
Technical Report: Feedback-Based Generation of
Hardware Characteristics

Marcus Jägemar
Sigrid Eldh

Andreas Ermedahl
Ericsson AB

first.last at ericsson.com

Björn Lisper
Mälardalen University

bjorn.lisper at mdh.se

ABSTRACT
In large complex server-like computer systems it is difficult
to characterise hardware usage in early stages of system de-
velopment. Many times the applications running on the
platform are not ready at the time of platform deployment
leading to postponed metrics measurement. In our study we
seek answers to the questions: (1) Can we use a feedback-
based control system to create a characteristics model of
a real production system? (2) Can such a model be suffi-
ciently accurate to detect characteristics changes instead of
executing the production application?

The model we have created runs a signalling application,
similar to the production application, together with a PID-
regulator generating L1 and L2 cache misses to the same ex-
tent as the production system. Our measurements indicate
that we have managed to mimic a similar environment re-
garding cache characteristics. Additionally we have applied
the model on a software update for a production system and
detected characteristics changes using the model. This has
later been verified on the complete production system, which
in this study is a large scale telecommunication system with
a substantial market share.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; B.3.2 [Memory Structures]: Design styles—Cache
Memories; C.4 [Performance of Systems]: Measurement
techniques

General Terms
Measurement, Performance

Keywords
Control Theory, Feedback computing, Performance Analy-
sis, Characteristics, Cache memories, Simulation, Load Test-
ing and Design Aids

1. INTRODUCTION
Measuring behavioural characteristics for complex large scale
computer systems is difficult since this requires either a full
production system or advanced test programs with large test
systems. After a software update, it is essential to mea-
sure behavioural characteristics and check that the nature
of the system has not changed. Behavioural changes re-
sults in costly and time consuming verification in the de-
velopment cycle. Late detection of unfulfilled requirements
due to characteristics changes leads to increased lead time,
since parts of the system must be re-investigated and re-
implemented. Such increase in development time may not
be accepted since short time-to-market is essential [16, 7,
13, 19, 20].

The system we are investigating is a telecommunication sys-
tem with a market share of about 38% in 2011 [7]. It consists
of 5M SLOC [4] and runs on more than 20 types of boards
with different hardware layout and functionality servicing
both voice and data communication.

We define one instance of the computer system we are in-
vestigating as a node. One node can consist of many CPU’s
but from a system point of view they are grouped as one
execution entity. A large scale node has many CPU’s, a
small scale node may consist of only a single CPU. A node
communicates extensively both internally and externally be-
tween nodes using signals, i.e., operating system messages.
We introduce two concepts central to our investigation. The
first; behavioural characteristics is in our case CPI, CPU-
load or signal turnaround time but can be any metric that
describes the behaviour or performance of the system. The
second is load characteristics which is described by metrics
that will affect the behaviour characteristics of the system.
In our investigation we have concentrated on cache misses
but it can be any other metric such as TLB usage, branch
statistics, number of system calls or interrupts etc.

For early detection of behavioural characteristics changes
we suggest to create a model of the production system on a
small scale node. The benefit of doing so is that we don’t
have to wait for the availability of large scale nodes which
are expensive and difficult to obtain. Additionally, changes
in the platform may require modifications in the application
software which even more extends the time before character-
istics measurements can be made. Our approach is to alter
load characteristics, in our case cache miss rate, to change
the behavioural characteristics. Our model system consists

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Recorded HW
characteristics

Charmon

Production Appl.

Old Platform

a) Recording characteristics from a
production system

Production Node

Retrieve generator
parameters characteristics

Recorded HW

Signalling Appl.

Old Platform

b) Creating a simulation environment from previously 
recorded characteristics and retrieve regulator settings 

Load
RegulatorGenerator

Load

Test Node

Charmon

Use retrieved
generator parameters

Charmon

Signalling Appl.

using signalling application and load generator 

New Platform

c) Observe characteristics for a new platform by 

Generator
Load

Test Node

Figure 1: Our procedure in three steps to measure characteristics for a new software release by modelling a production system.

of a signalling application and a load regulator. The sig-
nalling application simulates the production system by com-
municating extensively between processes. Additionally, it
is used to detect performance differences when applying the
model, i.e. instead of using IPC/CPI as a metric. The
load regulator is implemented as a Proportional-Integral-
Derivative (PID) regulator and generates hardware load in
the form of cache misses at a rate consistent with a real pro-
duction system. Changes in the production system can now
be tested on the model system with similar behaviour. The
model in itself is easily extendable with additional regula-
tors and generators for additional hardware metrics such as
L3-cache hit/miss rate, branch prediction statistics etc. The
results we have achieved is to PID-regulate L1 Instruction,
L1 Data and L2 Data cache misses according to a predefined
rate measured on a real production system. Additionally we
have succeeded to detect behavioural characteristics changes
in the production environment by using the model node to
test a new software release.

