
Speculative Client Execution in Deferred Update
Replication

Balaji Arun, Sachin Hirve, Roberto Palmieri, Sebastiano Peluso, Binoy Ravindran
Virginia Tech

{ba2669,hsachin,robertop,peluso,binoy}@vt.edu

ABSTRACT
Deferred Update Replication (DUR) is a powerful replica-
tion technique that allows parallelism of clients’ execution
while a global certification phase checks the validity of the
transactional execution against workloads running on re-
mote nodes. The well-known favorable scenario of DUR is
when remote transactions rarely conflict with each other.
In this paper we show that, even in this case, the conflicts
happening among local application threads can significantly
decrease performance. We address this problem by using
speculation. We let local transactions propagate their post-
execution snapshot to other local transactions before the
outcome of the global certification is notified. This way,
in scenarios where accesses are partitioned across nodes, we
prevent local transactions from aborting each other. Through
experimental study based on well-known transactional bench-
marks we assess the effectiveness of the approach, gaining
more than 10× using TPC-C benchmark.

Categories and Subject Descriptors
H.2.4 [Database Management]: Transaction processing;
D.4.5 [Software]: Fault-tolerance

General Terms
Algorithms, Performance

Keywords
Deferred Update Replication, Speculation, Fault Tolerance

1. INTRODUCTION
Replication is a widely used technique to ensure fault-

tolerance of transactional systems. When full-replication
is adopted (i.e., all shared objects are replicated across all
nodes), the correctness of transactions started on remote
nodes is usually guaranteed through a protocol that relies
on a total order layer (e.g., Paxos [12]). This layer ensures

.

that each sent message is delivered by all correct nodes (i.e.,
nodes that did not fail) in the same order. This way each
node can locally test the correctness of its executed trans-
actions against all concurrent transactions in the system.

The deferred update replication (DUR) [15] is a well-known
scheme where transactions execute locally and their commit
phase (including the transaction validation procedure) is de-
ferred until a total order [12] among all nodes is established.
This total order is required because it imposes a common se-
rialization order among all transactions in the system, which
is used to verify the global correctness of transactions’ exe-
cution. In fact before commit, each transaction has to un-
dergo a certification phase where the transaction validates
the consistency of its read operations, performed during the
execution, against write operations done by other concurrent
transactions in the system. To accomplish this task, a to-
tal order is leveraged so that all nodes know a unique order
to follow while performing the certification. If the snap-
shot observed is still consistent, then the transaction can
safely commit by updating the shared state with its written
objects. The sequence of commit necessarily matches the
global total order.

DUR-based protocols find their best scenario in terms of
performance when transactions running on different nodes
(remote transactions) rarely conflict with each other (e.g.,
well-partitioned accesses across nodes). This way an exe-
cuted transaction, which is waiting for its global certifica-
tion, is likely to commit because all its read operations can-
not be invalidated by remote transactions due to the well-
partitioned accesses. In such an execution environment, the
DUR scheme allows the (massive) parallelization of appli-
cation threads running locally at each node, therefore en-
suring high performance. However, even if the application
exposes well-partitioned accesses across different nodes, the
local parallelism is effectively exploited only in case local
concurrent transactions hardly request same objects.

As an example, consider TPC-C [6], the classical trans-
actional benchmark widely used for evaluating distributed
synchronization protocols. Most TPC-C transactions ac-
cess a warehouse before performing other operations. The
usual deployment of TPC-C is to pin one (or a set of) ware-
house to each node and let transactions generated on that
node to likely request that warehouse. This configuration,
which is representative of several applications with well-
partitioned accesses, matches DUR’s needs in terms of few
remote aborts, but it also reduces the parallelism of local
application threads due to conflicts.

