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Abstract 
One of the mainly interesting things of matroid theory is the representability of a 
matroid. Finding the set of all excluded minors for the representability is the solution 
of the representability. In 2000, Geelen, Gerards and Kapoor proved that 

( ){ }*

2,6 4,6 7 7 6 8, , , , ,U U F F P P− −  is the complete set of GF(4)-representability. In this 

paper, we show that 8P  is an excluded minor for GF(4)-representability. 
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1. Introduction 

Matroid theory dates from the 1930’s when Whitney first used the term matroid in his 
basic paper [1]. Matroid theory is a common generalization of linear independence of 
graphs and matrices. One of the mainly interesting things of matroid theory is the 
representability of a matroid. One problem of representability is to find the fields over 
which the given matroid is representable. The other problem is to find the excluded 
minors for which the matroid is representable over the given field. It was found the 
complete set of excluded minors for two or three element fields [2]-[5]. In 1984, Kahn 
and Seymour conjectured that ( ){ }*

2,6 4,6 7 7 6, , , ,U U F F P− −  is the complete set of ex- 
cluded minors for GF(4)-representability. Oxley showed that the conjecture is wrong by 
showing 8P  is also excluded minor for GF(4)-representability in his brief note [6]. 
Geelen, Gerarads and Kapoor proved that it is enough to add 8P  to the list of Kahn 
and Seymour [7]. It is not an easy problem to find the excluded minors for GF(q)- 
representability when q is more than 4. Instead, we have the conjecture by Rota that the 
number of excluded minors are finite for any prime powers q [8]. In this paper, we 
study the properties of minor and show that 8P  is excluded minor for GF(4)- 
representability deliberately. 
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2. Preliminaries 
2.1. Matroid 

Matroid theory has exactly the same relationship to linear algebra as does point set 
topology to the theory of real numbers. That is, point set topology postulate the pro- 
perties of the open sets of real line and matroid axiomatize the character of the in- 
dependent set in vector space:  

Definition 2.1. A matroid M is a finite set E and a collection   of subsets of E 
satisfying the following three conditions: 

(I1) ∅∈  . 
(I2) If X ∈   and Y X⊆  then Y ∈  . 
(I3) If X, Y are in   and X Y< , then there exists x Y X∈ −  such that  

X x∪ ∈  . 
By the definition, for a finite vector space V and for the collection of linearly 

independent subsets   of vectors of V, ( ),V   is a matroid. If ( ),M E=   is a 
matroid, M is called a matroid on E. Also E which is denoted by ( )E M  is called 
ground set of M and ( )M=   is called the set of independent set in M. A subset of 
E that is not in   is called dependent set. On the other point of view, matroid can be 
defined by abstraction of the properties of the cycles of a graph. Let G be a graph and 
let ( )E G  be the set of all edges of G. Also let   be the set of all cycles in G. Then   
has the following properties: 

(C1) ∅∈/  . 
(C2) If 1C  and 2C  are in   and 1 2C C⊂ , then 1 2C C= . 
(C3) If 1C  and 2C  are distinct members of   and 1 2e C C∈ ∩ , then there is 

member 3C  of   such that ( )3 1 2C C C e⊆ ∪ − .  
Now, let   be a subset of the power set 2E  of a finite set E. If   satisfies the 

conditions (C1), (C2) and (C3), then   is called the set of circuits of a matroid on E. 
Let   be the set of circuits of a matroid M. Then, the set   of all subsets of E which 
contain no member of   satisfies the independent conditions (I1), (I2) and (I3). Also 
for a matroid ( ),M E=  , the set ( )M  of all minimal dependent set M satisfies the 
three circuits conditions. Thus, the matroid defined by circuits is the same as the one 
defined by independent sets. We need two other definitions of a matroid.  

Definition 2.2. Let E be a finite set and r be a function from 2E  to the set of non- 
negative integers and satisfies the following conditions: 

(R1) If X E⊆ , then ( )0 r X X≤ ≤ . 
(R2) X Y E⊆ ⊆ , then ( ) ( )r X r Y≤ . 
(R3) If X and Y are subsets of E, then ( ) ( ) ( ) ( )r X Y r X Y r X r Y∪ + ∩ ≤ + . Then, r 

is called the rank function of a matroid M on E. Let M be the matroid ( ),E   and 
suppose that X E⊂ . Let |X  be { } | I X I⊂ ∈  . Then, it is easy to see that the pair 
( ), |XX   is a matroid. We call this matroid the restriction of M to X or the deletion of 
E X−  from M. It is denoted by |XM  or \M E X− . We define the rank ( )r X  of 
X to be the size of a maximal independent set of |XM . This function which is called 
the rank function of M satisfies the conditions (R1), (R2) and (R3). This function is 
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denoted by Mr  and ( )( )r E M  will be denoted by ( )r M . On the other hand, if r is a 
rank function of a matroid M, the set ( ){ } | X E r X X= ⊂ =  is the set of in- 
dependent set of M. Thus, the definition of a matroid by a rank function is equivalent 
to the definition by independent sets. One of the definitions of matroid is the one by 
closure operator. Throughout this thesis, by E means a finite set.  