The rest of the paper is organised as follows: In Section 2 we
present our process using a regulator to mimic behavioural
characteristics on a model node. We have described the de-
tails of our work in Section 3 together with the regulation al-
gorithm and load generation methods. Section 4 reveals our
experimental results when modelling an environment and a
real-life test measuring performance changes between two
releases of a system. In Section 5 we give some directions to
related work. Section 6 suggests future work and possible
improvements as well as shortcomings we have detected.

2. PROCESS
We define the platform as the operating system bundled
with basic cluster functionality such as program handling,
error recovery mechanism, load balancing etc. On top of the
platform one or several telecommunication applications run
using the platform API. The system denotes the complete
executing software on the hardware. In our investigation we
have followed this procedure to model a large system on a
much smaller node.

1. Record characteristics for an existing production sys-

tem, see Figure 1a.

(a) Run a complete customer system for which we
want to create a hardware (HW characteristics
model.

(b) Measure load-characteristics, in our case L1 Data,
L1 Instruction and L2 Data cache misses.

2. Create a simulation environment that mimics the char-
acteristics, obtained in step 1, on a test node, see Fig-
ure 1b.

(a) Start the platform (same release as in step 1) to-
gether with the signalling application.

(b) Use the HW load regulation algorithm to reach
the same load-characteristics ratio as in step 1b.

(c) Retrieve metrics from the regulation algorithm.
In our case the internal counters used to describe
the amount of cache-misses generated by the load
generation algorithm.

In the scenario above we have sampled behavioural char-
acteristics from a real customer system and then recreated
a similar execution environment for a limited platform sig-
nalling application. By storing the internal load-generation
parameters, in 2c, we can generate the same rate of cache
misses without using the regulation algorithm. This allows
us to change the platform and then apply the same rate of
misses. Investigating the ratio of misses allows us to detect
changes in platform behaviour. In the continued procedure
below we can measure characteristics for a different release
of the platform to get an indication of how it will perform
running the complete system.

3. Detecting behavioural characteristics changes, such as
signal turn-around time, on small scale hardware, see
Figure 1c.

(a) Start the new platform together with the signalling
application.

(b) Generate HW-load at the same rate as obtained
in step 2c.



(c) Check behavioural characteristics for the bench-
marking application, such as signal turnaround
time.

3. OUR APPROACH
3.1 Hardware and Software Resources
The operating system used in the platform investigated by
us is a small embedded real-time OS running on a Freescale
processor. The cache related details according to Freescale
reference manuals [11, 12] are:

• L1 Cache Size : 32kB separate 8-way set associative I
and D cache per core with 64B cache line size.
• L2 Cache Size : 128kB common 8-way set associative

I and D cache per core.
• L3 Cache Size 2MB common I and D cache for all

cores.

All cache levels uses pseudo LRU replacement strategy.

3.2 The Characteristics Monitor
Implemented within the platform is a continuously running
characteristics monitor called charmon. It gathers informa-
tion about the HW-usage of the complete system by pe-
riodically sampling performance monitor counters, PMS’s.
PMC’s can be configured to count different HW-events such
as cache misses, TLB misses, branch statistics etc. The
charmon stores counted events in a database together with
commonly requested key performance indices such as cycles
per instruction (CPI), L1-2-3 cache hit/miss rate and ratio,
TLB hit/miss rate and ratio, branch statistics, CPU load
and others. The probe effect is low since the PMC’s are
located inside the CPU with low or no performance penalty
and the database storage and PMC reprogramming occurs
infrequently.

In our platform we have currently implemented 13 different
sets of performance counters. The procedure when measur-
ing characteristics is as follows; first a set of PMC counters
is programmed into the PMC and triggered to start count-
ing. Then the character monitor sleeps for 1 second until
woken by a timer. Then the counters are read and stored
in the database and another set of performance counters are
programmed into the PMC and started. This gives each
counter set a periodicity of 13 seconds and length of 1 sec-
ond. The periodicity and sample length has its limitations
but shortening the time to reduce the granularity increases
the intrusiveness, which negatively affects the data collected.
In our system the sample length of 1 second is sufficiently
good for the relatively stable load generated.

