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Shapes and shape transformations of two-component membranes of complex topology
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(Received 1 October 1998

The properties of two-component membranes, which form doubly periodic surfaces of complex topology,
are studied in the strong-segregation limit. The membrane is described within the framework of curvature
elasticity; the two components are distinguished by their spontaneous curvatures in this case. Four different
domain morphologies are considered for a square lattice of passages: rings of comporsté the passage
and caplets of component outside the passage, as well as rings and caplets of compg@nértte depen-
dences of the shape of the membrane and of the shape of the domain boundary are calculated as a function of
composition. On the basis of a calculation of the curvature energy we conjecture the existence of doubly
periodic, piecewise constant-mean-curvature surfaces. For small and intermediate line tensions, we predict
several phase transitions between the investigated morphologies. We also discuss briefly the existence and
shapes of vesicles of piecewise constant mean curvdit®©63-651X99)02304-1

PACS numbeps): 64.60—i, 68.10.Cr, 87.16.Dg

I. INTRODUCTION ied theoretically in some detail. Again, monolayers and bi-
layers have to be distinguished. In the former case, the com-
Membranes made of amphiphilic molecules are present iposition couples linearly to the preferred, “spontaneous”
many soft-matter systenii,2]. Typical examples are surfac- curvature of the monolayer. In the latter case, the situation is
tant monolayers, which assemble at the oil-water interface omore complicated, because the compositions of both leaves
at the water-air interface in ternary amphiphilic systems, anaf the bilayer determine its spontaneous curvature. The situ-
lipid bilayers, which form the walls of all biological cells. ation simplifies, for example, if the domain structure in the
Biological membranes are not homogeneous, but consist afpper leave is anticorrelated with the domain structure in the
many different componen(8,4]. These components are sev- lower leave, or if the bilayer is strongly asymmetric, so that
eral species of lipids, but also include many kinds of memypne leave consists only of a single component. In these
brane proteins. In order to understand the role of the variougases, the bilayer can be described by the same model as
components in biological membranes, model systems haV@mponed for monolayers.
been developed for studying pure lipids, lipid mixtures, and |n, this paper, we study the effect of phase separation in a
reconstituted lipid-protein mixtures. . more complex topology, in which two membranes are con-
The presence of several components in a membrane leagdgcted by a lattice of passages. For homogeneous mem-
to the possibility of lateral phase separation. The moleculegrgnes.  this type of topology has been observed in
demix and form domains, in which one or more components.-agtenoid” lamellar phaseq28-30 of block-copolymer
are enriched. Two-component mixtures have been studieghixtures and in multilamellar vesicles of phospholipid mem-
experimentally in considerable detail for monolayers at theyraneq31,37.
air-water interface. In particular, mixtures of phospholipids |t js important to note that phase separation and domain-
and cholesterol show clear fluid-fluid coexisterbetl, and  induced shape transformation strongly affect the functions of
phase diagrams have been determifild The case of two- piomembraned3,33,21,8,9 Here, a change of the mem-
component bilayers is more complicated. Although there igyrane composition seems to be a very effective way of vary-
strong evidence for cluster formation on small length scalegyg membrane shape. This change in composition is not nec-
[8,9], the evidence for macroscopic phase separation is stibssarily due to an exchange of molecules, but can be often
rather indirect[10-15. Fluid-fluid coexistence could also more easily achieved by an adsorption of polymers or pro-
occur between a protein-rich and a protein-poor phase Qfins, which change the local spontaneous curvature of the
membrane proteins embedded in a homogeneous amphiphiigemprane. A well-known example for such a process is the

layer[16,17; a similar two-phase coexistence may be foundtormation of vesicles after adsorption of a clathrin coat onto
in mixtures of lipids and polymers with lipid anchors 4 planar membrangs4].

[18,19.

Since the composition and shape of a membrane are
coupled locally, phase separation leads to domain-induced
shape changes or shape transitions. The effect of phase sepa-
ration on the shapes of almost planar membrdi26s-22 The system we investigate is a fluid membrane composed
and of vesicles of spherical topolo§#3—27 has been stud- of two different types of molecules, which have a strong

tendency towards phase separation. The membrane forms a
square lattice of passages of lattice constgnsee Fig. 1.
*Permanent address: Institute of Physical Chemistry, PolisiThis is the same topology which is found in the doubly pe-
Academy of Sciences and College of Science, Kasprzaka 44/52iodic surfaces of constant mean curvature, which were first
01-224 Warsaw, Poland. studied by Lawsor{35]. Indeed, in the limit of a single-

II. MODEL FOR TWO-COMPONENT MEMBRANES
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whereo=(o?,0?) defines the internal coordinate system of
the membrane, anB(o) describes the position of a mem-
brane element in the embedding space. In @g. g(o) is
the determinant of the metric tensay;;(o)=dJR(0)/
da'-dR(a)ldd!, andH(o) the local mean curvature: de-
notes the bending rigidity ant is the line tension of the
domain boundary. The local spontaneous curvature
Ho(o|S®,S®) depends on the domain structure on the
membrane; it is constant within each domain efand g8
components, withH o(o| (9, S) = h{" for all points on the
surface which are part &, whereye{a,B}.

