be distinguished. In the former case, the c
position couples linearly to the preferred, ‘‘spontaneou
curvature of the monolayer. In the latter case, the situatio
more complicated, because the compositions of both lea
of the bilayer determine its spontaneous curvature. The s
ation simplifies, for example, if the domain structure in t
upper leave is anticorrelated with the domain structure in
lower leave, or if the bilayer is strongly asymmetric, so th
one leave consists only of a single component. In th
cases, the bilayer can be described by the same mode
employed for monolayers.

In this paper, we study the effect of phase separation
more complex topology, in which two membranes are co
nected by a lattice of passages. For homogeneous m
branes, this type of topology has been observed
‘‘catenoid’’ lamellar phases@28–30# of block-copolymer
mixtures and in multilamellar vesicles of phospholipid me
branes@31,32#.

It is important to note that phase separation and dom
induced shape transformation strongly affect the functions
biomembranes@3,33,21,8,9#. Here, a change of the mem
brane composition seems to be a very effective way of va
ing membrane shape. This change in composition is not n
essarily due to an exchange of molecules, but can be o
more easily achieved by an adsorption of polymers or p
teins, which change the local spontaneous curvature of
membrane. A well-known example for such a process is
formation of vesicles after adsorption of a clathrin coat on
a planar membrane@34#.

II. MODEL FOR TWO-COMPONENT MEMBRANES

The system we investigate is a fluid membrane compo
of two different types of molecules, which have a stro
tendency towards phase separation. The membrane for
square lattice of passages of lattice constantL; see Fig. 1.
This is the same topology which is found in the doubly p
riodic surfaces of constant mean curvature, which were fi
studied by Lawson@35#. Indeed, in the limit of a single-

h
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4306 PRE 59WOJCIECH T. GÓŹDŹ AND GERHARD GOMPPER
component membrane, our membranes take the shape o
Lawson surface. The molecules can demix and form coh
ent domains of one component with well-defined boundar
We consider two types of domains. A domain may be
cated inside a passage, forming a ring around the pass
see Fig. 1~a!. We call this a ‘‘ring’’ configuration. A domain
may be also located outside a passage, in the regions o
membrane which are approximately parallel to the midpla
between its upper and lower leaves, forming a roughly
cular caplet; see Fig. 1~b!. We call this a ‘‘caplet’’ configu-
ration. The caplet configuration is analogous to drop
phases observed in bulk liquids~except that the space dimen
sion is 2 rather than 3!.

At sufficiently low temperatures, the phase-separated
mains consist almost exclusively of a single component,
the interface between the domains is very sharp. This is
strong-segregation limit we want to investigate in this pap
since the effect of phase separation on the membrane s
is most pronounced in this case. The strong-segregation
has been investigated in Refs.@23,24,26# for vesicles and in
Ref. @22# for almost planar membranes@36#. At higher tem-
peratures, the components begin to mix inside the doma
until the two-phase coexistence vanishes in a critical poi

The molecules composing the mixture are characteri
by the tendency to form membranes of locally constant m
curvature. This behavior is modelled by coupling the lo
composition to the local mean curvature. In the limit of lar
radii of curvature~compared to the thickness!, the membrane
can then be approximated by an infinitely thin ‘‘mathema
cal’’ surface with its shape determined by the curvature
ergy

FIG. 1. Lattice of passages with different domain morphologi
~a! ~inverted! ring morphology (f50.932), ~b! ~inverted! caplet
morphology (f50.113). The spontaneous curvatures of the t
components areLh0

(a)51.2 ~dark! and Lh0
(b)50.4 ~light!, respec-

tively; the scaled line tension islL/k51024.
the
r-
s.
-
ge;

the
e
-

t

o-
d
e

r,
pe
it

s,
.
d
n
l

-
-

H5kE
S
d2sAg~s!@H~s!2H0~suS~a!,S~b!!#2

1l R
]S~a!

dl, ~1!

wheres5(s1,s2) defines the internal coordinate system
the membrane, andR(s) describes the position of a mem
brane element in the embedding space. In Eq.~1!, g(s) is
the determinant of the metric tensorgi j (s)5]R(s)/
]s i

•]R(s)/]s j , andH(s) the local mean curvature.k de-
notes the bending rigidity andl is the line tension of the
domain boundary. The local spontaneous curvat
H0(suS(a),S(b)) depends on the domain structure on t
membrane; it is constant within each domain ofa and b
components, withH0(suS(a),S(b))5h0

(g) for all points on the
surface which are part ofS(g), wheregP$a,b%.