Furthermore, using PMS’s gives us the opportunity to mea-
sure non-instrumented code reducing the intrusiveness of
the monitor. Other CPU architectures such as x86 imple-
ments performance counting in a performance monitor unit
described by Eranian [21], which could be used for the same
purposes as the PMC. For a general description of the PMC’s
see the Freescale P4080 reference manual [11] and for more
details the e500mc core reference manual [12], specifically
Table 9-47.

3.3 The Load Regulator

 0

 5

 10

 15

 20

52
:0

0

52
:3

0

53
:0

0

53
:3

0

54
:0

0

54
:3

0

55
:0

0

55
:3

0

56
:0

0

56
:3

0

57
:0

0

57
:3

0

58
:0

0

58
:3

0

 0

 0.5

 1

 1.5

 2

M
is

sr
at

e 
[%

]

C
yc

le
s P

er
 In

st
ru

ct
io

n 
an

d 
Si

gn
al

 tu
rn

ar
ou

nd
 ti

m
e[

us
]

Time [mm:ss]

L1 I$
L1 D$
L2 D$

CPI
Signal turn-

aorund time [us]
Figure 2: Cache misses and CPI when running a simple sig-
nalling application bouncing signals between two processes
located on the same core. The load regulation application
strives to have a system miss rate of 0.74% L1 I-cache, 3.3%
L1 D-cache and 22% L2 D-cache which is similar to a pro-
duction system. The regulation scenario described in this
figure was started after the system was completely stable, in
our case after about 52:00 minutes

The load regulator operates in two modes. The first mode
is a client to charmon subscribing to metrics for certain
HW-properties. With a user supplied ratio as reference the
regulator tries to generate HW-load reaching the reference
value. In our investigation we have implemented regulation
algorithms for L1 Instruction, L1 Data and L2 Data cache
misses. The second mode operates in a stand-alone man-
ner generating cache misses at a specific rate without any
feedback of current metrics.

3.4 The Control Algorithm
To generate a specific HW-load ratio a PID-regulator is used
to control each parameter. Each HW-property, such as cache
miss-rate, is controlled by its own PID-regulator. See Fig-
ure 2 for a typical regulation scenario. The test applica-
tion has an initial characteristics (to the left) that differs
from the final characteristics reached after the regulation
has started converging. The effect of increasing number of
cache misses can be observed by looking at the CPI and
signal turn-around time that increases as the cache usage
is increased. The spike (57:00) in the graph is difficult to
explain but there are many services running on the system
being monitored. It can be any periodically running sig-
nalling service synchronising information with other boards
generating a burst of load causing a spike. However, the
regulation algorithm keeps converging after the spike has
occurred. The initial control loop parameters for each of
the properties were empirically discovered to provide stabil-
ity rather than quick convergence.



Listing 1: The function that will generate the
actual ICache misses.

1 int bigswitch(int n) {
2 switch (n) {
3 case 1: n += 10;
4 break;
5 case 2: n += 11;
6 break;
7 case 3: n += 11;
8 break;
9 ...

10 case 99999: n += 50009;
11 break;
12 default: n+= 20;
13 }
14 return n;
15 }

Listing 2: The disassembly (objdump -D) of .text
section for PowerPC generated code with gcc 4.4.3.

1 ...
2 9c: 48 24 9e b0 b 249f4c <

bigswitch+0x249f4c>
3 a0: 80 1f 00 08 lwz r0,8(r31)
4 a4: 3d 60 00 02 lis r11,2
5 a8: 7c 00 5a 14 add r0,r0,r11
6 ac: 30 00 86 a2 addic r0,r0

,-31070
7 b0: 90 1f 00 08 stw r0,8(r31)
8 b4: 48 24 9e 98 b 249f4c <

bigswitch+0x249f4c>
9 b8: 80 1f 00 08 lwz r0,8(r31)

10 bc: 3d 20 00 02 lis r9,2
11 c0: 7c 00 4a 14 add r0,r0,r9
12 c4: 30 00 86 a2 addic r0,r0

,-31070
13 c8: 90 1f 00 08 stw r0,8(r31)
14 cc: 48 24 9e 80 b 249f4c <

bigswitch+0x249f4c>
15 ...

