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Abstract

The architecture of social and economic networks is often explained in

terms of the externalities shaping the link-forming incentives of play-

ers. We make two contributions to this literature. First, we bring into

its ambit the linear-quadratic utility model. Since players’ utilities are

now a function of their network centralities, this permits endogenizing

their locational incentives in a network. Second, we show that themode

of transmission of externalities can be crucial in dictating the topology

of equilibrium networks. We consider two alternative modes for chan-

neling externalities. Both have the same primary source (direct links)

but a different secondary source (global effects versus indirect links).

We characterize equilibrium networks for different positive-negative

combinations of primary-secondary externalities for both modes. We

show that the mode of transmission influences the equilibrium archi-

tecture when externalities from the primary source are positive; when

these externalities are negative, the equilibrium network is empty.
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1 Introduction

The equilibrium configuration of interconnections among players that emerges

endogenously as players evaluate the benefits and costs of establishing bilat-

eral links has occupied an important strand in the network literature.1 The

existing literature has attempted to explain the equilibrium network archi-

tecture in terms of the externalities that bear upon players by virtue of their

position in the network architecture. Our objective in this paper is two-fold.

First, we bring into the ambit of the endogenous network formation litera-

ture the linear-quadratic specification of utility which now forms the bedrock

for many games on an exogenously fixed network.2 Second, exploiting the

tractability offered by the linear-quadratic model, we demonstrate that the

mode of transmission of externalities is an equally important determinant

in shaping the topology of equilibrium networks. We now elaborate on each

of these objectives.

The linear-quadratic specification of utility has an important feature that

explains its popularity for Nash games on a fixed network: the Nash action

and reduced utility of players is a function of their Katz-Bonacich centrality

in a network.3 In some games (e.g. the oligopoly game of example 3.1 below),

Nash actions and reduced utility are increasing in network centrality. In

other games (e.g. provision of public goods in Bramoullé et al 2014), higher

Nash action levels are no longer associated with the most central players; in

fact players with greater centrality can free ride on the actions of those less

central (Ballester and Calvó-Armengol 2010, Example 11). These results

lend special impetus towards endogenizing the network formation process

and systematically examining the motivation of players to assume, or not

assume, a central position in the network with an eye towards the subsequent

game to be played on the ensuing network. Accordingly we posit a two-stage

game where in the first stage players form a network and in the second

stage they engage in a Nash game contingent on the network. Inducting

backwards from the Nash game in actions, players weigh the benefits and

1Please see Goyal (2007) and Jackson (2008) for a survey of this literature in the context

of both directed and undirected networks.
2This utility specification was introduced by Ballester et al (2006) and has found nu-

merous applications in the literature on games on networks. These include education

(Calvó-Armengol et al, 2009), crime (Ballester et al, 2010), conformity (Patacchini and

Zenou, 2012), and public goods provision (Bramoullé et al, 2014) . Please see Jackson and

Zenou (2012) for a survey and Ballester and Calvó-Armengol (2010) for extensions.
3Please see section 3 below for the Katz-Bonacich measure, or Bonacich (1987) and

Jackson (2008, Section 2.2.4).
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costs of linking with each other. Our first objective is to characterize the

network architecture that ensues with particular emphasis on the centrality

of the locations occupied by players in the network.

Our second objective is to investigate within the context of the linear-

quadratic utility model two alternative modes of channeling externalities.

Our main thesis is that the mode of transmission of externalities can dictate

the architecture of equilibrium networks. The two modes that we consider

have a primary source and a secondary source for transmitting externalities.

We present examples to show that externalities from either source can be

positive or negative. We characterize the equilibrium networks for different

positive-negative combinations of primary-secondary externalities for both

modes. In the process we demonstrate that the mode of transmission has

definite implications for the equilibrium network topology when externalities

from the primary source are positive. When these externalities are negative,

the equilibrium architecture is always empty and thus robust to the mode

of transmission.

The first mechanism for transmitting externalities is based on Ballester et al

(2006). The primary source is local interaction (flow of externalities through

direct links or neighbors within a network) while the secondary source is

global interaction (externalities transmitted without the aegis of the net-

work). We say that strategic local externalities exist and are negative (resp.

positive) when an increase in the actions of neighbors in a network decreases

(resp. increases) the utility of a player. Similarly, strategic global external-

ities are negative (resp. positive) if a player’s utility is uniformly and nega-

tively (resp. positively) influenced by the actions of all players. Examples

3.1 and 3.2 below provide two instances of the possible configurations that

can ensue. For brevity we refer to this mechanism as the local-global mode.

The second mode of transmitting externalities has the same primary source

as the first mode — viz. the direct links of players. The secondary source

however is constituted by the indirect links of a player. Positive and negative

externalities from these sources are defined similar to the first mode. There

are three ways in which this direct-indirect mode differs from the local-global

mode of transmission. (i) It explicitly accounts for indirect links in the

primitive utility function itself.4 This is the case for instance in friendship

4 In contrast the local-global mode of transmission only considers direct links (as cap-

tured in the adjacency matrix) in the primitive utility function. It is only reduced utility

corresponding to the Nash equilibrium in actions that aggregates the feedback effects from

all direct and indirect links in the network.
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networks (e.g. Brueckner 2003) where players derive benefits from friends

and friends of friends. In the educational sphere (e.g. Basu and Foster 1998)

informal learning occurs through direct links (immediate family) in addition

to indirect links (neighbors and friends of friends). (ii) Externalities are

only transmitted within a network and players retain the choice of absolving

themselves from any external effects by dissociating from the network. (iii)

It permits indirect links influence a player differentially from direct links. In

fact, it allows indirect links to be more prominent in exerting externalities as

compared to direct links (for e.g., if there are large spillovers from indirect

links as in Example 4.1 below); it also permits externalities from direct and

indirect link externalities to be of opposite signs (for e.g. synergy from

direct links but competition from indirect links as in Example 4.2 below).

For brevity we refer to this mechanism as the direct-indirect mode.

The equilibrium notion that we employ to study the network formation

game is the pairwise stable equilibrium from Goyal and Joshi (2006). A

network is a pairwise stable equilibrium if no player has an incentive to

unilaterally delete any subset of links and no unlinked pair of players have

an incentive to form a link. Table 1 lists the equilibrium networks for the

two modes. It shows that when the primary source of externalities confers

positive benefits, then the secondary mode through which externalities are

transported has implications for the equilibrium network architecture. In

order to clearly delineate the differences, the architectures that differ for

any given configuration of externalities is highlighted in bold.

Local Externalities: Columns
Global Externalities: Rows

Empty,
Complete,
Dominant Group,
Nested Split 
Graphs.

Empty,
Complete,
Dominant Group,
Nested Split
Graphs,
Regular.

Empty

Empty

Direct Links Externalities: Columns
Indirect Links Externalities: Rows

(+) (+)

(+) (+)

(-) (-)

(-) (-)

Empty

Empty

Empty,
Complete,
Dominant Group,
Minimally 
Connected.

Empty,
Complete,
Exclusive Groups.

Table 1: Equilibrium Networks
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While the equilibrium characterization results are discussed in depth in the

main body of the paper, we provide here some intuition for the observed

differences in equilibrium architectures. When both primary and secondary

impart positive externalities, then the local-global mode can generate nested

split graphs (NSG) while the direct-indirect mode can generate minimally

connected networks. In the local-global mode, marginal utility from links is

increasing in the centrality of players involved; thus, if some player i finds it

profitable to link to some player j, then player i also finds it profitable to link

to all players who are more central in the network than player j. This leads

to the NSG architecture in which the neighborhood of players with fewer

links is nested in the neighborhoods of those with more links. In contrast,

the direct-indirect mode induces a non-monotonicity in reduced utility with

respect to links, a feature which does not obtain in the local-global model.