A generally adopted technique for preventing a local trans-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

action T2 from invoking a certification phase if it conflicts
with another local transaction T1, which is already com-
pleted, is to validate T2 locally after its completion. This
way, T2 is able to detect the conflict with T1 and thus it
can abort immediately without burdening the global certi-
fication layer (i.e., the distributed software component that
provides the total order and validates/commits transactions)
with additional (and futile) work. In fact, T2 is already
doomed even if no remote transaction conflicts with it. In
this paper we propose a different approach to solve the above
problem. We do not abort T2 but rather we allow it to spec-
ulatively read [9, 14, 13] from the snapshot generated by the
execution of T1. Clearly the whole execution of T2 depends
on the eventual commit of T1 before T2 itself, however, in
case of well-partitioned accesses, this will likely be the case.

In other words, we define an execution order of local trans-
actions and we propagate the state changes made by one ex-
ecution to another along the chain of subsequent conflicting
transactions, according to the predefined execution order.
In addition, transactions from one node are submitted to
the global certification layer in the same order as they are
executed and we do not allow the final agreed total order
to subvert that order. According to the aforementioned ex-
ample, T2 will be successfully certified and thus committed
because the T1’s snapshot, which T2 speculatively accessed,
will be committed before T2’s certification.

Our approach can be summarized in two high-level guide-
lines, which can be successfully applied to existing DUR-
based protocol for increasing their performance further:
- Local Transaction Ordering. All transactions executing on

one node should be processed according to a local order.
It is worth to note that this order is not necessarily known
(or pre-determined) before starting the transaction execu-
tion, rather it could be determined while transactions are
executing taking into account their actual conflicts.

- Local Certification Ordering. Each node should submit
completed transactions to the certification layer in the
same order as they are speculatively (locally) processed
and it should not allow the global ordering layer to change
this (partial) order. This way, the local transaction order-
ing is always compliant with the final commit order, thus
making the speculative execution effective.
In this paper we applied our speculative approach to Pax-

osSTM [19], a state-of-the-art, high performance and open-
source DUR protocol, presenting X-DUR. X-DUR embeds
a set of design choices for simplifying its implementation,
while still showing significant and promising gains with re-
spect to the original, non-speculative version.

We evaluate X-DUR using three well-known transactional
benchmarks such as Bank (a monetary application), TPC-
C [6] (popular on-line transaction processing benchmark),
and Vacation (a distributed version of the famous applica-
tion included in the STAMP suite [4]). As testbed we use
up to 23 nodes available on PRObE [7], a state-of-the-art
public cluster. Results reveal X-DUR’s benefits, especially
when the contention in the system is high, thus saving local
aborts. As an example of our findings, the maximum speed-
up observed when running TPC-C is higher than one order
of magnitude against the original PaxosSTM.

X-DUR is the first protocol that applies speculation to
clients’ transactions for handling local contention in a DUR-
based scheme.

2. RELATED WORK
The DUR model has been proposed in [15] and further

investigated in a number of subsequent works [17, 19, 10].
Speculation is a widely used technique for anticipating

work based on uncertain inputs [3, 14, 16, 16, 1]. Some of
these works process transactions speculatively along differ-
ent serialization orders [14, 3], whereas others [16, 1] fix a
single order at the beginning and follow it. This intuition is
the same as X-DUR but the deployment is different. X-DUR
speculates on the processing of client transactions before in-
voking the global certification layer (or the ordering layer
as in [16, 14]). Finally [1] applies speculation to parallelize
different parts of a transactions.

The protocols presented in [18, 5] improve the perfor-
mance of DUR-based protocols by leveraging well-partitioned
accesses for speeding up the certification phase. This way, if
conflicts are rare, transactions can be validated and commit-
ted in parallel, improving performance significantly. On the
other hand, X-DUR provides a solution only for optimizing
contention among local transactions, thus can be applied on
top of [18, 5] to further enhance their performance.

Finally, we consider Specula [16] as the closest approach to
X-DUR. In Specula each application thread commits specu-
latively and goes ahead executing next transactions assum-
ing the success of the certification of the previous specula-
tively committed transactions. Specula differs from X-DUR
because it does not enforce an order between transactions
speculatively committed by different threads, thus if they
conflict each other, one of the executions is still aborted. X-
DUR’s approach can enhance Specula by introducing some
coordination among application threads so that an order can
be imposed and those aborts can be avoided.