For simplicity, the bending rigidity« and the Gaussian
rigidity kg are assumed to be independent of the local com-
position. Since the curvature ener(y forces the mean cur-
vature to be smooth at the domain boundd@7], a
Gaussian-curvature term in the Hamiltonian would contrib-

FIG. 1. Lattice of passages with different domain morphologies.ute a constant to the energy, according to the Gauss-Bonnet
(@ (inverted ring morphology ¢=0.932), (b) (inverted caplet  theorem for periodic surfaces; such a term is therefore omit-
morphology @=0.113). The spontaneous curvatures of the twoted here. The line-tension integral is taken along the bound-
components aréh{”=1.2 (dark and Lh{”’=0.4 (light), respec-  ary which separates different components of the membrane.
tively; the scaled line tension ¥L/x=10""*. The basic length and energy scales for the problem are set

by the lattice constant and the bending rigidityk. It is
important to note that no surface-tension term appears in Eq.
component membrane, our membranes take the shape of th®, SO that the area of the membra@ad also the enclosed
Lawson surface. The molecules can demix and form cohe0lume is not constrained.
ent domains of one component with well-defined boundaries.
We consider two types of domains. A domain may be lo- Il. NUMERICAL METHODS

cated inside a passage, forming a ring around the passage; In order to describe the membrane shape in the case of a

see Fig. 1a). We call this a “ring” configuration. A domain complex tobology. we use the implicit representation
may be also located outside a passage, in the regions of the P pology. P P

membrane which are approximately parallel to the midplane w(x,y,2)=1—B(x,y)Q(2)=0, )
between its upper and lower leaves, forming a roughly cir-

cular caplet; see Fig.(th). We call this a “caplet” configu-  where Q(z)=0 is a symmetric “weight function,” which
ration. The caplet configuration is analogous to dropletequals unity az=0, decays strictly monotonically with in-
phases observed in bulk liquidsxcept that the space dimen- creasing|z|, and vanishes in the limit of large|. This an-
sion is 2 rather than)3 satz can be most easily understood by identifying,y,z)

At sufficiently low temperatures, the phase-separated dowith the concentration difference of oil and water in a ternary
mains consist almost exclusively of a single component, andystem, and the membrane with an amphiphilic monolayer.
the interface between the domains is very sharp. This is th&hen, w(x,y,z)>0 on one side of the membraréne “oil
strong-segregation limit we want to investigate in this paperside”) and w(x,y,zZ)<0 on the other sidethe “water
since the effect of phase separation on the membrane shapiele”). For a point &,y) in the midplane withB(X,y)
is most pronounced in this case. The strong-segregation limi1, w(X,y,z)>0 for all z, so that there is no membrane
has been investigated in Ref&3,24,24 for vesicles and in  present; such a point is located inside the “oil channel”
Ref.[22] for almost planar membran¢36]. At higher tem-  through the passage. For a point wif{x,y)>1, on the
peratures, the components begin to mix inside the domainsther handw(x,y,z)<0 for small|z|, but w(x,y,z)>0 for
until the two-phase coexistence vanishes in a critical point.large |z|. The choice of the weight function in Eq2) is

The molecules composing the mixture are characterizedrbitrary, and does not affect the shape of the membrane
by the tendency to form membranes of locally constant meaafter minimization. We takeQ(z)=1/cosH(z), so that the
curvature. This behavior is modelled by coupling the localmembrane is located at
composition to the local mean curvature. In the limit of large
radii of curvaturelcompared to the thicknesshe membrane coshz)=yB(x,y). 3
can then be approximated by an infinitely thin “mathemati-
cal” surface with its shape determined by the curvature en©Our choice of the weight function is motivated by the form
ergy of the equation for the catenoid minimal surface, which is

(b)
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recovered from Eq(3) for B(x,y) =x?+y?. The membrane IV. RESULTS
is symmetric with respect to the=0 plane by construction.

For surfaces described by the Monge representdBpn ) o
with o=(x,y) andR(o)=(x,y,z(x,y)), the determinant of The existence of doubly periodic surfaces of constant

the metric tensor is given by(x,y) = V1+|Vz(x,y)[% and Mean curvature was proved by Lawd@5] almost 30 years
the mean curvature ?s by(x.y) V2eey) ago, but their properties have not been studied in much detail

so far[38]. As a result of the periodicity, the integral of the
Gaussian curvature within a unit cell is constant and equal to
Vz(x,y) — 4. Thus the Euler characteristigs= [ KdS27 and ge-
1+]Vz(x y)|2' 4 nusg=(2— x)/2 are appropriately-2 and 2 for this family
' of constant-mean-curvatuf€MC) surfaces.
] ] The results of our numerical calculations done with the
In order _to describe a square Iattl_ce of passages by EQurvature energy(1) with hg“)=hgﬁ)=h0 and \=0 agree
(3), B(x,y) is expanded into the Fourier series very well with the exact predictions. The integrfk(H
—hy)2dSalready vanishes within the numerical accuracy for
NN 2w 31 Fourier modes in the Fourier expansi®, indicating
B(x,y)=a0+2 ai_z cos(Tk}')-r), (5)  that the proposed parametrization works remarkably well for
=1 =t one-component membranes. Surface shapes obtained with
our parametrizatiori3) and(5) are shown in Fig. 2.
wherer=(x,y), N is the number of Fourier amplituddqj) For small mean curvature, the surface shape resembles
are the reciprocal lattice vectors, ah is their number in  two planes, which are connected by a square lattice of nar-
the ith shell. Here, a shell is the set of reciprocal lattice"™OW passages; compare Figap The passage radius and the

vectors of the same length, which are related to each other jjanes separation become smaller and smaller with decreas-
symmetry operations characteristic for a given lattice. Nd"9 mean curvature, and finally merge into a single plane for