3.5 Generating L1 I-cache Misses
To generate instruction cache misses, a method using a large
switch-case statement is utilised. A function is called with
varying argument values for the switch-case index thus gen-
erating an I-cache hit if the distance, i.e., the number of
executable instructions in the code flow, from the previous
call is short and a miss if the distance is longer. As can be
seen in Listing 2 each case statement in Listing 1 generates
24B of instructions. This way to generate I-cache misses was
suggested in [18].

3.6 Generating L1 and L2 D-cache misses
The L1 Data and L2 Data cache misses are generated by
using different strides through memory. Depending on the
desired rate of L1 Data and L2 Data misses the tags and
sets in the cache memory will be excercised differently. In
the Freescale address translationa Physical Address (PA)
is represented by 36bits. For each cache set eight address
tags are stored with the corresponding 64B cache line. The
selection of address tag is done with bits PA[0:23] and set

Byte selector
Address Tag

0:23 30:35

Set selector

24:29

Cache line

Figure 3: PowerPC L1 Cache Address structure for sets and
tags.

Listing 3: The function that generates L1 D-
cache and L2 D-cache misses.

1 #define TAGS (8)
2 #define SETS (64)
3 for(di=iter; di>0; di--) {
4 unsigned int k;
5 unsigned int set;
6 unsigned int tag;
7 for(k=0; k<TAGS; k++) {
8 i f((*areaToggleCnt % (unsigned int)

offsRatio)==0) {
9 i f(*offsetCnt >= 7)

10 *offsetCnt = 0;
11 else
12 (*offsetCnt)++;
13 *offset = (64*1024) * *offsetCnt;
14 }
15 i f(*areaToggleCnt > MAX_AREA_TOGGLE_CNT)
16 *areaToggleCnt=0;
17 else
18 (*areaToggleCnt)++;
19 for(i=setstart; i<SETS; i++) {
20 set = (i << 7);
21 tag = (64*k) << 13;
22 pointer = ptr[core];
23 i f(pointer != NULL) {
24 a += pointer[(*offset + set + tag)/4];
25 }}}}

selection with PA[24:29]. To select a specific word inside the
cache line PA[30:35] is used, see [12].

The algorithm described in Listing 3 shows one way to gen-
erate L1 and L2 D-cache misses by first iterating over all
address tags in a cache set (all 8 of them) and then iterate
over all sets in the cache (all 64). To be able to regulate the
number of L1 D-cache misses there are two variables that are
modified by the regulation algorithm. The most important
variable is di, which determines the number of iterations.
For smaller adjustments when a small cache miss rate is re-
quested the iteration count will be set to a small value and
the setstart variable will be used to select the number of
sets to walk through. Increasing this variable will reduce
the number of misses further since fewer sets will be evicted
by this loop. To generate L2 D-cache misses the area tog-
gle is introduced. The idea is that the basic algorithm will
work more or less within the scope of the L1 D-cache space.
Adding a offset causing the memory address to access to
be outside that of L1 at a certain ratio will increase the L2
D-cache miss rate. One problematic issue is that introduc-
ing L2 cache misses affects the number of L1 misses so the
regulation algorithm will then need to recalculate the other
regulation parameters.

4. RESULTS
4.1 Mimicking a Production Node Environment



 0

 5

 10

 15

 20

Production
System

Signalling
Appl.

Signalling
Appl. with

Generated Load

 0

 0.5

 1

 1.5

 2

 2.5

 3
M

is
sr

at
e 

[%
]

C
PI

 [C
yc

le
s/

In
st

ru
ct

io
n]

Application Setup
CPI[Cyc/Instr]

2.04

1.15

1.96

L1 ICache missrate

0.74
0.06

0.75

L1 DCache missrate

3.3

0.14

3.35

L2 DCache missrate

22

1

21.2

Figure 4: Measured cache usage and CPI for the reference
system, test application and a recreated execution environ-
ment with the test application. Characteristics for the ref-
erence system is similar to the mimicked scenario.

