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Abstract. A novel approach to topology and weight evolving artifi-
cial neural networks (TWEANNs) is presented. Compared with previous
TWEANNs, this method has two major characteristics. First, a set of ge-
netic operations may be designed without recombination because it often
generates an offspring whose fitness value is considerably worse than its
parents. Instead, two topological mutations whose effect on fitness value
is assumed to be nearly neutral are provided in the genetic operations
set. Second, a new encoding technique is introduced to define a string as
a set of substrings called operons. To examine our approach, computer
simulations were conducted using the standard reinforcement learning
problem known as the double pole balancing without velocity informa-
tion. The results obtained were compared with NEAT results, which is
recognised as one of the most powerful techniques in TWEANNs. It was
found that our proposed approach yields competitive results, especially
when the problem is difficult.

1 Introduction

Artificial evolution has been proven to be a promising approach to artificial
neural networks (ANNs) in complex reinforcement learning tasks [5][3]. As dis-
cussed in [3][4], evolving artificial neural networks (EANNs) are faster and
more efficient than reinforcement learning methods [6] for some representative
benchmark problems. The reason is presumed to be that EANNs can search
high-dimensional and continuous learning space more efficiently than other ap-
proaches. In addition, considering that ANNs can adapt to time series problems
using the memory mechanism realised by recurrent synaptic connections, arti-
ficial evolution of ANNs would be a natural choice for learning non-Markovian
tasks, a classification to which many interesting problems belong.

There has been a great deal of interest in EANNs. A good summary of EANNs
up until 1999 can be found in [11]. Traditionally, EANNs are classified into the
following three categories, according to their network structure:

– the network structure is fixed and the connection weights are evolving
– the network structure is evolving and the connection weights are trained by
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– the network structure and the connection weights are evolving simultane-
ously

In the rest of this paper, we consider only the last case, which is called topology
and weight evolving artificial neural networks (TWEANNs) [8]: of the three
categories, artificial evolution plays the most important role in this one.

TWEANNs have several fundamental problems. One is that there are no
generally effective guidelines for encoding a network structure into the form of a
genotype. Currently, each researcher uses his own encoding method. A more seri-
ous problem is that the crossover operator cannot simply be applied to two indi-
viduals whose genetic information is different in length. Even when the crossover
is applied to two individuals in a sort of brute force manner, the generated off-
spring often have much worse fitness values than the parents. As a result, most
offspring would not survive into the next generation. Another factor that com-
plicates the situation is that there is no effective theory for how to prepare the
initial individuals. From the viewpoint of the crossover problem, it does not seem
to be a good approach to provide the initial population with random topologies.
Conversely, it seems to be inappropriate for the genetic search for all the indi-
viduals to have the same topology.

Many TWEANN approaches such as GNARL[1], EPnet[12] and ESP[3] have
been proposed thus far. However, the authors regard the most impressive ap-
proach to be Neuro-Evolution of Augmenting Topologies (NEAT) [8], because
NEAT solves the double pole balancing without velocity information (DPNV)
problem, which is recognised as one of the difficult benchmark problems for re-
inforcement learning. The source code of NEAT is available at Stanley’s home-
page [10].

However, in our own experiments with NEAT, we encountered unwanted be-
haviour in the process of artificial evolution. We consider this to be unavoidable
as long as crossover is adopted as the main genetic operator. Therefore, in this
paper, we propose a novel method of TWEANNs called mutation-based evolving
artificial neural networks (MBEANN), in which no crossover is used. This means
that all genetic operations are applied to an individual independent of other in-
dividuals. Instead of crossover, two types of structural mutations are provided.
Each is defined so as not to change the signal transfer, to make the effect on the
fitness function value nearly or completely neutral.

The rest of this paper is organised as follows. Section 2 provides an overview
of NEAT and explains how NEAT shows unwanted behaviour. Section 3 explains
the details of our proposed MBEANN method. In Section 4, after introducing
the general characteristics of DPNV, computer simulations are conducted to
examine the effectiveness of MBEANN. The last section is the conclusion.