When an isolated player i forms a link with some player j who is part of a

non-singleton component, then player i realizes a large marginal gain both

from the direct link as well as the indirect links of player j; all subsequent

links formed by player i within the component generate marginal gains due

to direct links only but no further utility increments due to indirect links.

Thus players in a minimally connected network have no incentive to delete

links (given the large utility loss that is involved from being excised from

the component) but will also not find it profitable to form additional links

(since there are no additional indirect links to access within the component).

Now suppose that externalities from the primary (resp. secondary) source

are positive (resp. negative). In the local-global mode, the incentives of

central players to form additional links is suitably tempered from the nega-

tive global effect. Additional links raise the Nash action levels of centrally

located players due to positive strategic local externalities but adversely

impacts marginal gains from links due to negative strategic global external-

ities. This leads players to form regular networks in which they all have

the same number of links. In contrast, in the direct-indirect mode players

are led to form exclusive groups. Within each component, players have an

incentive to connect completely because they harness positive externalities

from direct links while remaining insulated from negative externalities due

to indirect links; links across components though expose the participating

players to negative externalities from the indirect links of their potential

partners thereby vitiating their formation.

We now place our paper in the context of the existing literature on the

endogenous formation of games. Our paper is closest to Goyal and Joshi
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(2006) in that one of our preoccupations is to obtain characterization of

equilibrium networks in a fairly large class of games. Goyal and Joshi char-

acterize pairwise stable equilibrium in two broad class of games: “playing-

the-field” and “local spillovers” games. The two models with local-global

and direct-indirect modes of transmission of externalities do not belong to

the class of games they consider. Therefore our paper is an attempt to

extend their analysis to a class of linear-quadratic utility games that only

recently have been introduced by Ballester et al (2006). Our paper also

has a second preoccupation — viz. to illustrate that the mode of conveying

externalities also matters. Since the reduced utility of players in the linear-

quadratic utility model is a function of their Katz-Bonacich centrality, our

paper also shares the same concerns as Galeotti and Goyal (2010) who exam-

ine network formation from the point of view of strategically accessing and

disseminating information, and Goyal and Vega-Redondo (2007) who exam-

ine the incentives of players to occupy central positions in a network (more

precisely, to bridge structural holes in a network) to extract intermediation

rents. Hiller (2012) considers a game that corresponds to positive strategic

local and global externalities and obtains the core-periphery architecture in

equilibrium which is subsumed under NSG. Baetz (2013) considers positive

strategic local and negative global externalities and obtains regular networks

as one of the equilibrium similar to our result. While our paper considers

pairwise stable equilibrium, the results we derive are consistent with the lit-

erature that examines stochastically stable networks arising from a dynamic

evolutionary process of network formation. In a framework of strategic posi-

tive local externalities and negative global externalities, Dawid and Hellman

(2012) and König et al (2013) show respectively that stochastically stable

networks are dominant groups and NSG similar to our analysis.

The paper is organized as follows. The model is described in section 2. The

local-global mode and the direct-indirect mode of transmitting externalities

are examined in sections 3 and 4 respectively. The conclusions are contained

in section 5.

2 The Model

We consider a model with two stages. In the first stage players form a

network according to a link announcement game. In the second stage players

engage in a non-cooperative game contingent on the network formed in the

first stage. We now elaborate on the various elements of the model.
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Let N = {1, 2, ..., N} denote the set of ex-ante symmetric players. We

consider a link announcement game based on Dutta et al (1995). Each player

i ∈ N makes an announcement of links given by the strategy si = (sij)j 6=i
where sij = 1 when player i intends to form a link with j and sij = 0 when

no such link is intended. Si is the strategy set of player i consisting of all

possible announcements that can be made and S = ×i∈NSi the set of all
strategy profiles. A bilateral link between players i and j is formed if and

only if sij = sji = 1. A strategy profile s ∈ S therefore induces a network
which is defined next.

A network is a tuple (N ,G(s)) where the nodes correspond to the players
and G(s) records the bilateral links that exist between the players induced

by s ∈ S. For notational simplicity the dependence of G on s is suppressed.

When the set of players is unambiguous, we refer to G as the network

and represent it in two alternative ways. The first is by letting G denote

the collection of all pairwise links and ij ∈ G indicate that players i and

j are linked in the network. The second is by letting G = [gij ] denote

the adjacency matrix such that gij = gji = 1 if i and j are linked and

gij = 0 otherwise (where gii = 0 ∀i ∈ N ). We will use both representations
interchangeably and let G denote the set of all networks.
The set Ni(G) = {j ∈ N\{i} : ij ∈ G} denotes the neighbors of player i in
G and di(G) = |Ni(G)| the cardinality of this set, also referred to as player
i’s degree, di. A walk in G connecting i and j is a set of nodes {i1, . . . , in}
such that ii1, i1i2, ..., in−1in, inj ∈ G; if i = j. A path is a walk in which all
nodes are distinct. A network is connected if there exists a path between

any pair i, j ∈ N ; otherwise the network is unconnected. A sub-network,

C(G) ≡ (N 0,G0), N 0 ⊂ N , G0 ⊂ G, is a component of the network (N ,G)
if it is connected and if ij ∈ G for i ∈ N 0, j ∈ N , implies j ∈ N 0 and
ij ∈ G0. Let G− ij (resp. G+ ij) denote the network obtained from G by

deleting (resp. adding) the link ij. A link ij ∈ G is critical if G − ij has
more components than G; otherwise the link is non-critical. A network is

minimally connected if all links are critical.

In regular networks all players have the same degree which is also the degree

of the network. For example, the complete network, Gc, has degree N − 1,
the wheel network, Gwheel, has degree 2, and the empty network, Ge, has

degree 0. Next we define a nested split graph (NSG) along the lines of König

et al (2013). Consider a network G and let its distinct positive degrees be

d(1) < d(2) < · · · < d(m); let d(0) = 0 even though there may not exist an iso-
lated player inG. Letting Pk(G) = {i ∈ N : |Ni(G)| = d(k)}, k = 0, 1, ...,m,
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define the degree partition ofG as P(G) = {P0(G), P1(G), ..., Pm(G)}. Let-
ting bxc denote the largest integer smaller than or equal to x, a network G
is a NSG if for each player i ∈ Ph(G), h = 1, 2, ..,m :

Ni(G) =

½ ∪hl=1Pm+1−l(G), h = 1, 2, ...,
¥
m
2

¦
∪hl=1Pm+1−l(G)\{i}, h =

¥
m
2

¦
+ 1, ...,m

A star network is a special case of a NSG where |P1(G)| = N − 1 and
|Pm(G)| = 1. Another network is one of exclusive groups where ij ∈ G
if i, j ∈ Ph(G), and ij /∈ G if i ∈ Ph(G), j ∈ Ph0(G), h 6= h0, i.e. G is

composed of complete components; a dominant group network has at most

one non-singleton complete component.