For simplicity, the bending rigidityk and the Gaussian
rigidity kG are assumed to be independent of the local co
position. Since the curvature energy~1! forces the mean cur
vature to be smooth at the domain boundary@37#, a
Gaussian-curvature term in the Hamiltonian would contr
ute a constant to the energy, according to the Gauss-Bo
theorem for periodic surfaces; such a term is therefore om
ted here. The line-tension integral is taken along the bou
ary which separates different components of the membra

The basic length and energy scales for the problem are
by the lattice constantL and the bending rigidityk. It is
important to note that no surface-tension term appears in
~1!, so that the area of the membrane~and also the enclose
volume! is not constrained.

III. NUMERICAL METHODS

In order to describe the membrane shape in the case
complex topology, we use the implicit representation

v~x,y,z!512B~x,y!Q~z!50, ~2!

where Q(z)>0 is a symmetric ‘‘weight function,’’ which
equals unity atz50, decays strictly monotonically with in
creasinguzu, and vanishes in the limit of largeuzu. This an-
satz can be most easily understood by identifyingv(x,y,z)
with the concentration difference of oil and water in a terna
system, and the membrane with an amphiphilic monolay
Then,v(x,y,z).0 on one side of the membrane~the ‘‘oil
side’’! and v(x,y,z),0 on the other side~the ‘‘water
side’’!. For a point (x,y) in the midplane withB(x,y)
,1, v(x,y,z).0 for all z, so that there is no membran
present; such a point is located inside the ‘‘oil channe
through the passage. For a point withB(x,y).1, on the
other hand,v(x,y,z),0 for small uzu, but v(x,y,z).0 for
large uzu. The choice of the weight function in Eq.~2! is
arbitrary, and does not affect the shape of the membr
after minimization. We takeQ(z)51/cosh2(z), so that the
membrane is located at

cosh~z!5AB~x,y!. ~3!

Our choice of the weight function is motivated by the for
of the equation for the catenoid minimal surface, which

:
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recovered from Eq.~3! for B(x,y)5x21y2. The membrane
is symmetric with respect to thez50 plane by construction

For surfaces described by the Monge representation~3!,
with s5(x,y) andR(s)5„x,y,z(x,y)…, the determinant of
the metric tensor is given byg(x,y)5A11u¹z(x,y)u2, and
the mean curvature is

2H~x,y!5¹•

¹z~x,y!

A11u¹z~x,y!u2
. ~4!

In order to describe a square lattice of passages by
~3!, B(x,y) is expanded into the Fourier series

B~x,y!5a01(
i 51

N

ai (
j 51

Ni

cosS 2p

L
k j

~ i !
•r D , ~5!

wherer5(x,y), N is the number of Fourier amplitudes,k j
( i )

are the reciprocal lattice vectors, andNi is their number in
the i th shell. Here, a shell is the set of reciprocal latti
vectors of the same length, which are related to each othe
symmetry operations characteristic for a given lattice.
sin@(2p/L)k j

( i )
•r # terms appear in the expansion~5! because

we assume the full symmetry of the square lattice. We w
to emphasize that such a choice forB(x,y) makes the mem-
brane smooth at the unit cell boundaries by construction

The shape of the domain boundary is written in cylind
cal coordinates (r,u,z) as

r~u!5r01(
i 51

Nr

r i cos~4iu!,

z5cosh21@AB„r~u!cos~u!,r~u!sin~u!…#, ~6!

where the coefficientsr i for i 50, . . . ,Nr describe the loca
radius of the domain boundary. Such a parametrization g
antees that the domain boundaries have fourfold symme
The origin of cylindrical coordinates is located either at t
middle ~for ring morphology! or at the corner~for caplet
morphology! of the unit cell; compare Fig. 1.

With the parametrization of the membrane and doma
boundary shapes given by Eqs.~5! and~6!, the functional~1!
is minimized with respect to the coefficientsai andr i under
the constraint of constant compositionf5S(a)/(S(a)

1S(b)); i.e., the ratio of the surface areas occupied by
two components is kept constant during the minimizati
The topology of the membrane is not allowed to change w
composition. The number of coefficientsr i is always the
same and equal to 5. Although it is sufficient to use a f
coefficientsai to obtain good approximation of global prop
erties ~like total surface area, domain-boundary length, a
radius of the passage atz50), the accurate calculation of th
local properties of the membrane~like the local mean curva
ture and thus the curvature energy! requiresN to be large.
We have performed calculations for 32, 49, 66, and 89 co
ficients ai . These numbers are chosen to include all sh
with reciprocal lattice vectors of lengths less or equal to
10, 12, and 14~in the units of 2p/L), respectively.
q.
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IV. RESULTS

A. Lattice of passages for one-component membranes

The existence of doubly periodic surfaces of const
mean curvature was proved by Lawson@35# almost 30 years
ago, but their properties have not been studied in much de
so far @38#. As a result of the periodicity, the integral of th
Gaussian curvature within a unit cell is constant and equa
24p. Thus the Euler characteristicsx5*SKdS/2p and ge-
nusg5(22x)/2 are appropriately22 and 2 for this family
of constant-mean-curvature~CMC! surfaces.