- (i). : ; Lho=0. When the mean curvature is increased the mem-
sin(2m/L)kj” 1] terms appear in the expan&(ﬁ) because rane ultimately deforms into a square lattice of touching
we assume the full symmetry of the square lattice. We wan

i hasize that h a choi kes th pheres at hy=2. However, this transformation into touch-
0 emphasize that such a choice B(x,y) makes the mem- ing spheres is quite complicated. Hohy "2, a membrane

brane smooth at the unit cell boundaries by construction. - gnane s obtained, which is different from touching spheres.
The shape of the domain boundary is written in cylindri- Thig shape develops smoothly as the spontaneous curvature

A. Lattice of passages for one-component membranes

2H(x,y)=V-

cal coordinatesg, 6,2) as increases td_hy=2.3; compare Figs. 3 and 4. Therefore,
there must be a second branch of CMC surfaces, along which
N, this shape of maximumLhy transforms into touching
p(0)=po+ 21 p; cog4i0), spheres. This behavior is, in fact, very similar to the behavior
=

observed for triply periodic CMC surfaces in the limit of
“large” Lhg [39]. The quality of the parametrizatigB), (5)

z=cosh [ VB(p(6)cod 0),p(8)sin(9))], (6)  for the extremal values of the mean curvature decreases due
to the difficulty in describing very narrow neck&hich ap-

- . . pear in both limit$ with a limited number of amplitudes in
where the coefficientg; for i=0, ... N, describe the local the Fourier expansion.

radius of the domain bpundary. S.UCh a parametrization guar- The properties of the doubly periodic Lawson surface can
antees' that the c.jom.am boundarles have fourfolq symmet%e characterized quantitatively by the volume and surface
The origin of cylindrical coordinates is located either at thearea per unit cell, and by th@rientation-dependentadius
middle (for ring morphology or at the corner(for caplet of the passage ir11 the=0 plane. The results for different

morphology of the unit cell; compare Fig. 1. . _ i
With the parametrization of the membrane and domainican curvatures in the range &Bho=2.3 are shown in

; ' Figs. 3 and 4. The volume per unit cell, the surface area, and
_bour_ld_ary shap_es given by EqS) and(E_S),_ the functional 1) the radius of the passage are all found tonlmamonotonic
is minimized with respect to the coefficierasand p; under

. o functions ofLhy. Another interesting quantity is the passage
=ga)/(gla) . 0
the constraint of constant compositiogp=S"*/(S shape in thez=0 plane. For the range of mean curvatures

tJ\rNS ), e, thf r‘."‘t'?( oftthe Slirficz a_reas}hoccupl_ed_ byt_theo<|_h0$ 1.2, the passage is almost exactly circular; it begins
0 components IS kept constant during the minimizationy, e, jjate appreciably from a circle for higher mean curva-
The topology of the membrane is not allowed to change W'tk{ureS' see Fig. 3
composition. The number of cqefficienp; 'is always the In 'our study of two-component membranes we have cho-
same and equal to 5. Although it is sufficient to use a fewsen the spontaneous curvatutes{®=1.2 andLh{’ = 0.4
cogfﬁmgntsai to obtain good approximation of global prop- Jor each component; these spontaneéus curva’?ures ére sig-
ertl_es(hke total surface area, domain-boundary I_ength, an nificantly different, but not too close to the extremal values
radius of the_passagthEO), the accurate calculation of the of Lhy. The shapes of constant-mean-curvatures surfaces
local properties of the membrarigke the_ local mean curva- characterized by these two values.df, are shown in Fig. 2
ture and thus the curvature energgquiresN to be large. 0 n
We have performed calculations for 32, 49, 66, and 89 coef-
ficientsa; . These numbers are chosen to include all shells
with reciprocal lattice vectors of lengths less or equal to 8, The behavior of periodic one-component membranes,
10, 12, and 14in the units of 27/L), respectively. which do not change their topology, is totally governed by

B. Role of a line tension
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FIG. 2. Shapes of one-component membranes for different spontaneous curv@utgs,=0.4, (b) Lhy=1.2, (c) Lhg=1.9.N=49
Fourier shells have been used in the expang§®n

the bending energy. For two-component membranes the lineompared to the curvature energy, the membrane adapts a
tension begins to play an important role and the membranshape which reduces the lengthof the domain boundary at
shape is the result of competition between the bending erthe cost of the curvature energy. If the line tension is suffi-

ergy and line tension. For line tensions which are “large” ciently large, the boundary length will shrink to zero, which
causes budding of the domaifis the caplet morphology

[21]. On the other hand, when the line tension is small com-
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FIG. 3. Passage radii in the=0 plane for one-component FIG. 4. Surface area) and volume [d) of a unit cell for

membranes as a function of the scaled spontaneous cunlidiyre  one-component membranes as a function of the scaled spontaneous

Circles (O) represent the passage radius along (t®, squares curvatureLhy. The solid square®) and circle @) denote the

(O) along the(11) direction. The stars denote the limiting values limiting values for Lhy=0.0 (plane and Lhy=2.0 (touching

for Lhy=0.0 (plang andLhy=2.0 (touching sphergsThe dotted spheres The value of the surface area for touching spheres is

lines show plausible interpolations between the calculated(ffata =3.1415... and is noshown.N=49 shells have been used in the

N=49 Fourier shellsand the limiting shapes. Fourier expansion.
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pared to the curvature energy, the membrane adapts the be 0.3
shape to minimize the curvature energy at the cost of the
length of the domain boundaries. In the weak—line-tension,:_\cI
limit the membrane shape is mainly determined by the bend-
ing energy, similarly as in the case of one-component mem-
branes.