In the first stage the network G is formed. In the second stage, players

play a Nash game contingent on G. Let Xi ⊂ R+ denote the action set of
player i for this second stage Nash game. Let X = ×nj=1Xj denote the set
of action profiles and ui : X×L→ R+ the utility function of player i where
L = G+H. We will consider two sets of preferences, the first in which H

is a zero matrix, and the second in which H is a matrix tracking indirect

connections in the network G. Since H is induced from the network G, for

the sake of consistency we will write the dependence of the second stage

Nash game on G only. An action profile x∗(G) is a Nash equilibrium of the

second stage game if ∀xi ∈ Xi, ∀i ∈ N :

ui(x
∗
i (G),x

∗
−i(G),G) ≥ ui(xi,x∗−i(G),G) (1)

where x∗−i(G) is the Nash action profile of players other than i. The first
stage reduced form utility function of player i is given by:

Ui(G) =ui(x
∗
i (G),x

∗
−i(G),G) (2)

Let c ≥ 0 denote the cost to a player of forming a bilateral link. Given the
strategy profile s ∈ S of link announcements from the first stage, the net util-
ity function of player i in the networkG(s) is given by Ui(G(s))−di(G(s))c.
A strategy profile s∗ ∈ S is a Nash equilibrium of the first stage link forma-

tion game if ∀i ∈ N , ∀si ∈ Si:

Ui(G(s
∗
i , s

∗
−i))−di(G(s∗i , s∗−i))c ≥ Ui(G(si, s∗−i))−di(G(si, s∗−i))c (3)

Since the Nash criterion is not discriminating enough to address multi-

plicity of equilibria, we follow Goyal and Joshi (2006) and consider a re-

finement based on the pairwise stability notion of Jackson and Wolinsky
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(1996). Therefore we will say that G is a pairwise stable equilibrium (or

pws-equilibrium) if there is a Nash strategy profile s∗ ∈ S which induces G
and for any ij /∈ G:

Ui(G+ ij)−Ui(G) > c ⇒ Uj(G+ ij)−Uj(G) < c (4)

It is important to distinguish between the two sets of games involved. There-

fore pws-equilibrium will always refer to the equilibrium of the first-stage

link formation game. The equilibrium of the second stage game, which is

conditional on G, will be referred to as a Nash equilibrium in actions.

We will say that G0 = [g0ij ] > G = [gij ] if g
0
ij ≥ gij ∀i, j and g0ij > gij for at

least one pair i, j. The reduced utility of player i is strictly increasing (resp.

decreasing) if Ui(G
0) >(resp. <) Ui(G) for all G0 >G.

3 Global versus Local Interactions

We will follow Ballester et al (2006) in specifying a linear-quadratic specifi-

cation of the utility function of the second stage Nash game:

ui(x,G) =

∙
xi − 1

2
x2i

¸
+

⎡⎣γxi NX
j=1

xj

⎤⎦+
⎡⎣λxi NX

j=1

gijxj

⎤⎦ (5)

The second term in square parentheses represents global interaction while

the third term represents local interaction. The utility function is said to

exhibit positive (resp. negative) strategic global externalities if γ > 0 (resp.

γ < 0). Similarly the utility function is said to exhibit positive (resp. neg-

ative) strategic local externalities if λ > 0 (resp. λ < 0). We now provide

two examples of strategic local-global externalities.5

Example 3.1:6 Consider a homogeneous product oligopoly with demand

function:

P = α− 1
2
xi − 1

2

X
j 6=i
xj , α > 0

5Other applications of this model include among others social networks in education

(Calvó-Armengol et al 2009), provision of public goods (Bramoullé et al 2014) and crime

(Ballester et al 2010, Calvó-Armengol and Zenou 2004).
6This example is based on König (2013).
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where xi denotes the output of firm i. Assume that a link ij ∈ G corresponds

to a collaborative alliance between firms i and j. The marginal cost of firm

i is decreasing in the number of its collaborative alliances as well as the

output level of its collaborator. Hence marginal cost is of the form:

ci = c0 − λ
X
j 6=i
gijxj , c0,λ > 0

The gross profit of firm i is of the form given by (5) with positive strategic

local complementarities and negative global substitutabilities. ¥

Example 3.2:7 Consider a population of N banks, where bank i provides

quantity xi ≥ 0 of loans and banks compete in the quantity of lending.

Letting pi denote the interest rate, the demand function for loans for bank

i is given by:

pi = α− 1
2
xi − 1

2

X
j 6=i
xj , α,β > 0

There is positive probability that a bank’s loan may turn out to be “bad”

in which case the bank turns to those it is linked to in a network G to cover

its obligations to depositors. The marginal cost of bank i is given by:

ci = c0 + λ
X
j 6=i
gijxj , c0,λ > 0

The second term is the “contagion” effect: a larger number of links, or

greater lending by banks to whom bank i is linked, increases the exposure

of bank i to any bad shocks of its partners in the network G and increases

the (marginal) cost of servicing its loans. The gross profit of bank i takes

the form given by (5) exhibiting strategic negative local complementarities

and negative global substitutabilities. ¥

When the Nash equilibrium in actions exists and is interior, it satisfies the

first order condition:

∂ui

∂xi
= 1− x∗i (G) + γ

NX
j=1

x∗j (G) + γx∗i (G) + λ

NX
j=1

gijx
∗
j (G) = 0 (6)

Since ∂ui
∂xi
(0,G) = 1 > 0, it follows that 0 cannot be a Nash equilibrium. The

characterization of the second stage Nash equilibrium requires the notion of

7This example is inspired by an example on networks of banks provided in König et al

(2013, Appendix D).
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Katz-Bonacich (henceforth KB) centrality. Letting I denote the identity

matrix and ξ > 0 a (sufficiently small) attenuation parameter, consider the

matrix:

M(G, ξ) = [I− ξG]−1 =
∞X
m=0

ξmGm (7)

whereG0 = I. It is well known that sinceG is symmetric, all its eigenvalues

are real and sum to zero, and thus the largest eigenvalue μmax(G) is positive.

Further [I−ξG]−1 is well-defined and non-negative if ξμmax(G) < 1. Letting
1 denote the column vector of 1’s, the vector of unweighted KB centralities

of the players is given by:

b (G, ξ) =M(G, ξ)1 =

∞X
m=0

ξmGm1 (8)

The ith-component of the vector b (G, ξ), bi(G, ξ), measures the number of

weighted walks in the network G originating from node i where the weights

on the paths fall exponentially with their length. Note that bi(G, ξ) ≥ 1
since there is at least one walk from a node to itself. Also note that G11 is

a column vector whose ith-row is
PN
j=1 gij = di(G) and thus for sufficiently

small ξ > 0 the KB centrality of player i is directly proportional to i’s

degree. If ξ is large, then in addition to a player’s degree, the connections of

partners, and partners’ partners etcetera, also matter. The following lemma,

whose proof is similar to Jackson and Zenou (2012, Section 4) and therefore

omitted, proves the existence of a Nash equilibrium in actions.

Lemma 1 Suppose the utility function is given by (5). Letting μmin(G)

and μmax(G) denote the smallest and largest eigenvalues of G respectively,

a unique Nash equilibrium in actions exists if:

a. γ(1 +N) < 1− λμmax(G) for λ > 0 and γ > 0.

b. γ < 1− λμmax(G) for λ > 0 and γ < 0.

c. γ(1 +N) < 1− λ |μmin(G)| for λ < 0 and γ > 0.

d. γ < 1− λ |μmin(G)| for λ < 0 and γ < 0.