Definition 2.3. Let cl be a function from 2E  to 2E  satisfying the following; 
(CL1) If X E⊂ , then ( )X cl X⊂ . 
(CL2) If X Y E⊂ ⊂ , then ( ) ( )cl X cl Y⊂ . 
(CL3) If X E⊂ , then ( )( ) ( )cl cl X cl X= . 
(CL4) If X E⊂ , x E∈ , and ( ) ( )y cl X x cl X∈ ∪ − , then ( )x cl X y∈ ∪ . 
Then cl is called the closure operator of a matroid M on E. Let M be a matroid on E 

with the rank function r. Define cl to be the function from 2E  to 2E  by  
( ) ( ) ( ){ } | cl X x E r X x r X= ∈ ∪ =  for all X E⊂ . Then, we can see that cl satisfies 

(CL1)-(CL4). On the other hand, if cl is the closure operator of a matroid M on E, then 
( ){ } |  for all X E x cl X x x X= ⊂ ∉ − ∈  satisfies the independent axioms and  

( ),M E=   is the matroid having closure operator cl. Thus, the four definitions of 
matroid defined by the above are equivalent. We can see that there are a lot of 
equivalent definition of matroid. We have to introduce one more definition of matroid. 
For a matroid M, the maximal independent set in M is called a basis or base of M. It is 
easy to see that every basis element has the same cardinal number. Let ( )M  be the 
set of all base element of M. Then, ( )M  has the properties; 

(B1) ( )M  is non-empty. 
(B2) If 1B  and 2B  are in ( )M  and 1 2x B B∈ −  then there is 2 1y B B∈ −  such 

that ( ) ( )1B x y M− ∪ ∈ . 
Conversely, let   be a collection of subsets of E satisfying the axioms (B1) and (B2). 

And let { } | for some I E I B B= ⊂ ⊂ ∈  . Then ( ),E   is a matroid having   as 
its collection of bases. If M is a matroid and ( )X E M⊂ , then we call ( )cl X  the 
closure or span of X in M, and we write this as ( )Mcl X . If ( )X cl X= , then X is 
called a flat or a closed set of M. A hyperplane of M is a flat of rank ( ) 1r M − . A subset 
X of ( )E M  is a spanning set of M if ( ) ( )cl X E M= . Let M be a matroid and 

( )* M  be ( ) ( ){ } | E M B B M− ∈ . Then, ( )* M  satisfies the following axiom 
which is equivalent to (B2): 

(B2)* If 1B  and 2B  are in ( )* M  and 2 1x B B∈ − , then there is an element 

1 2y B B∈ −  such that ( ) ( )*
1B y x M− ∪ ∈ . The matroid *M  having the set of all 

basis element B*(M) is called the dual of M. Thus ( ) ( )* *M M=   and ( )**M M= . 
Also ( ) ( )*E M E M= . The bases of *M  are called cobases of M. Similarly, the 
circuits, hyperplanes, independent sets and spanning sets of *M  are called cocircuits, 
cohyperplanes, coindependent sets, and cospanning sets of M. The next result gives 
some elementary relationships between these sets.  

Proposition 2.4. Let M be a matroid on a set E and suppose X E⊂ . Then 
1) X is independent if and only if E X−  is cospanning. 
2) X is spanning if and only if E X−  is coindependent. 
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3) X is a hyperplane if and only if E X−  is cocircuit. 
4) X is a circuit if and only if E X−  is a cohyperplane.  
Proof. 1) Let X be an independent set in M. Then, X B⊂  for some basis element B 

of M. Thus E B E X− ⊂ −  and ( ) ( )* *=cl E B E cl E X− ⊂ − , where *cl  is the clo- 
sure in *M . If E X−  is cospanning, then *E X B− ⊃  for some basis element *B  
of *M . It means that *X E B⊂ −  and X is independent set. 2) is deduced by applying 
1) to *M . 3) is obtained by the following equivalent statements; a) X is a hyperplane of 
M. b) X is a non-spanning set of M but X y∪  is spanning for all y X∉ . c) E X−  
is dependent in *M  but ( )E X y− −  is independent in *M  for all y E X∈ − . d) 
E X−  is a cocircuit of M. 4) is the one obtained by applying 3) to *M . 