2 NEAT

NEAT is reported to be a very effective approach to the domain of TWEANNs [8]
[9]. In this section, NEAT is briefly explained.
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Encoding Method and Crossover. NEAT’s genetic encoding scheme is de-
signed to allow corresponding genes to be easily lined up when two individuals
cross over during mating, since crossover is considered as the primary genetic
operator. A genotype is represented by two lists, one for nodes and the other for
synaptic connections. A node is represented by the following two components:
one is the number that makes it uniquely identifiable for all the generations in
a population; the other is the information that shows the type of layer that a
node belongs to, i.e. the input layer, the hidden layer or the output layer. The
genetic information for representing a synaptic connection is composed of two
pointers to the nodes for both ends, the weight value, the flag (whether the con-
nection is able to use it) and the innovation number. The innovation number
is used for identifying the connection for all the generations in a population.
Whenever a new synaptic connection is developed, this number is incremented
and provided to the synaptic connection. Because of these innovation numbers,
crossover can be applied to any two individuals without duplication or deletion
of the genetic information from their parents, and the common part between
them can be easily identified.

However, offspring generated by this crossover tend to have more genetic
information than the parents. Therefore, the greater the difference between the
parents, the larger the offspring that tend to be generated. This is a serious
character because individuals can grow very large within several generations.

Speciation. In TWEANNs including NEAT, it is commonly observed that a
structural change brings a harmful result, and therefore, a new offspring has
a much worse fitness value than the parents. In NEAT, as a strategy to keep
them alive for the next generation, a speciation technique with explicit fitness
sharing [2] is adopted to protect new offspring from natural selection. Speciation
also has the effect that crossover can be applied to only two individuals in the
same species, i.e. to two individuals whose structural differences are within a
compatible distance. The details are shown in [8].

This seems a reasonable and effective procedure at first glance. However,
according to our computer simulations, the number of species almost always in-
creased to the maximum number in earlier generations than we expected. Newly
generated individuals tend to be protected from natural selection as a result of
speciation. According to our NEAT computer simulations, we frequently encoun-
tered the unwanted situation in which there were too many species that include
only one individual.

Initial Population. Typically, TWEANNs start with an initial population of
random topologies to introduce a sufficient topological diversity. In contrast,
NEAT biases the search towards minimal-dimensional spaces by starting out
with a uniform population of networks with zero hidden nodes.
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Fig. 1. The concept of genotype for MBEANN

3 Proposed Method: MBEANN

Although NEAT is a successful approach for TWEANNs, we still found the un-
wanted evolutionary behaviour that might originate from crossover as explained
above. On the other hand, it might not be easy to propose a more effective
strategy to reduce such side effects of crossover. Therefore, we propose a novel
approach to TWEANNs in which no crossover is used. Our approach is called
MBEANN, which stands for mutation-based evolving artificial neural networks.
MBEANN adopts two types of structural mutations that may decrease little or
have no fitness value. Therefore, speciation is not used in MBEANN.

3.1 Encoding Method

In the research of TWEANNs thus far, it does not seem that the topic of how to
represent a network structure has been explored systematically. Each researcher
has adopted his own representation method and special genetic operations[11][7],
and no de facto standard is applied. Following this trend, we propose our original
genotype representation as the answer to the question of how to design a robust
genotype for a small change of genetic structure.

We considered the problem as follows. Assuming that an individual is a set
of sub-networks each of which is independent of the others, we can expect that a
small genetic change occurring in a sub-network would influence only a limited
region. This might bring robustness against a genetic change. From this assump-
tion, an individual is designed as a set of sub-networks, i.e. as a set of modules
called operons. Fig. 1 shows the concept of the genotype that we designed. As
shown in the figure, node information consists of the node type and the node
identification number. Link information consists of the input node, the output
node, the weight value and the link identification number. The two identification
numbers should be unique to each individual. Note that they are not the same as
the innovation numbers in NEAT, because they are unique only to an individual.