We have investigated both regimes of weak and strong
line tension, with the main focus on the limit of weak line 0o |
tensions. In order to estimate the borderline between thes
two regimes, we have performed calculations for different
LM/, increasing\L/« in each step by an order of magni-
tude from\L/k=10* to A\L/k=10. The line tension be- 015 |
gins to influence the membrane properties Xar/ k=101
and becomes significant farL/«=1. A line tension of the
order ofA\L/k=10 already leads to budding for caplet mor-
phologies. For example, the passage radius for the ring mor %' 5 0o 0.4 0.6 0.8 1
phology with $=0.1 changes fronR/L=0.132 for AL/« o
<10 % to R/L=0.123 forAL/x=10"* andR/L =0.085 for
AL/x=1.0. The effect of the line tension is weaker for larger
values of¢; compare Sec. IV G below. Other properties like
surface are® and domain perimeter’ behave similarly.

Finally, we have considered membranes withnstant
spontaneous curvature, i.eh{”=Lh{P=Lh,, and the line
tension\L/x=10*, with the domain boundaries located in ) _
the z=0 plane. This corresponds to two-component memJeneous memb.rane discussed in Sec. IVA. In the case of
branes(in the limit ¢— 0), where both components have the ""g morphologies, on the other hand, approaches the
same spontaneous curvature, but do not mix. The curvatul§ngth of the neck perimeter in tize=0 plane, still causing a
energy is found to change fror&,/x=6.97x10"° (for deformation of the membran@epending, of course, on the

AL/Kk=0) to Ey/k=7.31x10"° for N=49 andLhy=0.4.  Value of the line tension

0.25

O—Oring
®—e@ inverted ring
Oo—0 caplet

=—=a inverted caplet

FIG. 5. Passage radius in tke 0 plane for different morpholo-
gies of two-component membranes as a function of composgion
(for N=49 Fourier shells The stars denote the values for pure
membranes, with.h{*=1.2 andLh{® =0.4. The scaled line ten-
sion isAL/k=10"%.

Based on these calculation we decided toniséx=10"% in (Fﬁ())r two-component membranes wilhhg“)_:_ 1.2 and
weak-line-tension limit and L/«x=1 for the case of a large Lhg”=0.4, within the whole range of compositions and for
line tension. all types of configurations, the passage shape inzth@

symmetry plane is almost ideally circular, similarly as it is
C. Shapes of two-component membranes: Weak line tensions O Pure membranes. While for one-component membranes
_ the passage radius varies with the mean curvature, for two-
_Each of the two components can form closed domaingomponent membranes it varies with composition. It turns
within a membrane composed of the other component. Sincgyt that even a small amount of the second component
we consider two domains morphologigsigs[see Fig. 18]  causes the shape to change. For all configurations, the pas-
and capletysee Fig. 1)]), there are four possible configu- sage radius increases monotonically with composithorp-
rations of domains in the membrane. proaching the values characteristic for pure membranes for
Naively one might expect that the component coupled 1040 or ¢—1; this indicates that the line tensidrn/x
the smaller spontaneous curvature preferentially occupies the 10-4 indeed does not influence the membrane shape; com-
flatter parts and the component cqupled to the higher CUNVgsare Fig. 5. It is quite unexpected that for ring and caplet
ture the more strongly curved paiis the neck of the pas- orphologies, the radius is almost the same for the same
sage of the membrane. Thus, two conflguratlons should becompositiond;, and is roughly proportional to the composi-
favored, namely, when componenmt (with Lh§”=1.2)  tion. One might expect that the location of a domain inside
forms rings or componeng (with Lh{’=0.4) forms ca- the passage would have a stronger effect on its radius than its
plets. We call these two configurations “caplets” and |ocation in the membrane segments with positive Gaussian
“rings,” respectively, while the other twgwhere compo- curvature, since it seems to be easier to deform the passage
nenta forms caplets and compone@tforms ringg are de-  than the “flat” parts of the membrane. However, we observe
noted “inverted caplets” and “inverted rings.” Surpris- that for the same composition, caplet and ring morphologies
ingly, it turns out that for the studied topology the location of — and similarly inverted caplet and inverted ring morpholo-
domains is not determined by the curvature energy, becausgies — show only very small differences in the size of the
the membrane can equally adapt an optimal shape for any @fassage radius.
these four configurations. It is interesting to note that two different mechanisms
It is convenient to examine the membrane properties as have very similar effects on the passage radius. It can be
function of compositiong, since ¢=S9/(S(+S#) is  varied either by changing the spontaneous curvature of a
well defined and easily accessible in experiments. When thene-component membrane or by changing the composition
composition decreases to zero, for caplet morphologies thef a two-component membrane.
domain degenerates into a point, the boundary lerAgtan- The surface area of the membrane behaves similarly as
ishes, and membrane shape approaches the shape of a hortiee passage radius. Figure 6 shows the surface area divided
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21 o—o ring
®—=e inverted ring
Oo—a caplet
=—a inverted caplet *
1.9 : : ‘ ‘