Since the set G is finite, we will assume that the parametric restrictions
of Lemma 1 apply to all G ∈ G for each combination of strategic local
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and global externalities. The attenuation parameter ξ = λ/(1 − γ) below

accounts for the feedback effects stemming from both local and global in-

teractions. Lemma 1 implicitly restricts ξ in order to bound these feedback

loops. Given a set S ⊂ N , and matrix A, let AS denote the submatrix of
A whose rows and columns correspond to S; similarly given vector x, the

subvector xS includes only the rows in S. Note that μmax(A) ≥ μmax(AS).

We offer without proof the following result based on Ballester et al (2006,

Theorem 1) and Bramoullé et al (2014, Proposition 1).

Proposition 1 Suppose the utility function is given by (5), and G is the

underlying network.

(a) Let λ > 0. Then the unique Nash equilibrium in actions is interior and

is given by:

x∗(G) =
1

1− γ [1 + b (G, ξ)]
b (G,ξ) , b (G, ξ) =

NX
i=1

bi (G, ξ) (9)

(b) Let λ < 0. If |ξb (G, ξ)| < 1, and b (G, ξ) > 0, then the unique Nash

equilibrium in actions is interior and given by (9). If |ξbS (G, ξ)| ≥ 1
for some S ⊂ N , then the Nash equilibrium may involve inactive

players whose Nash action is 0. Letting A ⊂ N denote the set of

active players in the Nash equilibrium:

x∗A(G) =
1

1− γ [1 + bA (GA, ξ)]
b (GA,ξ) , bA (GA, ξ) =

X
i∈A

bi (GA, ξ)

(10)

Let us define:

α (G, ξ) =
1

1− γ [1 + b (G, ξ)]
, Bi (G, ξ) = α (G, ξ) bi (G, ξ) , i ∈ N

(11)

The reduced form utility of player i can be written as:

Ui(G) =x
∗
i (G)

⎡⎣1 + γ

NX
j=1

x∗j (G) + λ

NX
j=1

gijx
∗
j (G)

⎤⎦− 1
2
(x∗i (G))

2
(12)
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and substituting from (6) we have:

Ui(G) =

µ
1

2
− γ

¶
(x∗i (G))

2
=

µ
1

2
− γ

¶
B2i (G, ξ) (13)

Therefore the reduced form utility of each player is quadratic in own rescaled

KB centrality. In the subsequent discussion we will explore the implications

of relatively “small” and “large” values of ξ and it is understood that it is

within the bounds imposed by Lemma 1.

Positive Strategic Local and Global Externalities

We begin with the case of strategic global and local positive externalities,

i.e. where 0 < γ < 1/2 and λ > 0. Suppose the attenuation parameter ξ > 0

is sufficiently small so that KB centrality of a player is proportional to her

degree. In this case reduced utility of player i ∈ N is convex in the sense

that in a network G in which ij, ik /∈ G:

Ui(G+ ij + ik)− Ui(G+ ik) > Ui(G+ ik)− Ui(G) (14)

This is verified as follows. LetG00 =G+ij+ik andG0 =G+ik. Since γ > 0,
α (G00, ξ) > α (G0, ξ) > α (G, ξ) and therefore Bi (G

00, ξ) > Bi (G
0, ξ) >

Bi (G, ξ). For small ξ, b (G
00, ξ) − b (G0, ξ) > b (G0, ξ) − b (G, ξ) and thus

α (G00, ξ)− α (G0, ξ) > α (G0, ξ)− α (G, ξ). It now follows that:

Bi
¡
G00, ξ

¢−Bi ¡G0, ξ
¢
= α

¡
G00, ξ

¢
bi
¡
G00, ξ

¢− α
¡
G0, ξ

¢
bi
¡
G0, ξ

¢
>
£
α
¡
G0, ξ

¢
+ α

¡
G0, ξ

¢− α (G, ξ)
¤
bi
¡
G00, ξ

¢− α
¡
G0, ξ

¢
bi
¡
G0, ξ

¢
= α

¡
G0, ξ

¢ £
bi
¡
G00, ξ

¢− bi ¡G0, ξ
¢¤
+ bi

¡
G00, ξ

¢ £
α
¡
G0, ξ

¢− α (G, ξ)
¤

> α (G, ξ)
£
bi
¡
G0, ξ

¢− bi (G, ξ)¤+ bi ¡G0, ξ
¢ £
α
¡
G0, ξ

¢− α (G, ξ)
¤

= α
¡
G0, ξ

¢
bi
¡
G0, ξ

¢− α (G, ξ) bi (G, ξ) = Bi
¡
G0, ξ

¢−Bi (G, ξ) (15)

Therefore Ui(G
00)−Ui(G0) > Ui(G0)−Ui(G) follows.

Returning to (14), any pair of unlinked players with at least one profitable

link will have an incentive to connect with each other. This is because with

positive strategic local externalities, an additional link induces players who

are connected in a network to raise their (second stage) action levels. In-

creased actions further enhance the marginal utility from forming a link for

these connected players and therefore a dominant group emerges. There

can be at most one non-singleton component because otherwise players in

two separate components will have an incentive to connect. Due to positive

13



strategic global externalities, isolated players also have an incentive to in-

crease their action levels. However, since the parameter γ is restricted to

be small to ensure existence of a Nash equilibrium in actions, the marginal

benefit from the first link of isolated players may not be sufficiently high to

cover the cost of link formation. Therefore it is possible for isolated players

to co-exist alongside a dominant group in a pws-equilibrium.

If ξ is large, then higher degree may not always translate into greater cen-

trality and reduced utility may not satisfy (14). In order to examine how

marginal reduced utility from a link varies with the centralities of the players

involved, let us partition the players with at least one link in G according to

their KB centralities, C(G) = {C1(G), C2(G), ..., Cm(G)}. Under positive
strategic global and local externalities, a more central player realizes a larger

utility gain than a less central one from a link, and reciprocally a player gets

greater marginal utility from linking with a more central player. This is

because a more central player is able to extract greater positive externalities

from the network through an additional link than a less central player. A

link with a more central partner also permits a player to reciprocally harness

greater positive externalities from the network. Therefore reduced marginal

utility satisfies the following:

Property (P1): Consider G in which ij ∈ G but jk /∈ G. If bk (G, ξ) >
bi (G− ij, ξ) , then:

Uk(G+ jk)−Uk(G) > Ui(G)−Ui(G− ij)
Uj(G+ jk)−Uj(G) > Uj(G)−Uj(G− ij) (P1)

This property is established as follows. Letting G00 =G+ jk and G0 =G−
ij, the greater centrality of player k relative to i implies that Bk (G

00, ξ) >
Bk (G, ξ) ≥ Bi (G, ξ) > Bi (G0, ξ). Further bk (G00, ξ)−bk (G, ξ) > bi (G, ξ)−
bi (G

0, ξ). This is because in transitioning from G0 to G, player i adds
one walk of length 1 (to j) and additional walks of lengths 2 and greater.

Compare this with player k’s transition from G to G00 which also adds
one walk of length 1 (with j) but more walks of lengths 2 and greater

than player i by virtue of k’s greater KB centrality than i. This yields

Bk (G
00, ξ) − Bk (G, ξ) > Bi (G, ξ) − Bi (G0, ξ) and the first part of (P1)

follows. The second part follows similarly. With property (P1) replacing

(14), a different architecture of pws-equilibrium emerges. In particular, we

argue that pws-equilibrium are NSG.