Thus, supposing that I is the maximum number of operons, a genotype string
is formulated as follows:

string = {operon0, operon1, , ..., operonI} (1)
operoni = {{nodej | j ∈ ONi}, {linkk | k ∈ OLi}} (2)
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where ONi is the set of node identification numbers in operoni and 0Li is the
set of link identification numbers in operoni. Assuming that operon0 holds only
the input nodes, the output nodes and all the connections between them, string
is composed of sub-networks operoni, where operoni includes some nodes nodej

and the connections linkk connecting two nodes in itself or a node in the operoni

and a node of operon0. As for an initial population, since MBEANN starts
with the population consisting of the initial individuals having only one operon,
operon0, i.e. the minimal structure in which there is no hidden node.

3.2 Genetic Operators for Structural Evolution

Similar to NEAT, MBEANN starts with the minimal individuals. Hidden nodes
and synaptic connections are obtained by two structural mutations with gener-
ations. The two genetic operators are defined as follows. They are designed to
be nearly neutral or completely neutral with respect to the fitness value.

Add-Node Mutation. The add-node mutation is applied to each operon at a
constant probability Padd. This mutation operates to remove one of the synaptic
connections, which is randomly selected, and then adds a new hidden node and
two associated synaptic connections. If one of the ends of the removed connec-
tion is connected to a node in operon0, a new operon is provided to the newly
developed sub-network. Fig. 2 illustrates the effect of the add-node mutation.
When a synaptic connection W1 is selected, the link is removed and a new node
and two synaptic connections W3 and W4 are added to construct a new operon
called operoni.

In order not to change the signal transfer by this mutation, a1 and a2 in Fig.
2 should be equal. Therefore, supposing that S is the sigmoid function and the
Wi is the weight value, is we consider the following condition:

S[w1x1 + w2x2] = S[w3S[w4x1] + w2x2] (3)

Thus, we get w1x1 − w3S[w4x1] = 0. In addition, assuming the condition that
w1 = w3 and S[x] = 1/(1 + eβ(α−x)), we find that the following value f(x1)
should always be small against α, β and w4:

f(x1) = x1 − 1
1 + eβ(α−w4x1)

(4)

For the sake of simplicity, we define w4 = 1. As for α and β, we set them
as 0.5 and 4.0, respectively, considering the simplicity and the results of the
preliminary experiments.

Add-Connection Mutation. The add-connection mutation is applied to each
operon at a constant probability. Fig. 3 illustrates how this mutation works.
When an operon is selected, a node in the operon is randomly chosen to make a
random synaptic connection with a node in the operon or with a node in operon0.
The weight of the new connection is set to 0 so that it does not change the signal
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transfer. With this add-connection mutation, a node in operoni where i > 0 can
be connected to a node in the same operon or a node in operon0. In other words,
the connection to a node in operon(j = i, j > 0) is prohibited. Therefore, since
each sub-network operoni,i > 0 grows independent of the others, we can expect
the functional modularity in an individual.

Synaptic Weight Mutation. As for weight mutations, we adopt the most
popular mutation for real-coded genetic algorithms. That is, the weight mutation
introduces a small change by adding a Gaussian random number of which the
average is zero and the standard deviation is σ. In this paper, the value σ = 0.05
is adopted.

4 The Double Pole Balancing Problem

4.1 DPNV and Simulation Conditions

The performance of MBEANN is discussed with the benchmark problem called
the double pole balancing without velocity information (DPNV) problem[3]. Two
poles are connected to a moving cart by a hinge and the neural network must
apply force to the cart to keep the poles balanced for as long as possible without
going beyond the boundaries of the track. The system state is defined by the cart
position x and the velocity ẋ, the first pole’s position θ1 and its angular velocity
θ̇1, and the second pole’s position θ2 and its angular velocity θ̇2. However, ẋ,
θ̇1 and θ̇2 are not used as inputs because the problem becomes more difficult;
therefore the controller must utilise the time series information.