Another approach pursuing the same goal of X-DUR is
in [20], where transactions are assigned to nodes in a way
such that conflicting transactions are likely delivered on the
same node. Subsequently, within a node transactions are
ordered using a lock-based concurrency control.

3. SYSTEM AND EXECUTION MODEL
We assume a distributed system, where a set of processes

communicate using message passing links. To eventually
reach an agreement on the order of transactions when nodes
are faulty, we assume that the system can be enhanced with
the weakest type of unreliable failure detector [8] that is
necessary to implement a leader election.

Nodes may fail according to the fail-stop (crash) model [2].
We assume 2f +1 nodes where at most f nodes are simulta-
neously faulty. In any communication step, a node contacts
all other nodes and waits for a quorum Q of replies. We
assume the classical quorum [12] Q=f + 1. Further, we con-
sider only non-byzantine faults.

The transactional application executing on top of our sys-
tem is composed of multiple threads balanced on all nodes.
According to the certification-based replication scheme [15],
each thread activates and executes transactions at the same
node where it is running, recording objects read from and
written to in private spaces called the read-set and the write-
set, respectively. When a transaction reaches the stage where
all of its operations have been executed, the executing thread
simply waits until the transaction is globally validated and
then is either committed or aborted. This decision is de-
terministic on all the nodes, including the node where the

transaction started and executed, due to the total order en-
forced by the certification layer. Once the node recognizes
the transaction’s result, it informs the relative application
thread. If the outcome is commit, then the thread can go
ahead and perform subsequent work. On the other hand,
if the outcome is abort, then the application thread has to
re-issue the transaction from its very beginning.

4. X-DUR
In this section we detail X-DUR, our speculative DUR

protocol, which allows client transactions to speculatively
read from uncommitted (but completed) snapshots1 gener-
ated by other local transaction executions already submitted
to the certification layer. This way, concurrent transactions
running on a single node are already serialized with the same
order they are certified, thus canceling any possible abort
due to local contention. This approach becomes particularly
effective in case of well-partitioned accesses, where transac-
tions submitted by different nodes are unlikely to conflict
with each other.

4.1 Speculative Execution
X-DUR implements the local transaction ordering by forc-

ing a predefined order of client transactions. A number of
application threads execute in parallel on each node and
their issued transactions are scheduled by a single-threaded
X-DUR executor. Its role is twofold: i) it assigns the spec-
ulative serialization order to new transactions according to
their arrival order; ii) it executes them enforcing the local
transaction order.

When a transaction completes its speculative execution, it
makes its written objects available as speculative committed
versions to other subsequent (according to the local trans-
action ordering) local speculative transactions. In order to
accomplish this task, each shared object includes the last
speculatively written value besides the last committed one.
We do not need to keep more than one speculative value per
object because the execution is single threaded thus only the
value written by the last speculative execution needs to be
visible. Other speculatively modified objects are kept in the
write-set of those already completed transactions that are
waiting for their global certification phase.

X-DUR’s speculative execution is effective if the certifica-
tion layer does not subvert the local transaction order used
for the speculative execution. In case this happens, then
transactions will be serialized by the certification layer in a
different way, thus the speculative execution will likely not
be committed and an abort signal will be issued to the appli-
cation thread. In order to prevent this scenario, each node
enqueues certification requests in a batch such that the order
in which they appear in the batch matches the local trans-
action execution order. This batch is then sent to all nodes
through the global certification layer. This way, the total
order layer cannot arbitrarily decide to re-order certification
requests coming from a node because the batch becomes the
ordering unit, rather than a single message. Batches sent
from different nodes are ordered enforcing no specific rule
because X-DUR relies on the assumption that accesses are
well-partitioned across nodes.

1We name uncommitted snapshot the whole shared state in-
cluding uncommitted modifications made by the commit of
a speculative transaction.

4.2 Handling Certification Phase
The global certification layer is the distributed compo-

nent in charge of total ordering certification requests and
validating/committing transactions locally. X-DUR inher-
its the technique for certifying transactions from the DUR
model. Specifically, when a batch is delivered, each transac-
tion’s read-set and write-set is extracted and certified. The
certification consists of validating the read-set against the
current (non-speculative) committed versions available and,
in case of a successful validation, all speculative written ob-
jects are made available to all non-speculative transactions
(including the next certification requests).