□ 
Let’s remind of the finite fields. If F is a finite field, then F has exactly pk-elements for 

some prime p and some positive integer k. Indeed, for all such p and k, there is a 
unique field ( )kGF p  having pk-elements. This field is called the Galois field of order 
pk. When 1k = , ( )kGF p  coincides with p , the ring of integers modulo p. When 

1k > , ( )kGF p  can be constructed as follows. Let ( )h ω  be a polynomial of degree k 
with coefficients in p  and suppose that the polynomial is irreducible. Consider the 
set S of all polynomials in ω  that have degree at most 1k −  and have coefficients in 

p . There are exactly p choices for each of the k-coefficient of a member of S. Hence, 
kS p= . If we take p = 2 and k = 2 we get the field GF(4). Moreover, under addition 

and multiplication, both of which are performed modulo ( )h ω , S forms a field namely 
( )kGF p . In case of ( )4GF , we can take the irreducible polynomal to  

( ) 2 1h ω ω ω= + + . 
Let A be a matrix over a field F. Then, the collection of independent column vectors 
  of A satisfies the independent axioms of matroid. Thus, ( ),ColA   is a matroid 
and this matroid is denoted by [ ]M A , where ColA  is the set of all column vectors of 
A. 

Now, let G be a graph. Then ( )M G  is the matroid on the edge set ( )E G  with the 
set of all cycles of G as circuit. This matroid is called the cycle matroid of G. Two 
matroids 1M  and 2M  are isomorphic, denoted by 1 2M M≅ , if there is a bijection 
ψ  from ( )1E M  to ( )2E M  such that, for all ( )1X E M⊂ , ( )Xψ  is independent 
in 2M  if and only if X is independent in 1M . A matroid that is isomorphic to the 
cycle matroid of a graph is called graphic. If M is isomorphic to [ ]M A  for a matrix A 
over F, then M is called F-representable. In the sequel, by F we mean a finite field. 

We call an element e a loop of a matroid M if { }e  is a circuit of M. Moreover, if f 
and g are element of ( )E M  such that { },f g  is a circuit, then f and g are said to be 
parallel in M. A parallel class of M is a maximal subset X of ( )E M  such that any two 
distinct members X are parallel and no member of X is a loop. A parallel class is trivial 
if it contains just one element. If M has no loops and no non-trivial parallel classes, it is 
called a simple matroid or a combinatorial geometry. 

2.2. Uniform Matroid Um,n 

Let m and n be non-negative integers such that m n≤ . Let E be a set of cardinality n 
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and   be all subsets of E of cardinality less than or equal to m. This is a matroid on E, 
called the uniform matroid of rank m and denoted by nmU , . By definition, the set of 
basis ( ),m nU  of ,m nU  is { } | X E X m⊂ = , and the set of circuits ( ),m nU  is 
{ } | 1X E X m⊂ = + . 

2.3. Affine Matroid 

Now, we are going to define affine matroid. A set { }1 2, , , m
k F⊂v v v  is affinely 

dependent if 1k ≥  and there are elements 1 2, , , ka a a  of F, not all zero, such that  

1 0k
i ii a

=
=∑ v  and 1 0k

ii a
=

=∑ . It is easy to show that affine dependence of  

{ }1 2, , , m
k F⊂v v v  is equivalent to each of the followings; 

(Ad1) ( ) ( ){ } 1
11, , , 1, m

k F +⊂v v  is linearly dependent, where ( )1, iv  is the ( )1m + - 
tuple of elements of F. 

(Ad2) { }1 2 1, , m
k F− − ⊂v v v v  is linearly dependent. 

A set m
k F⊂},,{ 1 vv   is affinely independent if it is not affinely dependent. 

Suppose that { }1 2, , , m
nE F= ⊂v v v . Let A be the ( )1m n+ ×  matrix over F, the 

i-th column of with is ( )T1, iv . The matroid [ ]M A  is called an affine matroid over F. 
In particular, if ( )F GF q= , and mE F= , then the affine matroid is denoted by 

( ),AG m q . In general, if M is an affine matroid over   of rank ( )1m + , where 
3m ≤ , then a subset X of ( )E M  is dependent in M if, in the representation of X by 

points in m , there are two identical points, or three collinear points, or four coplanar 
points, or five points in space. Hence the flats of M of ranks one, two, and three are 
represented geometrically by points, lines, and planar, respectively. 

We extend the use of diagram of affine matroid to represent arbitrary matroids of 
rank at most four. Generally, such diagrams are governed by the following rules. All 
loops are marked in a single inset. Parallel elements are represented by touching points. 
If three elements form a circuit, the corresponding points are collinear. Likewise, if four 
elements form a circuit, the corresponding points are coplanar. In such a diagram, the 
lines need not be straight and the planes may be twisted. Certain lines with fewer than 
three points on them will be marked as part of the indication of a plane, or as con- 
struction lines. We call such a diagram a geometric representation for the matroid. 