The results of our numerical calculations done with t
curvature energy~1! with h0

(a)5h0
(b)5h0 and l50 agree

very well with the exact predictions. The integral*S(H
2h0)2dSalready vanishes within the numerical accuracy
31 Fourier modes in the Fourier expansion~5!, indicating
that the proposed parametrization works remarkably well
one-component membranes. Surface shapes obtained
our parametrization~3! and ~5! are shown in Fig. 2.

For small mean curvature, the surface shape resem
two planes, which are connected by a square lattice of n
row passages; compare Fig. 2~a!. The passage radius and th
planes separation become smaller and smaller with decr
ing mean curvature, and finally merge into a single plane
Lh050. When the mean curvature is increased the me
brane ultimately deforms into a square lattice of touch
spheres atLh052. However, this transformation into touch
ing spheres is quite complicated. ForLh0↗2, a membrane
shape is obtained, which is different from touching spher
This shape develops smoothly as the spontaneous curv
increases toLh0.2.3; compare Figs. 3 and 4. Therefor
there must be a second branch of CMC surfaces, along w
this shape of maximumLh0 transforms into touching
spheres. This behavior is, in fact, very similar to the behav
observed for triply periodic CMC surfaces in the limit o
‘‘large’’ Lh0 @39#. The quality of the parametrization~3!, ~5!
for the extremal values of the mean curvature decreases
to the difficulty in describing very narrow necks~which ap-
pear in both limits! with a limited number of amplitudes in
the Fourier expansion.

The properties of the doubly periodic Lawson surface c
be characterized quantitatively by the volume and surf
area per unit cell, and by the~orientation-dependent! radius
of the passage in thez50 plane. The results for differen
mean curvatures in the range 0.2<Lh0<2.3 are shown in
Figs. 3 and 4. The volume per unit cell, the surface area,
the radius of the passage are all found to benonmonotonic
functions ofLh0 . Another interesting quantity is the passa
shape in thez50 plane. For the range of mean curvatur
0,Lh0<1.2, the passage is almost exactly circular; it beg
to deviate appreciably from a circle for higher mean curv
tures; see Fig. 3.

In our study of two-component membranes we have c
sen the spontaneous curvaturesLh0

(a)51.2 andLh0
(b)50.4

for each component; these spontaneous curvatures are
nificantly different, but not too close to the extremal valu
of Lh0 . The shapes of constant-mean-curvatures surfa
characterized by these two values ofLh0 are shown in Fig. 2.

B. Role of a line tension

The behavior of periodic one-component membran
which do not change their topology, is totally governed
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FIG. 2. Shapes of one-component membranes for different spontaneous curvatures.~a! Lh050.4, ~b! Lh051.2, ~c! Lh051.9. N549
Fourier shells have been used in the expansion~5!.
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the bending energy. For two-component membranes the
tension begins to play an important role and the membr
shape is the result of competition between the bending
ergy and line tension. For line tensions which are ‘‘larg

FIG. 3. Passage radii in thez50 plane for one-componen
membranes as a function of the scaled spontaneous curvatureLh0 .
Circles (s) represent the passage radius along the~10!, squares
(h) along the~11! direction. The stars denote the limiting value
for Lh050.0 ~plane! andLh052.0 ~touching spheres!. The dotted
lines show plausible interpolations between the calculated data~for
N549 Fourier shells! and the limiting shapes.
ne
e

n-
’

compared to the curvature energy, the membrane adap
shape which reduces the lengthl of the domain boundary a
the cost of the curvature energy. If the line tension is su
ciently large, the boundary length will shrink to zero, whic
causes budding of the domains~in the caplet morphology!
@21#. On the other hand, when the line tension is small co

FIG. 4. Surface area (s) and volume (h) of a unit cell for
one-component membranes as a function of the scaled spontan
curvatureLh0 . The solid square (j) and circle (d) denote the
limiting values for Lh050.0 ~plane! and Lh052.0 ~touching
spheres!. The value of the surface area for touching spheres isp
53.1415 . . . and is notshown.N549 shells have been used in th
Fourier expansion.
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pared to the curvature energy, the membrane adapts the
shape to minimize the curvature energy at the cost of
length of the domain boundaries. In the weak-line-tens
limit the membrane shape is mainly determined by the be
ing energy, similarly as in the case of one-component me
branes.

We have investigated both regimes of weak and str
line tension, with the main focus on the limit of weak lin
tensions. In order to estimate the borderline between th
two regimes, we have performed calculations for differe
Ll/k, increasinglL/k in each step by an order of magn
tude fromlL/k51024 to lL/k510. The line tension be
gins to influence the membrane properties forlL/k>1021

and becomes significant forlL/k51. A line tension of the
order oflL/k510 already leads to budding for caplet mo
phologies. For example, the passage radius for the ring m
phology with f50.1 changes fromR/L50.132 for lL/k
,1022 to R/L50.123 forlL/k51021 andR/L50.085 for
lL/k51.0. The effect of the line tension is weaker for larg
values off; compare Sec. IV G below. Other properties li
surface areaS and domain perimeterl behave similarly.