If on the one hand the speculative execution allows to
move forward the transactions’ progress in case of parti-
tioned accesses, then on the other hand a remote conflict
could inevitably force a possible long chain of speculative
conflicting transactions to abort. X-DUR solves this prob-
lem by stopping the speculative execution of incoming trans-
actions as soon as a remote abort is detected during the
certification phase. In practice, when an abort happens the
speculative execution handler forces all new transactions to
read from the committed values and start over with a new
speculative snapshot.

4.3 Example
In the following we provide an example of how X-DUR

works. Consider a replicated system composed of five nodes
N1, . . . , N5. On top of each node there are three threads
deployed for running one transaction each. Say node Ni

generate T i
1 , T i

2 , and T i
3 . Assume now that all transactions

coming from one node are conflicting with each other and
they are speculatively processed following the above order.
We can now distinguish between two cases: (A) one that im-
plements the fully partitioned accesses, thus no transaction
conflicts across different nodes; the other, (B), where there
are at least two transactions started on different nodes that
conflict (let us call them T i

2 and T k
3).

The case (A) is the sweet spot for X-DUR because each
node Ni submits a batch Bi= {T i

1 , T i
2 , T i

3} where any pos-
sible order among B1, B2 and B3 is acceptable. In fact,
independently from the batches’ order, the order of transac-
tions T i

1 , T i
2 , and T i

3 (which are conflicting) will be always
preserved. Exploiting this fact, once a batch is received, the
validation certainly will succeed and the speculative trans-
action can be committed. In (B), the batches’ order matters
because if Bi is ordered before Bk, then T k

3 cannot pass the
certification phase and will be aborted. On the contrary, if
Bk is serialized before Bi, then the designated victim is T i

2

and, as a consequence, also T i
3 . This is because they con-

flict with each other and T i
3 speculatively executed a read

operation from the modifications made by T i
2 , which is now

aborted. In the latter case, on node Ni other conflicting
transactions could possibly have already been speculatively
committed. If so, T i

2 and T i
3 ’s abort could have already made

their read-set invalid. To prevent new transactions from
reading a possible invalid speculative snapshot, the abort of
T i
2 forces all new transactions to read from the committed

snapshot.

4.4 Correctness
X-DUR ensures 1-Copy Serializability (1CS) [2] as global

property. The proof is straightforward because each trans-
action is deterministically certified in the same order on all

nodes. This means that all transaction executions are vali-
dated and committed in the same order on all nodes, even
in presence of failures. The speculative execution of X-DUR
does not hamper 1CS because during the certification phase
all speculative transactions are validated before being com-
mitted. If their execution is not consistent (e.g., due to
remote conflicts), they are aborted and restarted by reading
from the last committed shared state.

5. EVALUATION
We implemented X-DUR in Java, inheriting the PaxosSTM’s

software architecture [19]. PaxosSTM [19] processes trans-
actions locally, and relies on JPaxos [11] as a total order
layer for their global certification across all nodes.

We used the PRObE testbed [7], a public cluster that is
available for evaluating systems research. Our experiments
were conducted using 23 nodes (tolerating up to 11 failures)
in the cluster. Each node is equipped with a quad socket,
where each socket hosts an AMD Opteron, 16-core, 2.1 GHz
CPU. The memory available is 128GB, and the network con-
nection is a high performance 40 Gigabit Ethernet.

As transactional application we leverage Bank, a common
benchmark that emulates bank operations, TPC-C [6], a
popular on-line transaction processing benchmark, and Va-
cation, a distributed version of the famous application in-
cluded in the STAMP suite [4]. Each application is config-
ured for avoiding transactions that remotely conflict with
each other (well-partitioned accesses across nodes). On the
other hand, within each node we define three configurations,
which reflect three different local contention levels: low,
medium, high. Each of them differs from others for the to-
tal number of shared objects available. Table 1 summarizes
all the configurations used. We enforce the well-partitioned
accesses by equally dividing the total number of shared ob-
jects per node (e.g., with Bank, medium contention and 10
nodes, application threads on one node are allowed to access
200 accounts). Within a node, local accesses are uniformly
distributed (not skewed).