14



SupposeG 6=Ge,Gc is a pws-equilibrium. Consider player i with the lowest

KB centrality, bi (G, ξ) = b(G, ξ) who is linked to some player j. Then

player j must have the highest KB centrality in G, b(G, ξ). To see why this

must be true, suppose instead that bj (G, ξ) < b(G, ξ). Then there exists

a player k with at least one link such that jk /∈ G. Note that by virtue of
the pws-equilibrium property, Ui(G)−Ui(G− ij) ≥ c and Uj(G)−Uj(G−
ij) ≥ c. Since bk (G, ξ) ≥ b(G, ξ) > bi (G− ij, ξ), it follows from (P1) that

Uj(G+ jk)−Uj(G) > Uj(G) − Uj(G− ij) ≥ c and Uk(G+ jk)−Uk(G) >
Ui(G)−Ui(G−ij) ≥ c. Therefore players j and k have a mutually profitable
link. But then player j will be linked to all players with non-zero links in

G and thus bj (G, ξ) ≥ b(G, ξ), a contradiction. Therefore players with

the lowest centrality are only connected to those with the highest. This

argument also shows that players with the highest KB centrality, by virtue

of (P1) must be linked to all players who have at least one link.

Now consider players l2, l3, .., lm−1 representing C2(G), C3(G), ..., Cm−1(G)
respectively such that b(G, ξ) < bl2 (G, ξ) < bl3 (G, ξ) < ·· < blm−1 (G, ξ) <
b(G, ξ). Consider l2 ∈ C2(G). Since b(G, ξ) < bl2 (G, ξ), and each player

in C1(G) is directly linked to all players in Cm(G), there must exist a

player k /∈ Cm(G) such that kl2 ∈ G.We now show that kl2 ∈ G for all

k ∈ Cm−1(G) ∪ Cm(G). Suppose not and let kl2 ∈ G but k /∈ Cm−1(G) ∪
Cm(G), i.e. bk (G, ξ) < blm−1 (G, ξ). From the pws-equilibrium property,

Uk(G)−Uk(G− kl2) ≥ c and Ul2(G)−Ul2(G− kl2) ≥ c. Each l ∈ C2(G)∪
· · · ∪ Cm(G) will satisfy bl (G, ξ) > bl2 (G− kl2, ξ). Therefore from (P1),

Ul(G+kl)−Ul(G) > Ul2(G)−Ul2(G−kl2) ≥ c and Uk(G+kl)−Uk(G) >
Uk(G) − Uk(G − kl2) ≥ c. In other words, player k will form profitable

links with all players implying that bk (G, ξ) ≥ blm−1 (G, ξ). But then k ∈
Cm−1(G) ∪Cm(G), a contradiction. Continuing inductively in this manner
generates a NSG with the neighborhoods of low degree players nested in the

neighborhoods of high degree players. Culling together the above arguments

we have proved:

Proposition 2 Suppose the utility function of each player exhibits pos-

itive strategic local and global externalities. If ξ is small, then a pws-

equilibrium is either empty, complete, or a dominant group. If ξ is large,

then a pws-equilibrium is either empty, complete, or consists of at most one

non-singleton component which is complete or a NSG.

Remark: Since the Nash actions are directly proportional to KB centrali-

ties, both dominant group and NSG support different positive Nash action
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levels in equilibrium. The dominant group architecture displays two distinct

levels of actions with players in the complete component choosing a higher

action level than the isolated players. In a NSG, Nash actions are increasing

in the player’s degree.

Positive Strategic Local and Negative Strategic Global Externali-

ties

Next let us consider the case of positive strategic local externalities and

negative global externalities. If ij /∈ G then bk (G+ ij, ξ) ≥ bk (G, ξ) for
∀k ∈ N and strictly for k = i, j. On the other hand, γ < 0 implies that

α (G+ ij, ξ) < α (G, ξ). Therefore we cannot unambiguously characterize

Ui(G) since the product α (G, ξ) bi (G, ξ) will be a function of the relative

magnitudes of strategic local and global externalities.

Suppose bk (G, ξ) > bi (G, ξ) in a network G in which jk ∈ G but ij /∈ G
and let G00 = G + ij and G0 = G − jk. We have already argued that
a more central player k records a larger gain in KB centrality than a less

central player i from linking with player j; reciprocally, player j records a

larger gain in KB centrality by linking to k rather than i. Further, the link

jk increases aggregate KB centrality, b (., ξ) =
PN
l=1 bl (., ξ), more than the

link ij. Therefore the multiplicative term α(., ξ) that is common across all

players falls more due to link jk than ij. We consider two possible cases.

The first case is where for each network G ∈ G, the fall in α(., ξ) from an

additional link is relatively modest. Therefore the increase in KB centrality

of a player from a link exceeds the decrease in α(., ξ) and consequently

Property (P1) obtains. The second case is where for each G ∈ G, the fall in
α(., ξ) is relatively substantive. Therefore the larger gain in KB centrality

afforded to players from the link jk is outweighed by the decrease in α(., ξ).

Consequently a more central player k receives lower marginal utility from

link jk than a less central player i from link ij, and reciprocally a player j

receives lower marginal utility from linking with k than with i. We refer to

this as:

Property (P2): Consider G in which jk ∈ G but ij /∈ G. If bk (G, ξ) >
bi (G− jk, ξ), then:

Uk(G)−Uk(G− jk) < Ui(G+ ij)−Ui(G)
Uj(G)−Uj(G− jk) < Uj(G+ ij)−Uj(G) (P2)
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In the first case where Property (P1) obtains, the analysis is identical to

Proposition 2. We will therefore consider Property (P2) and show that for

small ξ, pws-equilibrium are regular (i.e. all players have the same degree).

When ξ increases, then centrality matters and it is possible to construct

regular networks that have players with different KB centralities. For large

ξ we argue that pws-equilibrium are a subset of regular networks in which

all players have the same KB centrality (for e.g. the wheel network).

Suppose ξ is large and consider a pws-equilibrium G in which there are

players with at least two distinct KB centralities. Then we can identify a

player i (resp. player k) with the lowest (resp. highest) KB centrality b(G, ξ)

(resp. b(G, ξ)) and some player j 6= i, k such that jk ∈ G but ij /∈ G. In
a pws-equilibrium, Uj(G)−Uj(G− jk) ≥ c and Uk(G)−Uk(G− jk) ≥ c. It
now follows by virtue of (P2) that:

Ui(G+ ij)−Ui(G) > Uk(G)−Uk(G− jk) ≥ c
Uj(G+ ij)−Uj(G) > Uj(G)−Uj(G− jk) ≥ c

But then players i and j have an incentive to form a link contradicting

that G is a pws-equilibrium. Therefore all players must have the same KB

centrality in a pws-equilibrium. When ξ is small, then KB centrality is

proportional to degree and all regular networks are a pws-equilibrium.

Let us now consider an increase in the attenuation parameter. Let Gδ

denote a regular network of degree δ. Note that when ξ increases, then

reduced utility increases as added weight is put on walks of all lengths.

To simplify the notation let us write reduced utility as Ui(G, ξ). Consider

some linking cost c > 0. In this case the degree of the pws-equilibrium is

uniquely determined as δ(c, ξ). We can show this as follows. Suppose regular

networks of degrees δ0(c, ξ) and δ00(c, ξ) are pws-equilibria where δ0(c, ξ) <
δ00(c, ξ). Let ik ∈ Gδ00(c,ξ) and ij /∈ Gδ0(c,ξ). Then c ≤ Ui

³
Gδ00(c,ξ), ξ

´
−

Ui

³
Gδ00(c,ξ) − ik, ξ

´
≤ Ui

³
Gδ0(c,ξ) + ij, ξ

´
− Ui

³
Gδ0(c,ξ), ξ

´
< c. The first

inequality is due to no player inGδ00(c,ξ) having an incentive to delete a link.