The assumption is that introducing cache misses will cause
the application to execute in a less efficient way. According
to Doucette and Federova [5] an introduction of L2 D-cache
load causes a significant slowdown of simultaneously running
applications. We have used cache misses to mimic the exe-
cution environment of a real customer based system within
the constraints of a much smaller test suite. A first test of
the procedure outlined in Section 2 reveals that a load regu-
lator can add a hardware load yielding a similar load profile
as the real application. As can be seen in Figure 4 the cache
usage by the test applications itself does not mimic the real
application. When running the load regulator in parallel
to the test application the hardware usage becomes almost
identical. Additionally CPI has increased from 1.15 to 1.96
which is close to the original real world measurements of
2.04. We can conclude that introducing a load-generator
together with an already present application-benchmarking
suite improves the result. Figure 5 shows the test applica-
tion behaviour as a function of time. As can be seen in the
figure there is a lot of oscillation around the desired value. A
better tuned or improved regulation algorithm can probably
reduce these oscillations. We elaborate on this in Section 6.

4.2 Characteristics Evaluation in Daily Pro-
duction Test Environment

We have evaluated our approach described in Section 2 on a
real scenario where a software update was implemented for
the platform. All applications running on the platform were
left unchanged. The platform change relates to incorrect be-
haviour of cache handling in some rare circumstances. Be-
fore implementing the suggested solution it was suspected
that it could affect the behavioural characteristics of the

 0

 5

 10

 15

 20

 25

 30

30
:0

0

31
:0

0

32
:0

0

33
:0

0

34
:0

0

35
:0

0

36
:0

0

37
:0

0

38
:0

0

39
:0

0

40
:0

0

 0

 0.5

 1

 1.5

 2

 2.5

M
is

sr
at

e 
[%

]

C
yc

le
s P

er
 In

st
ru

ct
io

n 
(C

PI
)

Time [mm:ss]

L1 I$ L1 D$ L2 D$ CPI
Figure 5: Cache misses and CPI when running a test ap-
plication and the load generator trying to recreate a traffic
scenario similar to a real live node.

platform therefore leading to increased load when running
the production system.

We have been using a signalling application together with
a load generator to simulate the much larger and complex
telecommunication system. The application creates two pro-
cesses per core bouncing signals between them at a certain
rate. As a behavioural characteristics we measure the signal
turnaround time, which increases by 1,43% (average of 312
samples on 7 cores) with the software update running the
signalling application alone.

When altering the load characteristics to mimic the cache
usage for a real production system (with respect to L1 In-
struction, L1 Data and L2 Data cache usage) the difference
is much larger and easily detectable. With the software up-
date, the signal turnaround time increases by 9,13% (average
of 74 samples on 7 cores) compared to running without the
software change. As a reference running the same software
update on the complete production system the CPU load
change is 7.57% (average of 606 samples on 6 cores).

We should be careful making a direct comparison between
signal turnaround time and CPU load since they do not
quantify the same metric. They should however be related
since a higher CPU-load gives an increased signal turnaround
time due to longer processing time at the sending and re-
ceiving processes. Measuring CPU load for the signalling
application is not easily done since the cache-miss generators
also cause some CPU load. For the production system signal
turnaround time is not possible to measure since the pro-
duction system lack this mechanism. We have not yet found
a fully comparable metric that is easily measurable among
both systems. Interpreting the figures from the evaluation



shows, in this particular case, a relationship between the
CPU-load on the production system and signal turnaround-
time on the model system. How to quantify this relationship
is something that needs to be further studied.