Application Low Medium High
contention contention contention

Bank 5000 2000 500
(accounts)
TPC-C 230 115 23

(warehouses)
Vacation 1000 500 250

(relations)

Table 1: The details of the Low/Medium/High con-
tention configurations used per benchmark.

Read-only profiles are excluded from the evaluation be-
cause those transactions can be run locally exploiting a mul-
tiversioned repository and concurrency control, as in [19, 9,
10, 14]. As a result they never abort thus in this case the
speculative execution of X-DUR is not required.

All clients (i.e., application threads) in the system are bal-
anced among deployed nodes. In order to avoid changing the
load of the system as we increase the number of nodes, we
keep the number of clients fixed throughout all experiments.
This explains the common shape of lines in the plots. In-
creasing the size of the system does not change the overall
load, thus the performance of all tested configurations de-
grade due to the higher overhead of the certification layer

(e.g., longer broadcast phase, higher number of messages).
The best throughput is often reached in the range of 7-15
nodes deployed, where the system is not so large and clients
are properly balanced so that local nodes’ resources are not
saturated (as for the case of 3 nodes). In all experiments
(except for Figure 4) the following total numbers of clients
are used: 920 for Bank and 550 for TPC-C and Vacation.

For each benchmark we compared the performance of X-
DUR and PaxosSTM. Given the well-partitioned accesses,
both the systems show high-performance. However, the im-
pact of X-DUR’s speculative execution becomes clear when
the number of shared objects decreases (i.e., medium/high
contention). In these cases, even with the simple speculative
single-threaded execution, local transactions are prevented
from aborting thus substantially increasing performance.

 0

 20

 40

 60

 80

 100

Bank TPC-C Vacation

%
 A

b
o
rt

Nodes

High Med Low

Figure 1: % of aborted transactions on 11 nodes
varying the contention level and different bench-
marks using PaxosSTM.

In Figure 1 we provide an evidence of how the local con-
flicts can impact the overall system progress even in case
of well-partitioned accesses across nodes. Here we report
the percentage of aborted transactions measured using Pax-
osSTM for different benchmarks and local contention levels.
Nodes are fixed to 11. We recall that accesses are well-
partitioned thus aborts cannot be due to remote conflicts,
rather they only count as local aborts. Among all the bench-
marks, TPC-C reveals a higher number of aborted transac-
tions in the high contention scenario (i.e., total of 23 shared
warehouses, thus the clients of each node are allowed to
access 2 (local) warehouses).

Figure 2 shows the results using Bank benchmark. As
expected under the low contention scenario X-DUR behaves
generally worse than PaxosSTM because the number of Pax-
osSTM’s aborted transactions is low thus its parallelism
is more effective than X-DUR’s single-threaded execution.
However, due to the nature of Bank’s small transactions,
the gap between them is limited to 43%. On the other
hand, when we move on the medium and high contention
experiments, then X-DUR effectively exploits its specula-
tive execution preventing local transactions from conflicting
with each other, showing better performance up to 44% and
2.1× in the medium and high contention, respectively (if we
exclude the case of 3 nodes where PaxosSTM’s is penalized
due to many clients deployed on few nodes). Performance
of X-DUR does not significantly vary when we change the
number of shared objects due to the serial execution.

Figure 3 shows the average latency perceived by clients
measured during the experiments in Figure 2. While the

 0
 50

 100
 150
 200
 250
 300
 350

 3 5 7 9 11 13 15 17 19 21 23

La
te

nc
y

(m
s)

Replicas

PaxosSTM High
PaxosSTM Med
PaxosSTM Low

X-DUR High
X-DUR Med
X-DUR Low

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 3 5 7 9 11 13 15 17 19 21 23

T
ra

n
s
a

c
ti
o

n
 p

e
r

s
e

c

Replicas

Figure 2: Throughout of PaxosSTM and X-DUR
using Bank benchmark.