The second inequality follows from (P2) and that player k is more central

in Gδ00(c,ξ) than player j in Gδ0(c,ξ). The third inequality follows from the

fact from no pair of unlinked players in Gδ0(c,ξ) have an incentive to form a

link. We therefore have a contradiction that establishes the uniqueness of

the degree of a regular pws-equilibrium.

Now suppose marginal reduced utility is increasing in ξ and Gδ is a pws-

equilibrium for linking costs c > 0 when ξ = ξ0. Therefore players in

17



Gδ have no incentive to delete their existing links and no incentive to

form an additional link. Now if the attenuation parameter is raised to

ξ00, then the marginal utility from each link increases and thus players

continue to retain the incentive not to delete existing links. Then for

ij ∈ Gδ(c,ξ0), c ≤ Ui
³
Gδ(c,ξ0), ξ0

´
−Ui

³
Gδ(c,ξ0) − ij, ξ0

´
≤ Ui

³
Gδ(c,ξ0), ξ00

´
−

Ui

³
Gδ(c,ξ0) − ij, ξ00

´
, and therefore δ(c, ξ0) ≤ δ(c, ξ00). Now for ik /∈ Gδ(c,ξ0),

suppose Ui

³
Gδ(c,ξ0) + ik, ξ0

´
−Ui

³
Gδ(c,ξ0), ξ0

´
< c < Ui

³
Gδ(c,ξ0) + ik, ξ00

´
−

Ui

³
Gδ(c,ξ0), ξ00

´
. Then each pair of unlinked players will have an incentive to

add at least one additional link thereby increasing the degree of the regular

network by 1. Therefore δ(c, ξ0) < δ(c, ξ00) and the degree of pws-equilibrium
is increasing in ξ.

Now consider the case where marginal reduced utility is decreasing in ξ.

Since players had no incentive to add links in Gδ for linking costs c > 0

when ξ = ξ0, they will certainly not have any incentive to do so when ξ is

raised to ξ00 given the reduction in their marginal gain from an additional

link. On the other hand it is possible that at least one of their existing

links now becomes unprofitable inducing them to delete these links thereby

reducing the degree of the network. Therefore if marginal reduced utility is

increasing (resp. decreasing) in the attenuation parameter, then an increase

in ξ increases (resp. decreases) the degree of the regular pws-equilibrium

network. We have therefore proved that:

Proposition 3 Suppose the utility function of each player exhibits positive

strategic local externalities and negative strategic global externalities.

(a) Suppose reduced utility satisfies (P1). If ξ is small, then a pws-equilibrium

is empty, complete, or a dominant group. If ξ is high, then a pws-

equilibrium is either empty, complete, or consists of at most one non-

singleton component which is complete or a NSG.

(b) Suppose reduced utility satisfies (P2). If ξ is small, then pws-equilibrium

networks are regular. If ξ is high, then pws-equilibrium is regular and

in addition all players have the same KB centrality. The degree of

the pws-equilibrium is increasing (resp. decreasing) in ξ if marginal

reduced utility is increasing (resp. decreasing) in ξ.

18



Remark: When property (P2) obtains, then we have a setting similar to

Baetz (2013) in which players receive positive externalities from local con-

nections but are subject to overall diminishing returns. We therefore recover

a similar result that regular networks obtain in equilibrium in which all play-

ers choose a single positive Nash action level.

Negative Strategic Local Externalities; Negative or Positive Strate-

gic Global Externalities

Next we consider the case of negative strategic local externalities. If we have

positive global externalities, then Lemma 1 requires that the parameter γ

should be relatively small. But then the attenuation parameter is negative, a

case of special importance in Bonacich (1987) where a larger number of walks

from a node does not translate into a higher centrality measure. Therefore

(7) places negative weight on all walks of odd length and positive weight

on walks of even length. In particular, for small ξ < 0, a player’s reduced

utility is negatively related to her degree. Therefore deleting links raises

reduced utility. Further it allows saving the costs of link formation. It

therefore follows that Ge is the unique pws-equilibrium. As ξ increases in

magnitude, walks of even length become more prominent in reduced utility.

However, since the greatest weight is still on the degree of the player, the

empty network continues to be a pws-equilibrium. If we have negative global

externalities, then γ < 0 and therefore ξ < 0. The same argument applies

and hence Ge continues to be a pws-equilibrium.

Proposition 4 Suppose the utility function of each player exhibits negative

local externalities. Then the unique pws-equilibrium network is the empty

network.

Remark: In Ge we have bi(G, ξ) = 1 ∀i ∈ N . All players choose an

identical positive Nash action equal to 1
1−γ .

4 Direct versus Indirect Links

In this section we examine a framework in which players exert externalities

on others through direct and indirect links. There are no global interactions
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and the externality is transmitted entirely within the network. Consider the

following payoff function:

ui(x,G) =

∙
xi − 1

2
x2i

¸
+

⎡⎣λxi NX
j=1

gijxj

⎤⎦+ "ψxi NX
k=1

hikxk

#
(16)

The utility of player i is differentially affected from direct links and indirect

links. Recall that G is the adjacency matrix describing direct links among

nodes. We now define another “adjacency matrix” H that keeps track of

only indirect links. As long as i and k do not have a direct link but belong to

the same component, hik = 1; otherwise, hik = 0.
8 The matrix L = G+H

keeps track of both direct and indirect links. The utility function is said

to exhibit positive (resp. negative) externalities from direct links if λ > 0

(resp. λ < 0). Similarly the utility function is said to exhibit positive (resp.

negative) externalities from indirect links if ψ > 0 (resp. ψ < 0).

Example 4.1: Consider N firms that are local monopolies. Each firm i

has the demand function, P = α − 1
2
xi, α > 0. A link ij ∈ G corresponds

to a collaborative alliance between firms i and j. The marginal cost of firm

i is decreasing both due to its direct links as well as due to indirect links

stemming from spillovers:

ci = c0 − λ
X
j 6=i
gijxj − ψ

X
k 6=i

hikxk, c0,λ,ψ > 0

The gross profit of firm i can be written as (16) and exhibits positive ex-

ternalities from direct and indirect links. If spillovers from indirect links

are sufficiently large, then ψ > λ and indirect links are more effective than

direct links. ¥

Example 4.2: Consider N firms who are competing to be the first to

innovate a new product that will generate a monopoly profit of V . Each

firm i can invest an effort level xi ∈ [0, x] towards innovation. The outcome
of this “patent race” is stochastic. Given an effort vector x = (x1, x2, ..., xN),

firm i is the first to successfully innovate the product with probability pi(x)

where:

pi(x) =
λxi

P
j 6=i gijxj − ψxi

P
k 6=i hikxk

(N − 1)x2 , λ,ψ > 0

8Let gmik denote the entry in the i
th -row and jth -column of Gm. Then hik = 1 if gik = 0

and for some m = 2, 3, ..., gmik ≥ 1; otherwise hik = 0.
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According to this specification, firm i’s probability of success is increasing

with the synergy between own effort and the effort exerted by the direct

partners. However, direct partners are also the source of information from

own effort leaking to other players. Therefore higher effort level by indirect

partners, combined with the information spillovers from own effort that

accrues to indirect partners, lowers the probability of success. A firm makes

zero profits if it is unsuccessful. The cost of exerting effort xi is
1
2
x2i for firm

i. The gross profit of firm i is:

ui(x,G) =
V

(N − 1)x2

⎡⎣λxiX
j 6=i
gijxj

⎤⎦− V

(N − 1)x2

⎡⎣ψxiX
k 6=i

hikxk

⎤⎦− 1
2
x2i

This model exhibits positive externalities from direct links and negative

externalities from indirect links. ¥

A Nash equilibrium in actions, x∗(G), is characterized by:

∂ui

∂xi
= 1− x∗i (G) + λ

NX
j=1

gijx
∗
j (G) + ψ

NX
k=1

hikx
∗
k(G) = 0 (17)

Note that 0 cannot be a Nash equilibrium. Let λG+ψH = (λ−ψ)G+ψL =
(λ − ψ)

³
G+ ψ

λ−ψL
´
≡ (λ − ψ)W. The following existence result follows

Ballester et al (2006, Theorem 1) and therefore the proof is omitted.

Proposition 5 Suppose the utility function is given by (16), and G is the

underlying network. If (λ − ψ)μmax(W) < 1 for λ − ψ > 0 and 1 − |(λ −
ψ)μmin(W)| > 0 for λ− ψ < 0, then a unique interior Nash equilibrium in

actions exists and is given by:

x∗(G) = [I− (λ− ψ)W]−1 1 ≡ B(W,λ− ψ) (18)

Similar to (8), Bi(W,λ − ψ) accounts for the number of weighted walks

of player i in a network with the “adjacency” matrix W with attenuation

parameter λ − ψ. Substituting into (16), and using (17)-(18), the reduced

form utility of player i is given by:

Ui(G) =
1

2
B2i (W,λ− ψ) =

1

2
B2i

µ
G+

ψ

λ− ψ
L,λ− ψ

¶
(19)
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To reduce the notational burden, in the following discussion we will drop

reference to the attenuation parameter λ−μ and will write Bi (G,L) instead
of Bi

³
G+ ψ

λ−ψL,λ− ψ
´
.

Positive Externalities from Direct and Indirect Links

Suppose the externalities transmitted via direct and indirect links are posi-

tive. Consider first the case where λ > ψ > 0, i.e. direct links are more ef-

fective transmitters of externalities than indirect links. Note that if G0 >G
andH0 ≥H then λG0+ψH0 > λG+ψH, and thus Ui(G

0) > Ui(G) for each
i. Therefore, for small (resp. large) costs of link formation, Gc (resp. Ge)

will be the unique pws-equilibrium. We now turn to the more interesting

case of intermediate costs of link formation.

Consider an incomplete component in G in which ij ∈ G but ik /∈ G. Let
G0 = G+ ik and G00 = G− ij, with corresponding matrices H0 and H00 of
indirect links. Note thatG0 >G >G00 andH0 < H < H00, but L00 = L0 = L.
Proposition 5 restricts (λ− ψ) to be sufficiently small. In this case reduced

utility satisfies the convexity property that Ui(G
0)−Ui(G) > Ui(G)−Ui(G00)

for players in the same component. Thus if the link ij is profitable for player

i, then the link ik will be profitable as well. Similar consideration applies to

player k. Therefore in a pws-equilibrium the component must be complete.

Now suppose G has two or more complete components and suppose players

i and k belong to different components. Consider a link ij ∈ G and note

that by forming this link in G00 = G− ij player i adds a direct link in her
component but does not influence L. On the other hand, by connecting

to player k who belongs to a different component, player i benefits from an

additional link inG0 = G+ik as well as additional indirect links to players in
k’s component. In other words, player i benefits from the fact that G0 >G
and L0 > L. Therefore Bi(G

0,L0) − Bi(G,L) > Bi((G,L) − Bi(G00,L).
Therefore, if link ij is profitable for player i, then link ik is profitable as

well. The same consideration applies to player k. It follows that in a pws-

equilibrium, there can be at most one non-singleton component.

What is particularly striking is the emergence of minimally connected net-

works in equilibrium even when direct links are relatively more effective.

This is a consequence of the non-monotonicity in reduced utility with re-

spect to increasing links: an outside player linking to a player within a

component realizes a greater marginal utility due to additional indirect con-

nections in contrast to two players within a component linking up. To
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illustrate, suppose that neither Ge or Gc are a pws-equilibrium, i.e. for

c > 0:

Ui(G
e + ij)− Ui(Ge) > c > Ui(G

c)− Ui(Gc − ij), ∀i, j ∈ N
Now consider a line network, Glin, in which players are arranged in as-

cending order of their index. Thus players 1 and N have only one direct

link respectively to players 2 and N − 1, while all remaining players have
two links. Note that by virtue of positive externalities from indirect links,

U1(G
lin)−U1(Glin−12) > U1(Ge+12)−U1(Ge) > c and therefore players

1 and N will not delete their link. The same argument establishes that

player 2 will not delete the link with player 3 thereby dissociating from the

larger network. Player 2 will also not delete the link with player 1 because

U2(G
lin) − U2(Glin − 12) ≥ U2(G

e + 12) − U2(Ge) > c. This is because

adding the link with player 1 does not confer any positive indirect externali-

ties (given that player 1 is isolated); however player 2 can harness at least the

same positive externalities from a direct link with an isolated player as inGe.

Thus all players in Glin will maintain their existing links. Next note that

no two players in Glin have an incentive to forge a link. This can be seen by

checking the incentives of players 1 and N who realize the largest marginal

utility from connecting in Glin. Since these two players are already a part

of a component, they will not reap any additional positive externalities from

indirect links; thus c > Ui(G
c)− Ui(Gc − ij) > U1(Glin + 1N)− U1(Glin).

Hence Glin is a pws-equilibrium by virtue of the fact that an isolated player

derives the highest marginal utility from the first link with a non-singleton

component but a lower marginal utility from the second link because there

are no further externalities that are being transmitted from indirect links.

This also establishes that there cannot be any isolated players.

Similar considerations apply for a star network, Gstar. The deletion of a

direct link gives the center of the star, say player i, a reduction in utility

of at least Ui(G
e + ij) − Ui(Ge). For the spoke, the reduction in utility is

even greater because it is now isolated with no direct or indirect links to

the remaining network. Any other direct link from one spoke, say player

j, to another, say player k, will yield marginal utility that is less than

Uj(G
c)− Uj(Gc − jk). Therefore the star emerges as a pws-equilibrium.

Now consider the case where indirect links are more effective in transmitting

externalities than direct ones, i.e. 0 < λ < ψ. Then Ge is a pws-equilibrium

for high linking costs satisfying Ui(G
e + ij) − Ui(Ge) ≤ c. Therefore let

Ui(G
e + ij) − Ui(Ge) > c. Note as a consequence that a player cannot be
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isolated in a pws-equilibrium. We argue that a pws-equilibrium must be

minimally connected. Suppose G is not minimally connected with a non-

critical link ij ∈ G. Then players i and j continue to remain connected to
the same component after deleting their link. This implies G0 = G− ij <
G, H0 > H, and L = G + H =G0 + H0. Since λ < ψ, it follows that

(λ− ψ)G0 > (λ− ψ)G and thus Ui(G− ij) = 1
2
B2i (G

0,L) > 1
2
B2i (G,L) =

Ui(G). Therefore players i and j have an incentive to delete their non-

critical link. Minimally connected networks consequently emerge as pws-

equilibrium because players wish to remain connected to receive positive

externalities but with minimal connections. We have proved that:

Proposition 6 Suppose the utility function displays positive externalities

from both direct and indirect links. (a) Suppose λ > ψ > 0. The pws-

equilibrium are empty, complete, dominant group or minimally connected

(with no isolated players). (b) Suppose ψ > λ > 0. The pws-equilibrium are

empty or minimally connected (with no isolated players).