Now we will define the projective geometry. Let V be a vector space over F. For each 
{ }, 0v w V∈ − , ~v w  if v and w lie on the same 1-dimensional subspace of V. Then, ~ 

is an equivalence relation on V and { }0 / ~V −  is called the projective space of V or 
projective geometry and will be denoted by ( )PG V . For a matroid M, delete all the 
loops from M and then, for each non-trivial parallel class X, delete all but one 
distinguished element of X, the matroid we obtain is called the simple matroid 
associated with M and is denoted by M . Evidently the construction of ( )PG V  from 
V is analoguous to the construction of the simple matroid M  from a matroid M. It is 
clear that a matroid M is F-representable if and only if its associated simple matriod is 
F-representable. Hence, when we discuss representability questions, it is enough to 
concentrate on simple matroids.  
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2.4. Projective Geometrices 

If 1nV F += , then ( )PG V  has dimension n and it is denoted by ( ),PG n F . In 
particular, when F is ( )GF q , it will be written ( ),PG n q  for ( ),PG n F . Let’s find 
the geometric representation of ( )2, 2PG . For each { }3

2 0v∈ − , there are no non- 
zero elements except v on the 1-dimensional subspace of 3

2  through v (Figure 1). Thus  

( ) { } ( ) ( ) ( ) ( ){
( ) ( ) ( )}

3
22, 2 0 1 1,0,0 ,2 1,1,0 ,3 0,1,0 ,4 0,1,1 ,

5 0,0,1 ,6 1,0,1 ,7 1,1,1

PG = − = = = = =

= = =



. 

It is easy to see { } { }1, 2,3 , 3, 4,5  and { }1,5,6  lie on the same line (plane) of 
( )2, 2PG  ( 3

2 ). Also, { } { }1, 4,7 , 2,5,7  and { }3,6,7  are circuits of ( )2, 2PG . 
Furthermore, { }2, 4,6  is a circuit, because ( ) ( ) ( )1,1,0 0,1,1 1,0,1+ = . Thus the geo- 
metric representation of ( )2, 2PG  is Figure 2. 

( )2, 2PG  is called the Fano matroid and will be denoted by 7F . In 7F , { }2, 4,6  
is a circuit and a hyperplane. The matroid N obtained from 7F  by relaxing the circuit 
hyperplane { }2, 4,6  is called non-Fano matroid and is denoted by 7F −  (Figure 3). 

2.5. Duals of Representable Matroids 

Give a m n×  matrix A by elementary row operations and interchanging two columns  
 

 
Figure 1. Vector space 3

2 . 

 

 

Figure 2. Geometric representation of ( ) 72,2PG F= . 
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Figure 3. Geometric representation of 7F − . 

 
or deleting a zero row. A can be transformed to a form [ ]|rI D , where rI  is r r×  
identity matrix and D is ( )r n r× −  matrix. It is clear that [ ]M M A=  is isomorphic 
to [ ]|rM I D . We can show that the dual matroid *M  of M is T | n rM D I − −   ([9]). 
Hence, the dual of F-representable matroid is F-representable. For example, let 

[ ]3

1 2 3 4 5 6 7

1 0 0 0 1 1 1

0 1 0 1 0 1 1 |

0 0 1 1 1 0 1

A I D
 
 

= = 
 
 

 

be a matrix over 2 . Then, we can see that [ ]M A  is isomorphic to 7F . 

T
4

1 2 3 4 5 6 7

0 1 1 1 0 0 0

1 0 1 0 1 0 0
|

1 1 0 0 0 1 0

1 1 1 0 0 0 1

D I

 
 
  − =   
 
 
 

 

and we can see that the set of circuits of T
4|M D I −   is 

{ } { } { } { } { } { } { }{ }1,5,6,7 , 2, 4,6,7 , 3, 4,5,7 , 1, 2,3,7 , 1, 2, 4,5 , 1,3, 4,6 , 2,3,5,6 . 

3. Minors 

In this section, we define minors which are important to representability. For the 
definition of minor, we have to define contraction which is the dual of the operation of 
deletion. We can see that contraction for matroids generalizes the operation of 
contraction for graphs. Let M be a matroid on E and T be a subset of E. Then 

( )**/ \M T M T=  is called the contraction of T from M and also denoted by 
( )M E T⋅ − . For easy understanding, let us see what it means in graphic matroids. Let 

G be a graph 
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and { }3T = . Then, G/3 is the graph 
 

 
 
and *G  is 
 

 
 

Also * \ 3G  is 
 

 
 
and ( )** \ 3G  is 
 

 
 
which is the same as G/3. Thus, 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

* *** * *

** * *

/ 3 \ 3 \ 3 \ 3

\ 3 \ 3 / 3

M G M G M G M G

M G M G M G

= ≅ =

= = =
 

and we see that the contraction of a graphic matroid is the same as the matroid of the 
contracted graph, where we used ( ) ( )* *M G M G≅  for a planar graph G. 