Finally, we have considered membranes withconstant
spontaneous curvature, i.e.,Lh0

(a)5Lh0
(b)5Lh0 , and the line

tensionlL/k51024, with the domain boundaries located
the z50 plane. This corresponds to two-component me
branes~in the limit f→0), where both components have th
same spontaneous curvature, but do not mix. The curva
energy is found to change fromEb /k56.9731029 ~for
lL/k50) to Eb /k57.3131029 for N549 andLh050.4.
Based on these calculation we decided to uselL/k51024 in
weak-line-tension limit andlL/k51 for the case of a large
line tension.

C. Shapes of two-component membranes: Weak line tensions

Each of the two components can form closed doma
within a membrane composed of the other component. S
we consider two domains morphologies„rings @see Fig. 1~a!#
and caplets@see Fig. 1~b!#…, there are four possible configu
rations of domains in the membrane.

Naively one might expect that the component coupled
the smaller spontaneous curvature preferentially occupies
flatter parts and the component coupled to the higher cu
ture the more strongly curved parts~in the neck of the pas
sage! of the membrane. Thus, two configurations should
favored, namely, when componenta ~with Lh0

(a)51.2)
forms rings or componentb ~with Lh0

(b)50.4) forms ca-
plets. We call these two configurations ‘‘caplets’’ an
‘‘rings,’’ respectively, while the other two~where compo-
nenta forms caplets and componentb forms rings! are de-
noted ‘‘inverted caplets’’ and ‘‘inverted rings.’’ Surpris
ingly, it turns out that for the studied topology the location
domains is not determined by the curvature energy, beca
the membrane can equally adapt an optimal shape for an
these four configurations.

It is convenient to examine the membrane properties a
function of compositionf, since f5S(a)/(S(a)1S(b)) is
well defined and easily accessible in experiments. When
composition decreases to zero, for caplet morphologies
domain degenerates into a point, the boundary lengthl van-
ishes, and membrane shape approaches the shape of a h
est
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geneous membrane discussed in Sec. IV A. In the cas
ring morphologies, on the other hand,l approaches the
length of the neck perimeter in thez50 plane, still causing a
deformation of the membrane~depending, of course, on th
value of the line tension!.

For two-component membranes withLh0
(a)51.2 and

Lh0
(b)50.4, within the whole range of compositions and f

all types of configurations, the passage shape in thez50
symmetry plane is almost ideally circular, similarly as it
for pure membranes. While for one-component membra
the passage radius varies with the mean curvature, for t
component membranes it varies with composition. It tu
out that even a small amount of the second compon
causes the shape to change. For all configurations, the
sage radius increases monotonically with compositionf, ap-
proaching the values characteristic for pure membranes
f→0 or f→1; this indicates that the line tensionLl/k
51024 indeed does not influence the membrane shape; c
pare Fig. 5. It is quite unexpected that for ring and cap
morphologies, the radius is almost the same for the sa
compositionf, and is roughly proportional to the compos
tion. One might expect that the location of a domain ins
the passage would have a stronger effect on its radius tha
location in the membrane segments with positive Gauss
curvature, since it seems to be easier to deform the pas
than the ‘‘flat’’ parts of the membrane. However, we obser
that for the same composition, caplet and ring morpholog
— and similarly inverted caplet and inverted ring morpho
gies — show only very small differences in the size of t
passage radius.

It is interesting to note that two different mechanism
have very similar effects on the passage radius. It can
varied either by changing the spontaneous curvature o
one-component membrane or by changing the composi
of a two-component membrane.

The surface area of the membrane behaves similarly
the passage radius. Figure 6 shows the surface area div

FIG. 5. Passage radius in thez50 plane for different morpholo-
gies of two-component membranes as a function of compositiof
~for N549 Fourier shells!. The stars denote the values for pu
membranes, withLh0

(a)51.2 andLh0
(b)50.4. The scaled line ten

sion islL/k51024.
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by the lattice constant squared. For ring and caplet confi
rations the value of surface area changes monotonically
almost linearly between the values characteristic for
single-component membranes. The surface area differs
slightly for ring and caplets morphologies of the same co
position. The behavior for inverted ring and inverted cap
configurations, on the other hand, is quite different and d
resemble the behavior of pure membranes as a functio
spontaneous curvature~compare Fig. 4!; however, the non-
monotonic behavior is more pronounced here. The value
the surface area increases above the values for either
component membrane, and reaches a maximum app
mately at the compositionf.0.4, compared toLh0.0.54
for single-component membranes. The surface area for
inverted configurations is larger than for the other two sin
the component outside of the passage has higher mean
vature.