0 0.2 0.4 0.6 0.8 1

FIG. 6. Surface area for different morphologies of two-
component membranes as a function of compositipr(for N
=49 Fourier shells The stars denote the values for pure mem-
branes, with_h{®=1.2 andLh{?)=0.4. The scaled line tension is
NL/k=10"%

(b)

by the latti tant d. For ri d let fi FIG. 7. Shapes of two-component membranes, which show the
y [he latuce constant squared. For ring and caplet con 'gud formation of the domain boundary for large domaiasinverted

rations the value of surface area changes monqto_nically andhg morphology ¢=0.563), (b) inverted caplet morphologyd
a_Imost linearly between the values characterlstlc_ for th":':0.371). The spontaneous curvatures of the two components are
single-component membranes. The surface area differs onyhga):l'z (dark and Lh{p)
slightly for ring and caplets morphologies of the same comMyine tension is\L/x= 102,
position. The behavior for inverted ring and inverted caplet
configurations, on the other hand, is quite different and doeter of the passage is also the center of the domain boundary.
resemble the behavior of pure membranes as a function af/hen it is far from the unit-cell boundary, it is almost per-
spontaneous curvatufeompare Fig. # however, the non- fectly circular. However, when it approaches the unit-cell
monotonic behavior is more pronounced here. The value dboundary, the periodicity of the lattice enforces deviations
the surface area increases above the values for either onem a circular shape. These deformations are the larger the
component membrane, and reaches a maximum approxéloser the domain boundary approaches the boundaries of the
mately at the compositiog=0.4, compared td.h,=0.54  unit cell; see Fig. @&). For caplets and inverted caplets, the
for single-component membranes. The surface area for thehape of the domain boundary is influenced both by the unit-
inverted configurations is larger than for the other two sincecell boundariesandby the passages; see Figb) The closer
the component outside of the passage has higher mean cuhe domain boundary approaches the inner part of a passage,
vature. the larger become the deviations from a circular shape. It is
The phase separation within the membrane gives it moréteresting to note that in the limitg—0 and$— 1, meta-
flexibility to adapt various shapes. One may speculate thastable configurations exist, for which the minority compo-
phase separation within a membrane provides a mechanisnent forms a narrow strip along the cell boundaries.
to activate biological functions if these functions depend on Figure 8 shows the change of length of the domain

=0.4 (light), respectively; the scaled

the membrane shap8,33]. boundary as a function of compositiah. For each of the
considered morphologies there is a range of compositions,
D. Shape of the domain boundary for which it has the shortest domain boundary. With increas-

. . ing ¢, we find the sequence of inverted capletsrings —
Unlike the surface area and passage radius, the length aiderted rings— caplets for the morphology of minimal do-

sfhape of the domain boundaries are unique features of MU ain perimeters. Here, ring and caplet morphologies have
ticomponent membranes. For a flat membrane, the optlmq e largest ranges of stability

shape of the domain boundary is a circle, since it minimizes ’
its length for a given surface area. However, for “complex”
membranes the shape of the domain boundary strongly de-
pends on the membrane topology. There is a competition It has been demonstrated in Sec. IV A that in the lattice-
between the two processes of forming the shortest domaiaf-passages geometryoae-componennembrane can easily
boundary at the cost of the curvature energy and adjusting itadapt to a shape of constant mean curvature. For membranes,
shape to the topology of the membrane at the cost of linevhich consist of pieces of different spontaneous curvatures,
energy. The presence of passages and periodicity of thtae shape adjusts itself such as to minimize the curvature
membrane strongly influences the shape of the domaienergy and the length of the domain boundary simulta-
boundary. For ring and inverted ring morphologies, the cenneously. In the limit of zero line tension, this might, or might

E. Piecewise constant-mean-curvatures surfaces
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B— inverted caplet 14 ) , .
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1 : : . . x/L
0 0.2 0.4 0.6 0.8 1
0 FIG. 10. Local mean curvature as a function of the distance

along a line through the center of the passage in(1®g direction.

FIG: 8. Length/ pf the domain_poundaries for different mor- The data are obtained for the ring morphology with=0.29 and
phologies as a function of compositiah The parameters are the iterant number of Fourier shells, as described in the text. The

same as in Fig. 5. other parameters are the same as in Fig. 5.

not, lead to surfaces of piecewise constant mean curvaturegier series with a finite numbeX of Fourier modes. The
We want to emphasize that the answer to this question idecrease oF,L/(x/) with N suggests that the energy for an
nontrivial, since the boundary conditions for the membranénfinite number of the coefficients; can vanish if the mean
pieces at the domain boundary, as discussed in Sec. Il, ingurvature of the surface behaves like a step function chang-

pose strong constraints on all possible shapes. _ing from Lh(()“) to thﬁ’) along the domain boundary, and
Our data show that the free energy depends roughly linthe rest of the surface is characterized Hby(o)
early on the lengtly” of the domain boundarfor fixedN).  — Ho(o|S®,S®)). A plot of the local mean curvaturgee

This is demonstrated in Fig. 9, where we plot f#imen- g 10 supports this hypothesis, since it shows tfiathe
sionles$ curvature energy — without the contribution of the gevyiation from the spontaneous curvature occurs mostly at
line tension in Eq.(1) — per unit boundary length, the domain boundary(ji) the local mean curvature remains
EpL/(x/). The concentration dependence of this quantityyery close to the spontaneous curvature on the rest of the

shows some oscillations around the average value, the arremprane, andiii) for larger N, the boundary region be-
plitude of which decreases with increasiNg More impor-  somes narrower.