It is known that control is possible when the poles have different lengths to
respond differently to control inputs. The computer simulations were conducted
with four different ratios of the long pole length versus the short pole length, i.e.
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Table 1. Parameters for MBEANN and MBEANN-WO

population size 1,000 weight mutation rate 1.0

tournament size 20 weight value in add-node 1

add-node rate 0.007 α in sigmoid function 0.5

add-connection rate 0.3 β in sigmoid function 4.9

final generation 1,000

1:0.1, 1:0.2, 1:0.3 and 1:0.4. It is known that the control is more difficult when
the difference between the pole lengths is smaller. All other details for problem
settings for computer simulations were the same as in [8]. As for the comparison,
the original NEAT source from Stanleys website[10] was used.

In addition, since the operon structure was employed for MBEANN based on
our presumption that the modularity in genotype would work better, MBEANN
without the operon structure (MBEANN-WO) was also conducted to compare
the results with those of MBEANN to confirm our decision. MBEANN-WO can
be easily realised by skipping the procedure of generating a new operon when
add-node mutations are applied. The parameters for MBEANN and MBEANN-
WO used in our computer simulations are summarised in Table 1.

4.2 Results

Fig. 5 summarises the results of ten independent runs of NEAT, MBEANN-
WO and MBEANN. From Fig. 5(a), which shows the success rates, we found
that all three approaches solve the problem with very high probabilities at easy
conditions such as 1:0.1 or 1:0.2. However, it is clearly observed that NEAT’s
performance was getting worse as the problem difficulty increased. In particular,
NEAT solved only once in ten runs under the most difficult condition of 1:0.4. At
the same time, it was also found that MBEANN and MBEANN-WO performed
much better than NEAT under difficult conditions.
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Fig. 6. Typical neural controllers at the last generation for MBEANN

For the rest of the graphs, the average and the standard deviation were
calculated considering only the runs in which successful controllers were found
before the final generation of 1,000. In addition, we call the generation in which
a successful controller was found first in a run as the last generation, because it
corresponds to the termination condition. Fig. 5(b) and (c) shows the average
and standard deviations of the last generations. NEAT solves the problem of 1:0.1
within 30 generations. This result is much better than MBEANN or MBEANN-
WO. However, when the pole length ratio is 1:0.3 or 1:0.4, NEAT requires about
200 generations to obtain a successful controller or cannot find a solution until
the final generation. This implies that, as for NEAT, it might be better to stop
the run and start a new run if a successful controller cannot be found before 200
generations. In the case of MBEANN-WO, the more difficult the problem, the
more generations are required. MBEANN shows the most stable results of the
three approaches. It seems that 400 generations are sufficient for MBEANN to
solve DPNV for all four conditions.

Fig. 5(d) and (e) shows the average number of nodes in the controller at
the last generation and the standard deviation of ten runs. Similarly, Fig. 5(f)
and (g) shows the average number of links and the standard deviation. NEAT
found a successful controller with only 6 nodes and 10 links at the condition
of 1:0.1 in average. However, the number of nodes and links rapidly increases
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with the problem difficulty. Finally, at the condition of 1:0.4, the controller had
grown to reach the size of 53 nodes and 332 links. In the case of MBEANN-WO,
the controller becomes gradually larger with the difficulty, but the speed seems
moderate compared to the one of NEAT. On the other hand, the MBEANN’s
controllers are always similar in size for all four conditions. Controllers typically
obtained are shown in Fig. 6. MBEANN needs about seven nodes and twenty
links on average. Therefore, we can say that the importance of modularity in
genotype has been inductively proven by the results of the computer simulations.

5 Conclusions

MBEANN was proposed as yet another approach to TWEANNs. Using the pole
balancing without velocity information problem, its robustness as well as effec-
tiveness were demonstrated. We believe that more investigation is required to
improve the performance of TWEANNs, especially for the paradigm of evolu-
tionary robotics[7], where TWEANNs are necessary to realise artificial evolution.
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