Now let *M  be the dual of a matroid M. Then the rank function *r  of *M  is 
given by ( ) ( ) ( )*r X X r E X r E= + − −  ([9]). If T E⊂ , the rank function of \M T  
is the restriction of Mr  to the subset of E T− , that is, for all X E T⊂ − ,  

( ) ( )\M T Mr X r X= . 
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Proposition 3.1. If T E⊂ , then for all X E T⊂ − , ( ) ( ) ( )/M T M Mr X r X T r T= ∪ − .  
Proof. By definition, ( )

( )
( )**/

\
M T

M T
r X r X= . Thus  

( ) ( ) ( )
( )( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

* */ \ \
* *

M T M T M T

M M M M

M M

r X X r E T X r E T

X r E T X r E T

X E T X r T X r E E T r T r E

r T X r T

= + − − − −

= + − ∪ − −

 = + − ∪ + ∪ − −  − + −   
= ∪ −

 

because ( )E T X E T X− ∪ = − −  and E T E T− = − .                    □ 
Proposition 3.2. Let TB  be a basis for |TM . Then  

( ) ( ){ }
( ){ }

/  | 

 | there exists a basis of | such that .
T

T

M T I E T I B M

I E T B M B I M

= ⊂ − ∪ ∈

= ⊂ − ∪ ∈

 


 

Proof. For the convenience, let’s denote the equality by = =   . It is clear that 
⊂  . To show that ⊂  , let I ∈ . Then, B I∪ ∈   for some basis B of |TM . 

Cleary I B∪  is a basis of I T∪ . So ( ) ( )M Mr I B r I T∪ = ∪ . Thus  

( ) ( ) ( ) ( ) ( )/ ,M T M M M Mr I r I T r T r I B r T I B B I B B I= ∪ − = ∪ − = ∪ − = + − =  

and it was proved that ( )/I M T∈  . Now if we show that ⊂  , the proof is 
completed. Let ( )/I M T∈  . Then  

( ) ( ) ( ) ( )/ ,M T M M M T TI r I r I T r T r I B B= = ∪ − = ∪ −  

since TB  is a basis of |TM . Hence ( )M T T Tr I B B I I B∪ = + = ∪  and I ∈ .  □ 
Proposition 3.3. If ( )T E M⊂ , then 
1) ( )**\ /M T M T= , 
2) ( )** / \M T M T= , and 
3) ( )** \ /M T M T= .  

Proof. 1) ( )( ) ( )
** ** */ \ \M T M T M T= = . Thus ( )**\ /M T M T= .  

2) ( )( ) ( )
** ** */ \ \M T M T M T= = . 3) is obtained if we replace M by *M  in the left-  

hand side of 1).                                                        □ 
Now, let A be a matroid over F and T be a subset of the set E of column levels of A. 

We shall denote by \A T  the matrix obtained from A by deleting all the columns 
whose labels are in T. Clearly, [ ] [ ]\ \M A T M A T= . Moreover, by the following, we 
can see that the class of F-representable matroids is minor closed.  

Proposition 3.4. Every contraction of an F-representable matroid is F-representable.  
Proof. The duals of F-representable matroid are F-representable. Since  
[ ] [ ]( )**/ \M A T M A T= , we proved that a contraction of F-representable matroid is 

F-representable.                                                        □ 
Now suppose that e is the label of a non-zero column of A. Then, by pivoting on a 

non-zero entry of e, we can transform A into a matrix A′  in which the column 
labelled by e has single non-zero entry. In this case, /A e′  will denote the matrix 
obtained from A′  by deleting the row and column containing the unique non-zero 
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entry in e. Then, we have the following property. 
Proposition 3.5. [ ] [ ] [ ]/ / /M A e M A e M A e′ ′= = .  
Proof. It is enough to show that the second equation is true, because the first 

equation is clear. By using row and column swaps if necessary, A′  can be considered 
as the matrix in which the unique nonzero entry of e is in row 1 and column 1. Let I be 
a k-element subset of the ground set of [ ]M A′  such that e I∉ . Then the set of 
columns labelled by I e∪  is linearly independent if and only if the matrix B which 
has columns e I∪  and the 1st column of it is the column corresponding to e has rank 

1k + . This is equivalent to the matrix deleted row 1 and column 1 of B has rank k and 
this is equivalent to the columns of /A e′  labelled by I is linearly independent. Thus, 

[ ]( ) [ ]( )/ /M A e M A e′ ′=  . 
□ 

4. Representability of P8 

Now, we shall describe the construction of representations for matroids. Two matrices 

1A  and 2A  are equivalent if [ ]1M A  and [ ]2M A  are isomorphic. It is easy to see 
that if [ ]M A  is a rank-r matroid, then A is equivalent to a standard matrix [ ]|rI D , 
where rI  is the r r×  identity matrix. Given such a matrix, let its columns be labelled 
in order, 1 2, , , re e e . Let B be the basis { }1 2, , , re e e  of [ ]M A . For all i in 
{ }1, 2, , r , the unique non-zero entry in column i of [ ]|rI D  is in row i. Thus it is 
natural to label the rows of [ ]|rI D  by 1 2, , , re e e . Hence, D has its rows labelled by 