tantly, the increase dfl causes a decrease of the curvature Eqr a membrane with a jump in the mean curvature, the
energy. Both of these results can be attributed to the approxiourier amplitudes; should decay as a function of the wave
mation of the discontinuity of the mean curvature by a FOU'numberlk(‘)| with a power law. It is shown in the Appendix
that a discontinuity of the mean curvature along a line im-
plies the asymptotic behavior

045 | a;~ kM| ~7"2 (7)

E,L/x! * 10°

for largek". This result can be used to determine the con-
tribution of the domain boundary to the bending enegy
The calculation described in the Appendix indicates that
should decrease as

0.35

Ep~ 1/kM)], (8)
025

wherek™ is the length of the largest reciprocal lattice vec-
e—ae inverted ring tor.
o—a caplet We have therefore plotted the energy — averaged over all
. ,  W——sinverted caplet calculated concentrations — as a function of the inverse
0 0.2 0.4 0.6 0.8 1 length of the largest reciprocal lattice vector for a given set
¢ of coefficientsa; to test this hypothesis. The data are indeed
i .

FIG. 9. Curvature energy per unit length of the domain bound-consistent with a linear ¥ dependence. A linear extrapola-
ary for different morphologies as a function of compositignfor ~ tion then gives a values dE,L/(x/)=(1.5=9.0)X 10°°
N=49 (top) andN= 66 (bottom). The parameters are the same as in (fings) and E,L/(x/)=(6.5=9.0)x10"° (caplets for the
Fig. 5. reduced curvature energy in the limitNt~ 0. This result is

0.15
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very interesting from the point of view of differential geom- 2
etry. It suggests the existence of piecewise CMC surfaces ir

the limit L\/x—0. The membranes shown in Fig. 7 would ‘o O0—0ring ,

be examples of doubly periodic piecewise CMC surfaces. x :g‘:;z:’d rng
The surfaces we have obtained can of course be only ap ¥ 15 =—m inverted caplet
proximations to exact piecewise CMC surfaces. w

F. Phase transitions

If the membrane forms a piecewise CMC surface in the
limit of zero line tension, it is only weakly deformed by
sufficiently small but finite line tensions. Here, the length
of the domain boundary of the piecewise CMC surface pro-
vides an upper limit for the total energy, since the energy can
only decrease when the membrane shape is allowed to rela
under the effect of the line tension. The weak-line-tension
limit is characterized by the curvature energy being much

0 0.2 0.4 0.6 0.8 1

smaller than the line energy. )
Although the line tension is very small, the main contri- _ _
bution to the energyl) still comes from the vicinity of the FIG. 11. Curvature energy for different morphologies as a func-

domain boundary. The phase behavior can therefore be déon of compositiong (calculated forN=32 Fourier shellsin the
duced by considering the domain perimeteshown in Fig.  case of large line tension. The parameters lang” = 1.2, Lh{f)
8. The increase of’ with composition for rings and the =04 andiL/xk=1.
decrease for caplet lead to a phase transition between these
two morphologies. This transition takes place near the poingssary to consider also the case of larger line tensions. As
where the boundary lengths of these configurations are thexplained in Sec. IV C above, we consider the catéx
same. The caplet and ring configuration at the phase transi 1, for which the line tension is too small to promote bud-
tion are shown in Fig. 1 of Ref40]. The same mechanism ding, but can have a strong effect on the passage shape, e.g.,
leads to the phase transition between inverted caplets areh its radius. It is important to note that although the line
inverted rings. It takes place for somewhat smaller compositension is already close to its value at the budding transition,
tion ¢. the bending energy is about two orders of magnitude smaller
These phase transitions are first order, since the shape #fan the line energy, compare Figs. 11 and 12. Surprisingly,
the domain boundary does not vary continuously at the tranthe qualitative behavior for strong line tension is similar to
sition. Also, the total surface area of the membrane jumps dhe weak-line-tension case; however, there are quantitative
the transition. However, no noticeable changes of the radiudifferences.
of the passage at the phase transition have been observed. The phase behavior for weak and strong line tensions is
Another type of phase transition is between rings and inqualitatively the same. There are still three phase transitions,
verted rings and also between caplets and inverted caplets. in order of increasing concentration between inverted caplets
this case the domain type is unchanged but the componengd rings, rings and inverted rings, and inverted rings and
exchange their locations. The component which is inside theaplets; see Fig. 12. The phase transitions are just shifted a
passage migrates to the “outer” part of the membrane, and
vice versa. - T y y
There are also phase transitions, where the component
change their locationsnd the domain type changes from 6 | .
ringlike to capletlike(or vice versa Such transitions take
place between inverted caplets and rings and also betwee—
inverted rings and caplets. The reason for these transitions i<
as follows. For small domain sizes, the domain boundary is
always shorter for caplet than for ring morphologies, since it
may shrink to zero wheg— 0, while for rings it is bounded
from below by the passage radius. For larger domains, ca
plets have larger” because the shape of the boundary is
deformed by the passage more strongly than for the ringlike 2 t 0—0ring .
domains. Thus, large ringlike and small capletlike domains —@ inverted ring
are favored, which results in these transitions. o—=o .Cap'ftt J caplet
It is interesting to note that in the weak-line-tension limit, nveried caple
the sequence of the phase transitions and their location i . . . .
independentf the strength of line tension. 0 0 0.2 0.4 0.6 0.8 1
o

FIG. 12. Length/” of the domain boundaries for different mor-
In order to obtain a complete picture of the behavior ofphologies as a function of compositiah for the case of large line
two-component membranes of complex topology, it is nectension\L/k=1. N=32 Fourier shells have been used.