The phase separation within the membrane gives it m
flexibility to adapt various shapes. One may speculate
phase separation within a membrane provides a mecha
to activate biological functions if these functions depend
the membrane shape@3,33#.

D. Shape of the domain boundary

Unlike the surface area and passage radius, the length
shape of the domain boundaries are unique features of
ticomponent membranes. For a flat membrane, the opt
shape of the domain boundary is a circle, since it minimi
its length for a given surface area. However, for ‘‘comple
membranes the shape of the domain boundary strongly
pends on the membrane topology. There is a competi
between the two processes of forming the shortest dom
boundary at the cost of the curvature energy and adjustin
shape to the topology of the membrane at the cost of
energy. The presence of passages and periodicity of
membrane strongly influences the shape of the dom
boundary. For ring and inverted ring morphologies, the c

FIG. 6. Surface area for different morphologies of tw
component membranes as a function of compositionf ~for N
549 Fourier shells!. The stars denote the values for pure me
branes, withLh0

(a)51.2 andLh0
(b)50.4. The scaled line tension i

lL/k51024.
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ter of the passage is also the center of the domain bound
When it is far from the unit-cell boundary, it is almost per
fectly circular. However, when it approaches the unit-ce
boundary, the periodicity of the lattice enforces deviatio
from a circular shape. These deformations are the larger
closer the domain boundary approaches the boundaries of
unit cell; see Fig. 7~a!. For caplets and inverted caplets, th
shape of the domain boundary is influenced both by the un
cell boundariesandby the passages; see Fig. 7~b!. The closer
the domain boundary approaches the inner part of a pass
the larger become the deviations from a circular shape. I
interesting to note that in the limitsf→0 andf→1, meta-
stable configurations exist, for which the minority compo
nent forms a narrow strip along the cell boundaries.

Figure 8 shows the change of lengthl of the domain
boundary as a function of compositionf. For each of the
considered morphologies there is a range of compositio
for which it has the shortest domain boundary. With increa
ing f, we find the sequence of inverted caplets→ rings→
inverted rings→ caplets for the morphology of minimal do-
main perimeters. Here, ring and caplet morphologies ha
the largest ranges of stability.

E. Piecewise constant-mean-curvatures surfaces

It has been demonstrated in Sec. IV A that in the lattic
of-passages geometry aone-componentmembrane can easily
adapt to a shape of constant mean curvature. For membra
which consist of pieces of different spontaneous curvatur
the shape adjusts itself such as to minimize the curvat
energy and the length of the domain boundary simult
neously. In the limit of zero line tension, this might, or migh

-

FIG. 7. Shapes of two-component membranes, which show
deformation of the domain boundary for large domains:~a! inverted
ring morphology (f50.563), ~b! inverted caplet morphology (f
50.371). The spontaneous curvatures of the two components
Lh0

(a)51.2 ~dark! and Lh0
(b)50.4 ~light!, respectively; the scaled

line tension islL/k51024.
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not, lead to surfaces of piecewise constant mean curva
We want to emphasize that the answer to this questio
nontrivial, since the boundary conditions for the membra
pieces at the domain boundary, as discussed in Sec. II,
pose strong constraints on all possible shapes.

Our data show that the free energy depends roughly
early on the lengthl of the domain boundary~for fixed N).
This is demonstrated in Fig. 9, where we plot the~dimen-
sionless! curvature energy — without the contribution of th
line tension in Eq. ~1! — per unit boundary length
EbL/(kl ). The concentration dependence of this quan
shows some oscillations around the average value, the
plitude of which decreases with increasingN. More impor-
tantly, the increase ofN causes a decrease of the curvatu
energy. Both of these results can be attributed to the appr
mation of the discontinuity of the mean curvature by a Fo

FIG. 8. Lengthl of the domain boundaries for different mo
phologies as a function of compositionf. The parameters are th
same as in Fig. 5.

FIG. 9. Curvature energy per unit length of the domain bou
ary for different morphologies as a function of compositionf, for
N549 ~top! andN566 ~bottom!. The parameters are the same as
Fig. 5.
re.
is
e
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e
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rier series with a finite numberN of Fourier modes. The
decrease ofEbL/(kl ) with N suggests that the energy for a
infinite number of the coefficientsai can vanish if the mean
curvature of the surface behaves like a step function cha
ing from Lh0

(a) to Lh0
(b) along the domain boundary, an

the rest of the surface is characterized byH(s)
5H0(suS(a),S(b)). A plot of the local mean curvature~see
Fig. 10! supports this hypothesis, since it shows that~i! the
deviation from the spontaneous curvature occurs mostly
the domain boundary,~ii ! the local mean curvature remain
very close to the spontaneous curvature on the rest of
membrane, and~iii ! for larger N, the boundary region be
comes narrower.