5. RELATED WORK
Bell and John [3] describes a similar approach to ours. They
define a method to model an application by synthesizing vi-
tal metrics. The model is then used to automatically create
a representative test application with similar characteristics
to the original one. They have applied this method on the
SPEC2000 benchmark suite and the result shows that IPC
differs on average 2.4% between the original applications
and the model applications. Other metrics differ a degree
slightly higher than ours, I-Cache 8.6% and L2 cache misses
not explicitly written but to a large degree. Starting with
the synthesizing procedure we use a feedback control loop
to model the system while Bell and John [3] use statistical
simulation with instruction traces, described by Nussbaum
and Smith [10]. Bell and John states that the synthesis
procedure is semi-automatic and an average of ten passes
with some manual intervention is needed to tune the syn-
thesis parameters. As a comparison feedback control allows
the synthesis procedure to converge with no user interac-
tion. Additionally, the model in our case is described by
configuration parameters fed to a generic application. For
Bell and John this is done at compile time requiring recom-
pile to change its configuration. Another difference in our
approaches is that we use a signalling application to detect
any performance changes between releases while Bell and
John uses IPC.
Joshi et al. [9] have formulated a concept called performance
cloning that can be used to synthesize characteristics from
a proprietary application and create a model that mimics a
similar behaviour. In effect Joshi et al. implements a simi-
lar methodology as Bell and John in [3] but have refined the
memory and branching model to be hardware agnostic.
Doucette and Fedorova [5] have implemented a similar func-
tionality to ours when generating cache misses to determine
application sensitiveness for different architectures. For ex-
ample if an application is sensitive on one particular resource
and another architecture has different amount of that re-
source the application performance is to some extent related
to the hardware in the same way as the generator functions.
One can in other words to some extent predict the perfor-
mance of an application without actually running it on the
target platform. As in Cache Pirating by Eklöv et al. [6]
our application steals hardware-resources from other appli-
cations thus starving them. Our approach is to use the a
cache miss generator to mimic a certain environment, while
the cache pirate is used to reduce the available hardware-
cache to determine the application demand for cache and
memory bandwidth. We also work on a core-private cache
instead of a shared cache. Saavedra and Smith [17] explain
how to understand cache memory structure and how to gen-
erate misses, associativity etc. Alameldeen et al. [1] investi-
gate server platforms and come to an interesting conclusion
that it is quite difficult to create simulations of production
systems. In their work they recreate the desired character-
istics by using a tailored work-load suite. Our approach is
similar but since they have shown some difficulties to recre-
ate a similar hardware-load profile we use feedback-based
load generator to achieve an approximation of the produc-

tion application.
In the area of continuous system monitoring we can find
interesting relations, such as Anderson et al. [2]. In their
approach they implement a low intrusive (1%-3%) sample
based mechanism to gather system wide information. The
sampling is implemented by means of periodically execut-
ing sampling interrupts generated by performance counters.
In our work this is done by a periodically executing pro-
cess gathering performance counters in a ring buffer. One
of the standard work when monitoring or measuring sys-
tems is the LM-Bench suite by Mcvoy and Staelin [15]. It
is useful to measure and calculate cache and memory tim-
ings. Our platform is unfortunately not supported by the
tool so a change to Linux was necessary to give insight into
the characteristics. Regarding measurements with perfor-
mance monitor counters Eranian [21] claims that they are
a vital part in performance measurements and evaluation.
Her investigation is done on a different hardware (x86) but
the basic concept is the same; run a measurement applica-
tion gathering information for later evaluation. In our case
we have extended this idea to let the samples feedback into
a regulation algorithm to produce cache misses.

6. FUTURE WORK
There are a number of issues that would be interesting to
investigate further.

• To estimate characteristics for a production applica-
tion running on hardware currently being designed we
would like to create a model in the same way as being
described in Section 2. Such estimation can be useful
to make early performance discoveries reducing time-
to-market for new hardware. The model needs to take
into account for example cache size changes such as
the square root method describes; doubling the cache
reduces miss rate by

√
2, described by Hartstein et al.

[14].
• Extending the simulation model with additional mea-

surable metrics would improve the accuracy of the
model, for example; L3 cache hit rate, Branch hit/miss
rate, Interrupt rate. A more complete model would re-
duce the need for the signalling application, which is
needed at present state to get representative result for
complex systems.
• A more complete implementation of counters would,

apart from giving a better approximation of the real
system, also give deeper insight into the behaviour of
the system. Investigations such as Eyerman et al. [8]
where they investigate individual contributors to CPI
would give interesting information about the charac-
teristics of a particular system.
• The implementation described here generates bursts of

memory accesses that are not representative to a real-
world application. Such bursts may lead to congestion
problems towards the bus and main memory. We don’t
yet know about the true behaviour of the real-world
application so an improvement would be to investigate
this further.
• To decrease the converging time and accuracy an im-

proved regulation algorithm would be beneficial. The
HW-properties we are regulating are connected to each
other causing undesired side-effects. For example when
one of the properties, such as L1 D cache, is changed
it may cause a change for L2 D-cache. This cause



problems converging to the desired state. Using more
advanced regulation algorithms may improve the be-
haviour.
• Reduce the sampling interval. In the current imple-

mentation this is set to 1 second per sampling item.
This means that it takes several seconds between each
sample. This causes the regulation algorithm to con-
verge slowly. It is also difficult to observe transients
since only the average over the sampling interval is
recorded.
• Scale the regulation algorithm to a multi-core environ-

ment. Try different load profiles located on all cores on
the CPU and see how that will influence application
performance on other cores.

Acknowledgment
This work is funded by Ericsson AB and by the Swedish
Knowledge Foundation (KK stiftelsen) through the ITS-
EASY program.