G. Two-component membranes: Strong line tensions
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o o
FIG. 13. Passage radius in tlze=0 plane for different mor- FIG. 14. Variance of the domain radius, projected into the

phologies as a function of compositiop. The stars denote the =0 plane, for different morphologies as a function of composition
values for pure membranes. The parameters are the same as in Fify. The parameters are the same as in Fig. 11.
11.

vanishing line tensions. This raises the question of whether
little in_concentration compared to the weak-line-tensionc|c surfaces are also possible for two-component, axisym-
case. This is due to the decrease of the lengtlof the  etric vesicles of spherical topology.
domain boundaries for rings and inverted rings. The caplet |; h55 peen argued in Rei26] that for vesicles of fixed

mqr?hglogljles a:jre I?ssdseglsmv_e to stronger line te”S'Qg- ng urface area anzeropressure difference between inside and
IS Inturtively understandablé, SInce as Soon as a consiterabg,siqe in three dimensions, the curvature energy is not uni-

deformation of a caplet becomes favorable to decregse f P . e "
. ; ormly distributed on the surface — in contrast to “vesicles
formation of buds already takes ovel]. The deformation rﬁ losed lineg in two dimensions, where the curvature distri-

of a passage, on the other hand, costs much less bendi tion is uniform. However, a careful analysis of this argu-
energy, since for a given spontaneous curvature there is t?i : . ' ut-anaty 9
ment shows that there is one exception: if the mean curvature

whole family of CMC surfaces with different pore radii—as . ) ;
can be seen most easily for catenoidlike passages of Ze;a|dent|cal to the spontaneous curvature everywhere, piece-

mean curvature. Finally, we want to mention that it is easieiViS¢ CMC vesicles do exist in three dimensions. Since the

to deform caplet-shaped domains, when the domain consis&ape and size of the vesicle are essentially determined by

of the component with the larger spontaneous curvature. the spontaneous curvatures of the two components in this
The new feature, which appears in the case of strongetase, the surface area has to be considered as an uncon-

line tensions, is that for the ring and inverted ring morpholo-strained variable.

gies, the passage radius no longer converges to the value of The building blocks for the construction of axisymmetric,

the corresponding one-component membrane in the limitpiecewise CMC vesicles are pieces of sphere, catenoid, cyl-

¢—0 and¢— 1, respectively. The effect of the line tension inder, unduloid, and nodoid41]. These are the only

on the membrane shape is larger when the domain boundagpnstant-mean-curvature surfaces of rotational symmetry.

is located closer to the center of the passage. This effect fFhe simplest examplet2] of such a piecewise CMC vesicle

particularly pronounced in the case of inverted rings, whergs a cylinder of arbitrary length and radig=1/(2h{"),

the dependence of the passage radius on the concentfation;|osed at the ends by hemispheres of radRys- 1/h§,'3).

even bepomes nonmonotonic; see F_|g. 13. 59"(.)'6’ the Thus, a capped cylinder is only possible for the one ratio of
pore radius nowdecreasesvith increasingeé. A similar be- (B) 1 (a) — n
spontaneous curvaturelg”/hy* =2, but for all composi

havior is also found for the surface area. : S i ) :
For stronger line tensions, the shape of the domain boundions. Similar constructions can be made when the cylinder is

ary is expected to be more circular than in the weak-line/€Placed by an unduloid, nodoid, or catenoid. For two given
tension case, in order to minimize its length. However, theSPontaneous curvatures, the radius of the capping spheres is
shape still deviates considerably from being circége Fig.  fixed to Re=1h{". The pore radiu®, of an unduloid or
14), with larger deviations for larger domain sizes. This re-catenoid can vary from zero to [E/ng“)]. In the case of
sult should be compared with the data given in Fig. 3 of Refcatenoid(i_e_, for hg“):o) andunduloid the connecting sur-
[40] for AL/k=10"*; the difference is quite small. The do- face cannot be matched smoothly to the capping spheres if
mains of inverted configurations deviate more from circularihe pore is too large; this implies that the pore radius must be
shapes since they are more strongly influenced by the pagsss than H{®). In the case of aminduloid the additional
sage size, which is larger for these configurations. condition applies that its maximum diameteR2must be
larger than the sphere diameter. SirRe+Ry=1/h{* for
unduloids [43,44], this condition implies that @R,

We have shown in Sec. IV E that membranes of complex<1/h{® —1h{). An connecting unduloid is therefore only
topology can form piecewise CMC surfaces in the limit of possible ifh{¥)>h{*). Finally, in the case of modoid the

V. PIECEWISE CMC VESICLES
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different, nonzero spontaneous curvatures of the components
and the complex membrane topology considered, macro-
| i scopic phase separation is unfavorable. Instead, microphase
RN separation occurs, which leads to a large variety of different
domain patterns on the membrane.