For a membrane with a jump in the mean curvature,
Fourier amplitudesai should decay as a function of the wav
numberuk( i )u with a power law. It is shown in the Appendi
that a discontinuity of the mean curvature along a line i
plies the asymptotic behavior

ai;uk~ i !u27/2 ~7!

for largek( i ). This result can be used to determine the co
tribution of the domain boundary to the bending energyEb .
The calculation described in the Appendix indicates thatEb
should decrease as

Eb;1/uk~N!u, ~8!

wherek(N) is the length of the largest reciprocal lattice ve
tor.

We have therefore plotted the energy — averaged ove
calculated concentrations — as a function of the inve
length of the largest reciprocal lattice vector for a given
of coefficientsai to test this hypothesis. The data are inde
consistent with a linear 1/N dependence. A linear extrapola
tion then gives a values ofEbL/(kl )5(1.569.0)31025

~rings! and EbL/(kl )5(6.569.0)31025 ~caplets! for the
reduced curvature energy in the limit 1/N→0. This result is

-

FIG. 10. Local mean curvature as a function of the distancx
along a line through the center of the passage in the~10! direction.
The data are obtained for the ring morphology withf50.29 and
different number of Fourier shells, as described in the text. T
other parameters are the same as in Fig. 5.
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very interesting from the point of view of differential geom
etry. It suggests the existence of piecewise CMC surface
the limit Ll/k→0. The membranes shown in Fig. 7 wou
be examples of doubly periodic piecewise CMC surfac
The surfaces we have obtained can of course be only
proximations to exact piecewise CMC surfaces.

F. Phase transitions

If the membrane forms a piecewise CMC surface in
limit of zero line tension, it is only weakly deformed b
sufficiently small but finite line tensions. Here, the lengthl
of the domain boundary of the piecewise CMC surface p
vides an upper limit for the total energy, since the energy
only decrease when the membrane shape is allowed to r
under the effect of the line tension. The weak-line-tens
limit is characterized by the curvature energy being mu
smaller than the line energy.

Although the line tension is very small, the main cont
bution to the energy~1! still comes from the vicinity of the
domain boundary. The phase behavior can therefore be
duced by considering the domain perimeterl shown in Fig.
8. The increase ofl with composition for rings and the
decrease for caplet lead to a phase transition between t
two morphologies. This transition takes place near the p
where the boundary lengths of these configurations are
same. The caplet and ring configuration at the phase tra
tion are shown in Fig. 1 of Ref.@40#. The same mechanism
leads to the phase transition between inverted caplets
inverted rings. It takes place for somewhat smaller comp
tion f.

These phase transitions are first order, since the shap
the domain boundary does not vary continuously at the tr
sition. Also, the total surface area of the membrane jump
the transition. However, no noticeable changes of the ra
of the passage at the phase transition have been observ

Another type of phase transition is between rings and
verted rings and also between caplets and inverted caple
this case the domain type is unchanged but the compon
exchange their locations. The component which is inside
passage migrates to the ‘‘outer’’ part of the membrane,
vice versa.

There are also phase transitions, where the compon
change their locationsand the domain type changes from
ringlike to capletlike~or vice versa!. Such transitions take
place between inverted caplets and rings and also betw
inverted rings and caplets. The reason for these transition
as follows. For small domain sizes, the domain boundar
always shorter for caplet than for ring morphologies, sinc
may shrink to zero whenf→0, while for rings it is bounded
from below by the passage radius. For larger domains,
plets have largerl because the shape of the boundary
deformed by the passage more strongly than for the ring
domains. Thus, large ringlike and small capletlike doma
are favored, which results in these transitions.

It is interesting to note that in the weak-line-tension lim
the sequence of the phase transitions and their locatio
independentof the strength of line tension.

G. Two-component membranes: Strong line tensions

In order to obtain a complete picture of the behavior
two-component membranes of complex topology, it is n
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essary to consider also the case of larger line tensions
explained in Sec. IV C above, we consider the caselL/k
51, for which the line tension is too small to promote bu
ding, but can have a strong effect on the passage shape,
on its radius. It is important to note that although the li
tension is already close to its value at the budding transit
the bending energy is about two orders of magnitude sma
than the line energy, compare Figs. 11 and 12. Surprisin
the qualitative behavior for strong line tension is similar
the weak-line-tension case; however, there are quantita
differences.

The phase behavior for weak and strong line tension
qualitatively the same. There are still three phase transitio
in order of increasing concentration between inverted cap
and rings, rings and inverted rings, and inverted rings a
caplets; see Fig. 12. The phase transitions are just shift

FIG. 11. Curvature energy for different morphologies as a fu
tion of compositionf ~calculated forN532 Fourier shells! in the
case of large line tension. The parameters areLh0

(a)51.2, Lh0
(b)

50.4, andlL/k51.