1 2, , , re e e  and its columns labelled by 1 2, , ,r r ne e e+ +  . For all { }1, 2, ,k r r n∈ + +  , 
there exists a unique circuit ( ),kC e B  contained in ke B∪ . In fact,  
( ) { }, |  and  has a non-zero entry in row and columnk k i i i kC e B e e e B D e e= ∪ ∈ .  
( ),kC e B  is called the B-fundamental circuit of ke . Let #D  be the matrix obtained 

from D by replacing each non-zero entry of D by 1. Then the columns of #D  are 
precisely the incidence vectors of the sets ( ),k kC e B e− . This matrix #D  is called the 
B-fundamental-circuit incidence matrix of [ ]M A . Now let [ ]M M A=  be a rank-r 
matroid and B be a basis { }1 2, , , re e e  for M. Let X be the B -fundamental-circuit 
incidence matrix of M. And let columns of X be labelled by 1 2, , ,r r ne e e+ +  . Then, 

#X D= . Thus the task of finding an F-representation for M can be viewed as being one 
of finding the specific elements of F that correspond to the non-zero elements of #D . 
We can see that most of the entries of D can be predetermined by the following 
Proposition 4.1. Before stating it, we shall require some preliminaries. 

Let the rows of #D  be indexed by 1 2, , , re e e  and its columns by 1 2, , ,r r ne e e+ +  . 
Let ( )#G D  denote the associated simple bipartite graph, that is, ( )#G D  has vertex 
classes { }1 2, , , re e e  and { }1 2, , ,r r ne e e+ +   and two vertices ie  and je  are ad- 
jacent if and only if the entry in row ie  and column je  of #D  is 1. For example, if 

4 5 6

1
#

2

3

1 0 1
0 1 1 ,
1 1 0

e e e
e

D e
e

 
 =  
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then ( )#G D  is 
 

 
 

We have a nice way for representing matroid;  
Proposition 4.1. Let the r n×  matrix [ ]1|rI D  be an F-representation for the 

matroid M. Let { }1 2, , , kb b b  be a basis of the cycle matroid of ( )#
1G D . Then 

( )( )#
1k n G Dω= − , where ( )( )#

1G Dω  is the number of connected component of 
( )#

1G D . Moreover, if ( )1 2, , , kθ θ θ  is an ordered k-tuple of non-zero elements of F, 
then M has an F-representation [ ]2|rI D  that is equivalent to [ ]1|rI D  such that, for 
each i in { }1, 2, , k , where the entry of 2D  corresponding to  ib  is iθ  ([9] [10]).  

By the above proposition, we can find the fields on which given matroid is re- 
presentable. 

Example 4.2. 6P  is the matroid whose geometric representation is the following 
Figure 4. 

Let [ ]3 |I D  be a representation over ( )GF q  of 6P . Then 

4 5 6

1
#

2

3

1 1 1
1 1 1 .
0 1 1

e e e
e

D X e
e

 
 = =  
  

 

Thus, the associated simple bipartite graph ( )#G D  is  
 

 
 

and a basis of ( )#G D  is 
 

 
 

Therefore, [ ]3 |I D  is equivalent to the form of  
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1 2 3 4 5 6
1 0 0 1

.
0 1 0 1 1
0 0 1 0 1 1

a c
b

 
 
 
  

 

 

 
Figure 4. Geometric representation of P6. 

 

( )det 1,5,6 1 0b= − ≠ , ( )det 2,5,6 0c a= − ≠ , ( )det 3,5,6 0a bc= − ≠ , 

( )det 3, 4,5 0b a= − ≠ , ( )det 3, 4,6 1 0c= − ≠ , ( )det 4,5,6 1 0b a c= − + − ≠ . 

We want to find the fields ( )GF q  in which the negative equations satisfy. It is easy 
to see that the equations have no solution if ( )GF q  is equal to 2  or 3 . In case of 

( ) { }4 0,1, , 1GF ω ω= + , let’s check if the equations have a common solution. There are 
three cases; 

1) 1a = . 
If b c= , then 1 2 2 0b a c b− + − = − = . Thus, b c≠  and ( )1 1bc aω ω= + = = . 

Hence, we don’t have a solution. 
2) a ω= . 
In this case, 1b c ω= = +  and bc aω= = . Thus, there are no solution. 
3) 1a ω= + . 
In this case, b c ω= =  and 2 1bc aω ω= = + = . Thus we have no solution. 
In 5 , if 1, 2, 4a b c= = = , then 8 3 1bc a= = ≠ =  and  

1 2 1 4 1 4 0b a c− + − = − + − = ≠ . Therefore we showed that 6P  is representable over 
F if and only if 5F ≥ .  