 0

 50

 100

 150

 200

 250

 300

 350

 3 5 7 9 11 13 15 17 19 21 23

L
a

te
n

c
y
 (

m
s
)

Replicas

Figure 3: Client perceived latency of PaxosSTM and
X-DUR using Bank benchmark.

performance of all configurations almost reflect the same
(inverse) trend as the throughout reported in Figure 2, Pax-
osSTM with high contention behaves the worst. Interest-
ingly, the average latency with 3 nodes for PaxosSTM is
much higher than X-DUR. This is because the number of
clients are fixed thus with a small system size there are too
many clients operating per node and this causes repeated
conflicts and (local) aborts. X-DUR does not suffer from
such a case because clients cannot conflict with each other.

We further leveraged Bank for showing the throughput of
PaxosSTM and X-DUR when we fix the number of nodes
and we vary the number of application threads (Figure 4).
We selected 7 nodes because it represents the highest data-
point in Figure 2. Clients are set in the range of 600 to 1200
(steps of 150). The plot confirms how PaxosSTM’s behavior
changes when different number of clients are deployed. X-
DUR is less affected than its competitor due to the singled-
threaded handler for executing incoming transactions. We
observe 900 as configuration where all configurations provide
the best performance. This is the reason that motivated us
to use 900 as total number of clients for Bank.

Throughput and latency of competitors running TPC-C
benchmark in all the configurations are shown in Figures 5
and 6, respectively. TPC-C is an application with longer
transactions than Bank and with an average higher con-
tention level. This is because the usual deployment of TPC-
C suggests to let clients running on a node to likely access

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 600 750 900 1050 1200

T
ra

n
s
a

c
ti
o

n
 p

e
r

s
e

c

Application threads

Figure 4: Throughput of PaxosSTM and X-DUR
varying the number of clients using 7 nodes running
Bank benchmark.

 0
 50

 100
 150
 200
 250
 300
 350

 3 5 7 9 11 13 15 17 19 21 23

La
te

nc
y

(m
s)

Replicas

PaxosSTM High
PaxosSTM Med
PaxosSTM Low

X-DUR High
X-DUR Med
X-DUR Low

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19 21 23

T
ra

n
s
a

c
ti
o

n
 p

e
r

s
e

c

Replicas

Figure 5: Throughout of PaxosSTM and X-DUR
using TPC-C benchmark.

only one warehouse2 (in our experiments this happens when
we deploy 23 nodes in the high-contention case). In this sce-
nario, the speculation becomes particularly effective because
almost all transactions access to the same warehouse (or few
of them when the size of the system is less than 23). With
medium and high contention we allowed clients to access
at least five and ten warehouses respectively, but still this
is not enough for sensibly reducing conflicts among local
threads, thus X-DUR gains up to more than one order of
magnitude against PaxosSTM in the high conflict scenario.

The last application we used for evaluating our proposal
is Vacation. The collected throughput is shown in Fig-
ure 7. Vacation is more similar to TPC-C than Bank in
terms of composition of transactions, but the overall con-
tention is lower (as in Bank). In fact, as in Bank, the num-
ber of shared objects (i.e., relations3) accessed per node
in the well-partitioned accesses configuration is higher than
the number of warehouses in TPC-C. X-DUR consistently
beats the competitor throughout all the tested cases. When
the system is more loaded and the network overhead has
still a limited impact on performance (e.g., nodes less than
15), we observe the maximum gain of X-DUR against Pax-
osSTM (i.e., 3.36×) when we configure the benchmark with
high contention. With medium and low contention we still

2The most important object in TPC-C.
3The most important object in Vacation.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 5 7 9 11 13 15 17 19 21 23

L
a

te
n

c
y
 (

m
s
)

Replicas

Figure 6: Client perceived latency of PaxosSTM and
X-DUR using TPC-C benchmark.

gain up to 2.9× and 2.1× respectively.