7. REFERENCES
[1] A. R. Alameldeen, M. Martin, C. J. Mauer, K. E.

Moore and M. Xu. Simulating a 2M$ Commercial
Server on a 2K$ PC. IEEE Computer, pp. 50–57,
Volume 36, Issue 2, Feb 2003

[2] J. Anderson, L. Berc and J. Dean. Continuous
profiling: where have all the cycles gone?. In ACM
Transactions on Computer Systems, pp. 357–390, Vol.
15, No. 4, November 1997

[3] R. Bell and L. K. John Improved automatic testcase
synthesis for performance model validation. In
Proceedings of International Conference on
Supercomputing (ICS), pp. 111–120, 2005.

[4] M. Bergqvist, J. Engblom, M. Patel and L. Lundegard.
Some experience from the development of a simulator
for a telecom cluster (CPPemu). In Proceedings of the
10th International Association of Science and
Technology for Development, pp. 13–15, Nov. 2006.

[5] D. Doucette and A. Fedorova. Base vectors: A
potential technique for microarchitectural
classification of applications. In Proceedings of the
Workshop on the Interaction between Operating
Systems and Computer Architecture (WIOSCA), in
conjunction with ISCA-34, 2007

[6] D. Eklöv, N. Nikoleris, D. Black-Schaffer and E.
Hagersten. Cache Pirating: Measuring the Curse of
the Shared Cache. In Proceedings of Parallel
Processing (ICPP), 2011 40th International
Conference, Sept. 2011.

[7] Ericsson. Ericsson unveils new products, partnerships
and increased market share at mwc 2012.
www.ericsson.com/thecompany/press/
releases/2012/02/1589097c, 2012.

[8] S. Eyerman, L. Eeckhout, T. Karkhanis and J. E.
Smith. A top-down approach to architecting CPI
component performance counters. In IEEE micro, pp.
84–93, Vol 27, Jan-Feb, 2007.

[9] A. Joshi, L. Eeckhout, R. H. Bell Jr. and L. K. John
Distilling the essence of proprietary workloads into
miniature benchmarks. In ACM Transactions on
Architecture and Code Optimization, pp. 1–33, Vol 5,
2008.

[10] S. Nussbaum and J.E. Smith. Modeling superscalar
processors via statistical simulation. In Proceedings of
Parallel Architectures and Compilation Techniques,
pp. 15–24, 2001

[11] Freescale. P4080 Reference Manual. Rev F. Ref f
edition, 2009.

[12] Freescale. e500mc Core Reference Manual. Rev. f
edition, 2010.

[13] Gartner. High Tech & Telecom Providers (HTTP).
www.gartner.com/technology/consulting/
high-tech-telecom-providers.jsp, 2012.

[14] A. Hartstein, V. Srinivasan and T. Puzak. Cache miss
behavior: is it

√
2? In Proceedings of the 3rd

conference on Computing frontiers, pp. 313–320, 2006.

[15] L. Mcvoy and C. Staelin. lmbench : Portable Tools for
Performance Analysis. In Proceedings of the 1996
annual conference on USENIX Annual Technical
Conference, p. 23, January 1996.

[16] K. Rowe. Time to market is a critical consideration. In
eetimes online paper, www.eetimes.com/
discussion/guest-editor/4027610/
Time-to-market-is-a-critical-consideration,
2012.

[17] R.H. Saavedra and A.J. Smith. Measuring cache and
TLB performance and their effect on benchmark
runtimes. In IEEE Transactions on Computers, pp.
1223–1235, October 1995.

[18] Stackoverflow. Generate Instruction Cache misses. In
Stackoverflow forum,
stackoverflow.com/questions/9793660/
what-are-the-causes-for-instruction-cache-miss,
2012.

[19] P. Taylor. Battle lines are drawn for the future of 4G.
In Financial Times online paper,
www.ft.com/intl/cms/s/0/
399b1508-d9d8-11dc-bd4d-0000779fd2ac.
html#axzz1va5rEtRx, 2008.

[20] J. Scarpati. Faster time to market with next-gen OSS.
www.telecomasia.net/content/
faster-time-market-next-gen-oss, April 26,
2011

[21] S. Eranian. What can performance counters do for
memory subsystem analysis? In Proceedings of the
2008 ACM SIGPLAN workshop on memory systems
performance and correctness, pp. 26-30, 2008