Example 4.3. If  

3

0 1 1 1
1 0 1 1
1 1 0 1

A I
 
 =  
  

 

is the matrix over F with 2charF ≠ , then it is easy to see that [ ] 7M A F −=  by Figure 
3. Also, if [ ]3 |I D  is a matrix over F and [ ]3 7|M I D F −= , then 

#

4 5 6 7
1 0 1 1 1
2 1 0 1 1 .
3 1 1 0 1

D X
 
 = =  
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By taking a basis of ( )#M G D 
  , [ ]3 |I D  is equivalent to a matrix 

[ ]3 1

1 2 3 4 5 6 7
1 0 0 0 1 1 1

| 0 1 0 1 0 1 .
0 0 1 0 1

I D c
a b

 
 =  
  

 

Since ( )det 1, 4,7 1 0, 1a a= − = = . Also, because ( )det 2,5,7 1 0b= − =  and  

( )det 3,6,7 1 0c= − = , 1b c= = . Thus 1

0 1 1 1
1 0 1 1
1 1 0 1

D
 
 =  
  

. 

Since ( )det 4,5,6 2 0= ≠ , 2charF ≠ . Therefore, we showed that 7F −  is repre- 
sentable over F if and only if 2charF ≠ . 7P  is the matroid of the matrix 

1 2 3 4 5 6 7
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

A
 
 =  
 − 

 

over 3 . It’s geometric representation is the following Figure 5. 
Lemma 4.4. 7P  is representable over a field F if and only if 3F ≥ .  
Proof. If { }1, 2,3B = , then the B-fundamental circuit incidence matrix of 7P  is 

4 5 6 7
1 1 0 1 1
2 1 1 0 1 .
3 1 1 1 0

X
 
 =  
  

 

By taking a basis of ( )M G X   , A is equivalent to a matrix [ ]3 |I D , where 
4 5 6 7

1 1 0 1 1
2 1 1 0 .
3 1 0

D c
a b

 
 =  
  

 

 

 
Figure 5. Geometric representation of P7. 
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Because ( )det 3, 4,7 1 0c= − =  and ( )det 4,5,6 1 0, 1b a c= + − = =  and 1b a= − . 
As 0, 1b a≠ ≠ . Therefore  

4 5 6 7
1 1 0 1 1
2 1 1 0 1 ,
3 1 1 0

D
a a

 
 =  
 − 

 

where { }0,1a∉ . Therefore, we proved that 7P  is representable over F if and only if 
3F ≥ .                                                               □ 

Non F-representable matroid for which every proper minor is F-representable is 
called the excluded or forbidden minor for F-representability. Because a matroid M is 
F-representable if and only if all its minors are F-representable (Proposition 3.5), 
finding the complete set of excluded minors for F-representability is the solution for the 
F-representability. Since the duals of F-representable matroid are F-representable, the dual 
of an excluded minor for F-representability is an excluded minor for F-representability. 

To find an excluded minor for 2 -representability, we need the following property: 
Proposition 4.5. Let F be a field and k be an integer exceeding 1. Then uniform 

matroid 2,kU  is F-representable if and only if 1F k≥ − .  
Proof. Let [ ]2,kU M A≅ , where A is a 2 k×  matrix. We can consider A as a matrix 

1 2 2

1 0 1 1 1
,

0 1 kα α α −

 
 
 





 

where ( )1 2i i kα ≤ ≤ −  are non-zero different elements of F. Thus, it should be 
1 2F k− ≥ −  and so 1F k≥ − . Conversely, if 1F k≥ − , then 1 2F k− ≥ −  and 

we can choose non-zero different ( )2k − -elements of F. 
□ 

From the above proposition, we can see that 2, 2qU +  and ( )*2, 2 , 2q q qU U+ +=  are 
excluded minors for GF(q)-representability. In 1958, Tutte showed that 2,4U  is the 
only excluded minor for 2 -representability ([2]). The problem of finding the com- 
plete set of excluded minors for 3 -representability was solved by Bixby and Seymour 
in 1979 ([3] [4]). The set is { }*

2,5 3,5 7 7, , ,U U F F . 
By Proposition 4.5, it is easy to see that 2,6U  and 4,6U  are excluded minors for 

GF(4)-representability. In Examples 4.2 and 4.3, we can see that 6P  and 7F −  are not 
GF(4)-representable. It is not difficult to see that every proper minor of them is 
GF(4)-representable. Thus 6P  and 7F −  are excluded minors for GF(4)-represent- 
ability. Clearly 6P  is self-dual. 