 0
 50

 100
 150
 200
 250
 300
 350

 3 5 7 9 11 13 15 17 19 21 23

La
te

nc
y

(m
s)

Replicas

PaxosSTM High
PaxosSTM Med
PaxosSTM Low

X-DUR High
X-DUR Med
X-DUR Low

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 3 5 7 9 11 13 15 17 19 21 23

T
ra

n
s
a

c
ti
o

n
 p

e
r

s
e

c

Replicas

Figure 7: Throughout of PaxosSTM and X-DUR
using Vacation benchmark.

6. CONCLUSIONS
In this paper we present an approach to use speculation

for sparing DUR-based protocols from aborts due to local
contention. According to the DUR model, if transactional
accesses are partitioned across nodes, then only local con-
tention can cause a transaction to abort. We propose the us-
age of speculation for allowing transactions to execute start-
ing from uncommitted snapshots produced by completed
transactions waiting for their global certification. In ad-
dition, we also make sure that the total order established
by the certification layer does not contradict the local spec-
ulative order. The peculiarity of our approach is that it
is general and fits in several existing DUR-based protocols,
thus contributing to further enhance their performance.

7. ACKNOWLEDGMENTS
This work is supported in part by US National Science

Foundation under grant CNS-1217385.

8. REFERENCES
[1] J. a. Barreto, A. Dragojevic, P. Ferreira, R. Filipe,

and R. Guerraoui. Unifying thread-level speculation
and transactional memory. In Middleware, pages
187–207, 2012.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[3] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber.
Speculative out-of-order event processing with
software transaction memory. In DEBS, pages
265–275, 2008.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford transactional
applications for multi-processing. In IISWC, pages
35–46, Sept 2008.

[5] N. Carvalho, P. Romano, and L. Rodrigues. Scert:
Speculative certification in replicated software
transactional memories. In SYSTOR, page 10, 2011.

[6] T. Council. TPC-C benchmark. 2010.

[7] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
Probe: A thousand-node experimental cluster for
computer systems research. volume 38, June 2013.

[8] R. Guerraoui and A. Schiper. Genuine atomic
multicast in asynchronous distributed systems. Theor.
Comput. Sci., 254(1-2):297–316, 2001.

[9] S. Hirve, R. Palmieri, and B. Ravindran. HiperTM:
High Performance, Fault-Tolerant Transactional
Memory. In ICDCN, pages 181–196, 2014.

[10] T. Kobus, M. Kokocinski, and P. T. Wojciechowski.
Hybrid replication: State-machine-based and
deferred-update replication schemes combined. In
ICDCS, pages 286–296, 2013.

[11] J. Kończak, N. Santos, T. Żurkowski, P. T.
Wojciechowski, and A. Schiper. JPaxos: State machine
replication based on the Paxos protocol. Technical
Report EPFL-REPORT-167765, Faculté Informatique
et Communications, EPFL, July 2011. 38pp.

[12] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., pages 133–169, 1998.

[13] P. J. Marandi, M. Primi, and F. Pedone. High
performance state-machine replication. In DSN, pages
454–465, 2011.

[14] R. Palmieri, F. Quaglia, and P. Romano. OSARE:
Opportunistic speculation in actively replicated
transactional systems. In SRDS, pages 59–64, 2011.

[15] F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach. Distrib. Parallel
Databases, 14(1):71–98, July 2003.

[16] S. Peluso, J. Fernandes, P. Romano, F. Quaglia, and
L. Rodrigues. SPECULA: speculative replication of
software transactional memory. In SRDS, pages
91–100, 2012.

[17] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and
L. Rodrigues. When scalability meets consistency:
Genuine multiversion update-serializable partial data
replication. In ICDCS, 2012.

[18] D. Sciascia, F. Pedone, and F. Junqueira. Scalable
deferred update replication. In DSN, pages 1–12, 2012.

[19] P. T. Wojciechowski, T. Kobus, and M. Kokocinski.
Model-driven comparison of state-machine-based and
deferred-update replication schemes. In SRDS, pages
101–110, 2012.

[20] V. Zuikeviciute and F. Pedone. Conflict-aware
load-balancing techniques for database replication. In
SAC, pages 2169–2173, 2008.