The main results of our investigation are as follows. First,
the shape of the membrane depends on the composition
and on the type of the domain structure. While some domain
morphologies lead to an almost linear dependence of the
passage radius o#h, for example, other domain morpholo-

N gies show a honmonotonig dependence. Second, the shape
of the domain boundary is strongly influenced by the topol-
ogy of the membrane. For small compositions, the domains

ST are almost circular; with increasing composition, they be-
(@) (b) (© v come increasingly noncircular in order to adjust to the pas-
age and to the periodicity of the doubly periodic lattice.
vesicles. Two spheres of the same radiys- 1/h{® are connected hird, the existence of smooth, doubly periodic piecewise
smoothly by an unduloid surface of mean curvat®, with constant-mean-curvature surfaces has been conject.ured in the
h/h) = 1.22. () Small neck,(b) small caps, andc) broken up- limit of zero line tension. We have also show_n that piecewise
down symmetry. The dashed lines indicate segments of spheres afignstant-mean-curvature surfaces of spherical topology can

unduloids, which are not part of the vesicle surface; the domairP® constructed for zero line tension. Finally, first-order phase
boundary is indicated by arrows. transitions between the caplet, ring, inverted caplet, and in-

verted ring morphologies have been found. Here, the ring
and caplet configurations dominate the phase diagram for the
spontaneous curvatures employed in our calculation.

It is tempting to speculate that the mechanism of regulat-

FIG. 15. Examples of piecewise constant-mean-curvatur

minimal pore radius isRy=1/h{". Since R;—Ry=1/h{"
for nodoids[43], it is easy to show that nodoids can be

connecting surfaces only fd"éa)_?hgﬂ)' _ _ ing the size of passages by changing the composition of a
As a functl(_)n qf_ composition, th_e following picture ambrane may be used in cells or cell organel@§. A
emerges. For simplicity, we only consider the case of undupgsiple application of two-component membranes could be
loids, i.e.,hf”’>h{" . For smallg, two large spherical end  the crystallization of membrane proteins in CMC surfaces
caps are connected by a very small neck; see Fi@)19/ith  [47], where the enrichment of one component near the pro-

increasing pore radiusp initially increases, then decreases tein provides an extra degree of freedom for optimal hydro-
again until a limiting shape is reached, which consists of th)hobic matching 48,49,9.

semispheres with a band of infinitesimal width of the secon
component connecting their equators. k1, there is a
second class of solutions, which starts with an unduloid with
very small necks, which are capped by small segments of
spheres. With decreasinfy the endcaps get larger; compare  We thank J. Goos for providing the first version of the
Fig. 15b). Again, a limiting shapelof some finite ) is  program for minimizing the curvature energy of a lattice of
reached when the pore radius approaches the sphere radiusp#tssages. Helpful discussions with D. Andelman, W. Fenzl,
is clear from these arguments that in general only a limited. Goos, T. Kawakatsu, P. Lenz, R. Lipowsky, U. Schwarz,
range of compositions is accessible for such piecewise CM@nd M. Wortis are also gratefully acknowledged.
vesicles with fixed spontaneous curvatures. It is worth men-
tioning that similar shapes occur for a fluid bridging the gap
between two solid spheres in the case of complete wetting  APPENDIX: FOURIER SERIES OF A FUNCTION
[45] and for wetting on structured substrafé$]. WITH DISCONTINUOUS SECOND DERIVATIVE

One can also construct more complicated piecewise CMC ) . . ) ) )
vesicles, for example, by breaking the up-down symmetry For a scalar functiori(x) in onedimension with a jump
[see Fig. 1£c)] or by joining several surface segments of in its second derivative, its Fourier transfo[frm) depays as
different constant mean curvature, for example spheref(a)~q~* for large g. For a scalar functiorf(r) in two
unduloid-sphere-unduloid-sphere. Finally, one can imagindimensions, which is rotationally symmetric and has a jump
to construct toroidal vesicles made of several pieces of its second derivative along a circle around the origin, the
nodoids connected by pieces of spheres. Fourier transform reads

ACKNOWLEDGMENTS

VI. SUMMARY AND CONCLUSIONS

f zzfdrrfrJ r), Al
In this paper, we have studied the behavior of multicom- (@)=2m (M)J0(ar) A

ponent membranes of nontrivial topology within the frame-

work of the curvature model. These membranes have the

possibility of phase separation into twor more different ~ whereJy(x) is a Bessel function of first kind. In the limit of
phases at sufficiently low temperatures. As a result of thdargex, Jo(x) = y2/mx[cosk—m/4)+ O(1/x)], so that
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27 z=1f(r), with a discontinuity of the spontaneous curvature
f(aq)=2 FJ dryrf(r)cogar—m/4)  (A2) along a circle. The curvature energy reads in this case

for large g. The integral behaves like the one-dimensional P 2

Fourier transform of a function with a discontinuity in its Ep~« | dala“f(q)—Hoe(a)] (Ad)
second derivative, and therefore decaysgas. Thus, we

finally obtain

For a finite numbeN of wave vectors, we assunfiéq) to be

f C a3 the same as in the limi—e for q<A, but f(q)=0 for
(@~q "™ (A3) g>A. Then, the curvature energy becomes

This result can now be used to estimate the dependence of EbNKf dquo(CI)2~Kf dggqdfq 7~AL
the curvature energy on the largest wave vedtorConsider g>A A
an almost planar membrane in the Monge parametrization, (A5)
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