Let 

4

1 2 3 4 5 6 7 8
0 1 1 1
1 0 1 1

=
1 1 0 1
1 1 1 0

A I

− 
 
 
 
 

− 

 

be the matrix over 3 . Then, 8P  is the matroid [ ]M A . 
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Lemma 4.6. 8P  is representable over a field F if and only if 2charF ≠ .  
Proof. Let [ ]|rI D  be an F-representation for 8P . If { }1, 2,3, 4B = , then the B- 

fundamental circuit incidence matrix for 8P  is 

#

0 1 1 1
1 0 1 1

.
1 1 0 1
1 1 1 0

D X

 
 
 = =
 
 
 

 

By choosing a basis for ( )#M G D 
  , we can consider  

5 6 7 8
0 1 1
1 0 1 1

.
1 0
1 0

d

D
a e
b c

 
 
 =
 
 
 

 

Because ( )det 1, 4,5,8 0e a= − =  and ( )det 2,3,6,7 1 0,c a e= − = =  and 1c = . 
Substituting these to the matrix D, we have  

5 6 7 8
0 1 1
1 0 1 1

.
1 0
1 1 0

d

D
a a
b

 
 
 =
 
 
 

 

From the circuits { }1,5,6,7 , { }2,5,6,8 , { }3,5,7,8  and { }4,6,7,8 , we get the 
equations  

1, 0, 0 and 1 .a b ad ab bd b d db a d= − + − = + − = + =  

From the first and fourth equation, we get b d= . Substituting b for d in the second 
and third equation, we get ( )2 0b a b− =  and ( )2 0b b− = . As 0b ≠ , it follows that 

2b =  and 1a = . Because 0 2b≠ = , 2charF ≠ . Thus  

5 6 7 8
0 1 1 2
1 0 1 1

.
1 1 0 1
2 1 1 0

D

 
 
 =
 
 
 

 

In fact, we can show that [ ]4 8| .M I D P=                                  □ 
For a matroid M, an automorphism is a permutation σ  of ( )E M  such that 
( ) ( )( )r X r Xσ=  for all ( )X E M⊂ . The set of automorphisms of M forms a group 

under composition. This automorphism is transitive if, for every two elements x and y 
of ( )E M , there is an automorphism that maps x to y. 

Lemma 4.7. The automorphism group of 8P  acts transitively on 8P .  
Proof. We can see that the geometric representation of 8P  is the following Figure 6 

because 8P  has only 10 4-circuits { }1, 2,3,8 ,  { }1, 2, 4,7 ,  { }1,3, 4,6 ,  { }2,3, 4,5 ,  
{ }1, 4,5,8 ,  { }2,3,6,7 ,  { }1,5,6,7 ,  { }2,5,6,8 ,  { }3,5,7,8  and { }4,6,7,8 . From the 
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geometric representation of 8P , it is easy to see that the permutations  
( ) ( )1 1,8, 4,5 2,7,3,6σ =  and ( ) ( )2 1, 2, 4,3 5,6,8,7σ =  are both automorphisms of 8P . 

For example, 1 8Pσ  and 2 8Pσ  are the following Figure 7 and Figure 8. 
Thus the automorphism group of 8P  is 1 2,σ σ . 
Any two elements in { }1,8, 4,5  and { }2,3,6,7  can be mapped to each other by an 

automorphism in 1σ . Similarly, any two elements in { }1, 2, 4,3  and { }5,6,8,7  
can be mapped to each other by an automorphism in 2σ . For the remaining two 
elements of 8P , they are mapped each other by the following; ( ) ( )1

2 1 21 5 6σ σ σ− = = , 
( ) ( )1 1

2 1 22 7 8σ σ σ− −= = , ( ) ( )2 1 21 8 7σ σ σ= = , ( ) ( )2 1 22 7 5σ σ σ= = ,  
 

 
Figure 6. Geometric representation of P8. 

 

 
Figure 7. Geometric representation of 1 8Pσ . 
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Figure 8. Geometric representation of 2 8Pσ . 

 
( ) ( )1 1 1

2 1 23 7 8σ σ σ− − −= = , ( ) ( )1
2 1 24 8 7σ σ σ− = = , ( ) ( )1

2 1 23 7 5σ σ σ− = = ,  
( ) ( )2 1 24 5 6σ σ σ= = . 

Thus, the automorphism group of 8P  acts transitively on 8P . 
□ 

Now, we get the following result, which is the purpose of this paper.  
Theorem 4.8. 8P  is an excluded minor for GF(4)-representability.  
Proof. By Lemma 4.6, 8P  is not ( )4GF  representable. Because the automorphism 

group of 8P  acts transitively on 8P  by Lemma 4.7, for any element e of ( )8E P , we 
have 8 8/ / 1P e P≅ . 

By Proposition 3.5, [ ] [ ]8 / 1 / 1 / 1P M A M A= = . Because  

3

1 0 1 1
/ 1 1 1 0 1 ,

1 1 1 0
A I

 
 =  
 − 

 

8 7/ 1P P≅ . But, since 7P  is representable over ( )4GF  by Lemma 4.4, every 
contraction of 8P  is GF(4)-representable. By Proposition 3.3(1), for each element 

( )8e E P∈ , ( )**
8 8\ /P e P e= . Because 8P  is self-dual, *

8 8P P≅ . Thus  

( ) ( )
* ** *

8 8 8 7\ / /P e P e P e P= ≅ ≅ . Hence, every deletion of 8P  is GF(4)-representable. 
Therefore, every proper minor of 8P  is GF(4)-representable and we proved that 8P  
is an excluded minor for GF(4)-representability.                              □ 
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