Remark: Similar to the local-global mode, we observe that the direct-

indirect mode also generates pws-equilibrium supporting distinct levels of

Nash actions. Therefore multiple Nash actions will be observed in the equi-

librium corresponding to positive externalities from primary and secondary

sources.

Positive Externalities from Direct Links and Negative Externali-

ties from Indirect Links

Now suppose direct links yield positive externalities and indirect ones nega-

tive. Let ψ = −ψ0, where ψ0 > 0. Then Ui(G) = 1
2
B2i

³
G− ψ0

λ+ψ0L,λ+ ψ0
´

and, since Proposition 5 restricts λ+ψ0 to be sufficiently small, each player
has an incentive to add direct links (i.e. increase G) in a manner that does

not change L. As before, Ge (resp. Gc)is a pws-equilibrium for sufficiently

low (resp. high) cost of link formation. Moreover a network with incomplete

components cannot be a pws-equilibrium.

Next we argue that pws-equilibrium are exclusive groups. Consider G com-

posed of multiple complete components. Suppose player i belongs to one

group, and players j, k are part of another exclusive group. Suppose player

i contemplates a link with player j. This will generate negative externalities
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for player i from being indirectly connected to players such as k in j’s com-

ponent. In other words, player i is adversely impacted by the fact that L

increases (to say L0) due to additional indirect links created in the network
G0 = G + ij. However, a subsequent link with player k will yield greater

marginal utility because ik increases G0 to G0 + ik but does not change L0.
Therefore if an outside player i can profit from the first link to a player j

in another component, then player i will have an incentive to connect to all

players in j’s component. The same argument establishes that all players in

j’s component will reciprocate. Therefore we end up with a network where

one exclusive group is strictly greater in size and the number of exclusive

groups has decreased by one. This argument either culminates with Gc

or some exclusive groups network as a pws-equilibrium. We have therefore

established that:

Proposition 7 Suppose the utility function displays positive externalities

from direct links and negative externalities from indirect links. Then pws-

equilibrium are either empty, complete, or exclusive groups.

Remark: Note that Nash actions can differ if the exclusive groups are

asymmetrically-sized. However, if all exclusive groups are of the same size,

and there are no isolated players, then such a network is regular and all

players will choose the same Nash action. Therefore positive (resp. nega-

tive) externalities from the primary (resp. secondary) source will generally

support equilibrium with similar Nash action levels.

Negative Externalities from Direct Links; Positive or Negative

Externalities from Indirect Links

We now consider the case where direct links yield negative externalities.

Accordingly let λ = −λ0 where λ0 > 0. If indirect links confer positive

externalities then ψ > 0 and Ui(G) =
1
2
B2i
¡¡−λ0 − ψ

¢
G+ ψL

¢
. Thus each

player has an incentive to delete direct links (i.e. decrease G) in a manner

that does not change L. Clearly Ge is a pws-equilibrium because adding

a direct link reduces payoffs and, in addition, connecting to an isolated

player yields no positive externalities because there are no indirect links to

exploit. Formally, adding a link ij to an empty network increases both gei1

and lei1 by 1, where gi and li are the i
th-row of G and L respectively, and

thus Ui(G
e + ij) < Ui(G

e). We now argue that Ge is in fact the only

pws-equilibrium. Consider therefore a network G 6= Ge with a non-empty
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component in which there is a non-critical link ij. Let G0 =G− ij and note
that the deletion of ij leaves L unaffected. Since player i can reduce negative

externalities by deleting ij but harness positive externalities from the same

number of indirect links, Ui(G
0) > Ui(G). Therefore player i will delete all

non-critical links. Therefore pws-equilibrium cannot have components with

non-critical links.

Now consider networks in which all links are critical, i.e. the class of mini-

mally connected networks. We already know from the above argument that

two-player components cannot be a pws-equilibrium. Therefore consider

minimally connected networks in which components have at least 3 players.

In such networks there exists at least one peripheral player, say j, who be-

comes isolated if some link ij with a player i is severed. But then player i

has an incentive to delete the link ij with a peripheral player because it per-

mits i to eliminate negative externalities from the direct link but continue

to access the remaining component. Formally, deleting the link with player

j reduces both gi1 and li1 by 1 thus yielding Uj(G − ij) > Uj(G). This

only leaves the empty network which we know is a pws-equilibrium. When

indirect links also yield negative externalities, i.e. ψ < 0, then the incen-

tive to delete direct links is intensified and Ge continues to be the unique

pws-equilibrium. Thus we have proved that:

Proposition 8 Suppose the utility function displays negative externalities

from direct links. Then the empty network is the unique pws-equilibrium.

Remark: We observe that when externalities from the primary source are

negative, then both modes of transmitting externalities induce the empty

network in equilibrium in which all players choose an identical positive Nash

action level.

5 Conclusion

This paper argued that the nature of externalities as well as their mode of

transmission are both important in dictating the architecture of equilibrium

networks. However the existence of externalities, both in forming links and

in choosing actions, are not taken into account by players in their equilib-

rium calculations. It is therefore an interesting issue to explore the efficient

26



network architecture that maximizes aggregate utility and identify potential

conflict between efficient and equilibrium outcomes. Consider the model of

local-global externalities. Given a network G, in the second stage the plan-

ner chooses an action vector that maximizes aggregate utility. Following

Jackson and Zenou (2012) this is given by:

xe(G) =
1

1− γ [1 + b (G, 2ξ)]
b (G,2ξ) ≡ B (G,2ξ)

In the first stage, the planner maximizes aggregate utility which is given by:

W (G) =

µ
1

2
− γ

¶
B> (G,2ξ)B (G,2ξ)

where B> (G,2ξ) denotes the transpose of the KB-centrality vector. Con-
sider positive strategic local and global externalities. If reduced utility sat-

isfies convexity in links, then depending on the cost of link formation either

Ge or Gc will be efficient. If on the other hand property (P1) obtains, then

the analysis of Billand et al (2013) and Westbrock (2010) would suggest

that NSG is efficient. With negative strategic local and global externalities,

links reduce KB-centrality and we would expect Ge to be efficient. In other

cases though the characterization of efficient networks is not clear cut and is

an important avenue for further research. Next consider externalities from

direct-indirect links. If both yield positive externalities, with direct links a

more effective transmitter, then Ge, Gc, or minimally connected networks

can be efficient depending on linking costs. If on the other hand indirect

links are more effective, minimally connected networks are efficient. If direct

(resp. indirect) links yield positive (resp. negative) externalities, then either

Ge or Gc will be efficient. These results seem to suggest that the mode of

transmission of externalities has a bearing on the topology of efficient net-

works. A systematic study of this issue remains an important open question.

Efficiency in a model where links and actions are chosen simultaneously (e.g.

Cabrales et al 2011) remains another issue warranting further research.
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