FIG. 12. Lengthl of the domain boundaries for different mo
phologies as a function of compositionf, for the case of large line
tension,lL/k51. N532 Fourier shells have been used.
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little in concentration compared to the weak-line-tens
case. This is due to the decrease of the lengthl of the
domain boundaries for rings and inverted rings. The ca
morphologies are less sensitive to stronger line tension. T
is intuitively understandable, since as soon as a consider
deformation of a caplet becomes favorable to decreasel ,
formation of buds already takes over@21#. The deformation
of a passage, on the other hand, costs much less ben
energy, since for a given spontaneous curvature there
whole family of CMC surfaces with different pore radii — a
can be seen most easily for catenoidlike passages of
mean curvature. Finally, we want to mention that it is eas
to deform caplet-shaped domains, when the domain con
of the component with the larger spontaneous curvature

The new feature, which appears in the case of stron
line tensions, is that for the ring and inverted ring morpho
gies, the passage radius no longer converges to the valu
the corresponding one-component membrane in the lim
f→0 andf→1, respectively. The effect of the line tensio
on the membrane shape is larger when the domain boun
is located closer to the center of the passage. This effe
particularly pronounced in the case of inverted rings, wh
the dependence of the passage radius on the concentratf
even becomes nonmonotonic; see Fig. 13. Forf.0.6, the
pore radius nowdecreaseswith increasingf. A similar be-
havior is also found for the surface area.

For stronger line tensions, the shape of the domain bou
ary is expected to be more circular than in the weak-li
tension case, in order to minimize its length. However,
shape still deviates considerably from being circular~see Fig.
14!, with larger deviations for larger domain sizes. This
sult should be compared with the data given in Fig. 3 of R
@40# for lL/k51024; the difference is quite small. The do
mains of inverted configurations deviate more from circu
shapes since they are more strongly influenced by the
sage size, which is larger for these configurations.

V. PIECEWISE CMC VESICLES

We have shown in Sec. IV E that membranes of comp
topology can form piecewise CMC surfaces in the limit

FIG. 13. Passage radius in thez50 plane for different mor-
phologies as a function of compositionf. The stars denote the
values for pure membranes. The parameters are the same as i
11.
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vanishing line tensions. This raises the question of whet
CMC surfaces are also possible for two-component, axisy
metric vesicles of spherical topology.

It has been argued in Ref.@26# that for vesicles of fixed
surface area andzeropressure difference between inside a
outside in three dimensions, the curvature energy is not
formly distributed on the surface — in contrast to ‘‘vesicles
~closed lines! in two dimensions, where the curvature dist
bution is uniform. However, a careful analysis of this arg
ment shows that there is one exception: if the mean curva
is identical to the spontaneous curvature everywhere, pie
wise CMC vesicles do exist in three dimensions. Since
shape and size of the vesicle are essentially determine
the spontaneous curvatures of the two components in
case, the surface area has to be considered as an un
strained variable.

The building blocks for the construction of axisymmetri
piecewise CMC vesicles are pieces of sphere, catenoid,
inder, unduloid, and nodoid@41#. These are the only
constant-mean-curvature surfaces of rotational symme
The simplest example@42# of such a piecewise CMC vesicl
is a cylinder of arbitrary length and radiusR051/(2h0

(a)),
closed at the ends by hemispheres of radiusRs51/h0

(b) .
Thus, a capped cylinder is only possible for the one ratio
spontaneous curvatures,h0

(b)/h0
(a)52, but for all composi-

tions. Similar constructions can be made when the cylinde
replaced by an unduloid, nodoid, or catenoid. For two giv
spontaneous curvatures, the radius of the capping spher
fixed to Rs51/h0

(b) . The pore radiusR0 of an unduloid or
catenoid can vary from zero to 1/@2h0

(a)#. In the case of
catenoid~i.e., forh0

(a)50) andunduloid, the connecting sur-
face cannot be matched smoothly to the capping sphere
the pore is too large; this implies that the pore radius mus
less than 1/h0

(b) . In the case of anunduloid, the additional
condition applies that its maximum diameter 2R1 must be
larger than the sphere diameter. SinceR11R051/h0

(a) for
unduloids @43,44#, this condition implies that 0,R0

,1/h0
(a)21/h0

(b) . An connecting unduloid is therefore onl
possible ifh0

(b).h0
(a) . Finally, in the case of anodoid, the

Fig.

FIG. 14. Variance of the domain radius, projected into thez
50 plane, for different morphologies as a function of compositi
f. The parameters are the same as in Fig. 11.
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minimal pore radius isR051/h0
(a) . Since R12R051/h0

(a)

for nodoids @43#, it is easy to show that nodoids can b
connecting surfaces only forh0

(a).h0
(b) .

As a function of composition, the following pictur
emerges. For simplicity, we only consider the case of un
loids, i.e.,h0

(b).h0
(a) . For smallf, two large spherical end

caps are connected by a very small neck; see Fig. 15~a!. With
increasing pore radius,f initially increases, then decrease
again until a limiting shape is reached, which consists of t
semispheres with a band of infinitesimal width of the seco
component connecting their equators. Forf→1, there is a
second class of solutions, which starts with an unduloid w
very small necks, which are capped by small segment
spheres. With decreasingf, the endcaps get larger; compa
Fig. 15~b!. Again, a limiting shape~of some finitef) is
reached when the pore radius approaches the sphere rad
is clear from these arguments that in general only a limi
range of compositions is accessible for such piecewise C
vesicles with fixed spontaneous curvatures. It is worth m
tioning that similar shapes occur for a fluid bridging the g
between two solid spheres in the case of complete wet
@45# and for wetting on structured substrates@46#.

One can also construct more complicated piecewise C
vesicles, for example, by breaking the up-down symme
@see Fig. 15~c!# or by joining several surface segments
different constant mean curvature, for example sphe
unduloid-sphere-unduloid-sphere. Finally, one can imag
to construct toroidal vesicles made of several pieces
nodoids connected by pieces of spheres.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the behavior of multico
ponent membranes of nontrivial topology within the fram
work of the curvature model. These membranes have
possibility of phase separation into two~or more! different
phases at sufficiently low temperatures. As a result of

FIG. 15. Examples of piecewise constant-mean-curva
vesicles. Two spheres of the same radiusRs51/h0

(b) are connected
smoothly by an unduloid surface of mean curvatureh0

(a) , with
h0

(b)/h0
(a)51.22.~a! Small neck,~b! small caps, and~c! broken up-

down symmetry. The dashed lines indicate segments of sphere
unduloids, which are not part of the vesicle surface; the dom
boundary is indicated by arrows.
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different, nonzero spontaneous curvatures of the compon
and the complex membrane topology considered, ma
scopic phase separation is unfavorable. Instead, microp
separation occurs, which leads to a large variety of differ
domain patterns on the membrane.

The main results of our investigation are as follows. Fir
the shape of the membrane depends on the compositiof
and on the type of the domain structure. While some dom
morphologies lead to an almost linear dependence of
passage radius onf, for example, other domain morpholo
gies show a nonmonotonicf dependence. Second, the sha
of the domain boundary is strongly influenced by the top
ogy of the membrane. For small compositions, the doma
are almost circular; with increasing composition, they b
come increasingly noncircular in order to adjust to the p
sage and to the periodicity of the doubly periodic lattic
Third, the existence of smooth, doubly periodic piecew
constant-mean-curvature surfaces has been conjectured i
limit of zero line tension. We have also shown that piecew
constant-mean-curvature surfaces of spherical topology
be constructed for zero line tension. Finally, first-order ph
transitions between the caplet, ring, inverted caplet, and
verted ring morphologies have been found. Here, the r
and caplet configurations dominate the phase diagram for
spontaneous curvatures employed in our calculation.

It is tempting to speculate that the mechanism of regu
ing the size of passages by changing the composition
membrane may be used in cells or cell organelles@34#. A
possible application of two-component membranes could
the crystallization of membrane proteins in CMC surfac
@47#, where the enrichment of one component near the p
tein provides an extra degree of freedom for optimal hyd
phobic matching@48,49,8#.
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APPENDIX: FOURIER SERIES OF A FUNCTION
WITH DISCONTINUOUS SECOND DERIVATIVE

For a scalar functionf (x) in onedimension with a jump
in its second derivative, its Fourier transformf (q) decays as
f (q);q23 for large q. For a scalar functionf (r ) in two
dimensions, which is rotationally symmetric and has a ju
in its second derivative along a circle around the origin,
Fourier transform reads

f ~q!52pE dr r f ~r !J0~qr !, ~A1!

whereJ0(x) is a Bessel function of first kind. In the limit o
largex, J0(x)5A2/px@cos(x2p/4)1O(1/x)#, so that
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f ~q!.2A2p

q E drAr f ~r !cos~qr2p/4! ~A2!

for large q. The integral behaves like the one-dimension
Fourier transform of a function with a discontinuity in i
second derivative, and therefore decays asq23. Thus, we
finally obtain

f ~q!;q27/2. ~A3!

This result can now be used to estimate the dependenc
the curvature energy on the largest wave vectorL. Consider
an almost planar membrane in the Monge parametrizat
s

.

c-

A

.

. J

nd
l

of

n,

z5 f (r ), with a discontinuity of the spontaneous curvatu
along a circle. The curvature energy reads in this case

Eb;kE d2q@q2f ~q!2H0~q!#2. ~A4!

For a finite numberN of wave vectors, we assumef (q) to be
the same as in the limitN→` for q,L, but f (q)50 for
q.L. Then, the curvature energy becomes

Eb;kE
q.L

d2qH0~q!2;kE
L

`

dq q q4 q27;L21.

~A5!
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