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ABSTRACT

Applications based on Discrete Fourier Transforms (DFT) are
extensively used in various areas of signal and digital image
processing. Of particular interest is the two-dimensional (2D)
DFT which is more computation- and bandwidth-intensive
than the one-dimensional (ID) DFT. Traditionally, a 2D DFT
is computed using Row-Column (RC) decomposition, where
ID DFTs are computed along the rows followed by ID DFTs
along the columns. Both application specific and reconfig­
urable hardware have been used for high-performance imple­
mentations of 2D DFT. However, architectures based on RC
decomposition are not efficient for large input size data due
to memory bandwidth constraints. In this paper, we propose
an efficient architecture to implement the 2D DFT for large­
sized input data based on a novel 2D decomposition algo­
rithm. This architecture achieves very high throughput by ex­
ploiting the inherent parallelism due to the algorithm decom­
position and by utilizing the row-wise burst access pattern of
the external memory. A high throughput memory interface
has been designed to enable maximum utilization of the mem­
ory bandwidth. In addition, an automatic system generator is
provided for mapping this architecture onto a reconfigurable
platform of Xilinx Virtex5 devices. For a 2K x 2K input size,
the proposed architecture is 1.96x times faster than RC de­
composition based implementation under the same memory
constraints, and also outperforms other existing implementa­
tions.

1. INTRODUCTION

Discrete Fourier Transform (DFT) is widely used in digital
signal processing (DSP) and scientific computing applica­
tions. In particular, the two-dimensional (2D) DFT is used in
a wide variety of imaging applications which need spectral
and frequency-domain analysis, such as watermarking, finger
print recognition, oral surgery and radiology. The image sizes
of many of the applications have increased over the years. In
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synthetic aperture radar (SAR) processing [1], digital holo­
graphic imaging [2] and medical imaging, for instance, the
required data size could be as large as 2048 x 2048. There­
fore, there is a need for new algorithms and architectures to
support 2D DFT of large data sizes.

Most of the existing 2D DFT algorithms have been pri­
marily based on Row-Column (RC) decomposition where the
2D DFT is computed by successively applying ID DFT along
rows and then along columns. Existing 2D DFT implementa­
tions include software solutions, such as FFTW [3] and Spi­
ral [4], which can run on general purpose processors, or paral­
lel/vector processors and supercomputers. Though these plat­
forms can achieve high performance, they are expensive and
not suitable for embedded applications.

There are also many hardware solutions. Several of them
are based on the Fast Fourier Transform (FFT) [5]. These
include the dedicated FFT processor chips [6] [7], DSP pro­
cessor [8] [9], and field programmable gate array (FPGA)
based implementations [2] [10]. We concentrate on FPGA­
based architectures since they can be reconfigured according
to user-specified design parameters and offer flexibility while
maintaining high performance. Moreover, FPGAs are being
widely used in various embedded signal and imaging process­
ing systems such as smart cameras, radar image reconstruc­
tion in which FFT module is a key component. Consequently,
the exploration of FFT modules in FPGAs is the focus of this
work.

In this paper, we describe architectures for 2D DFT that
are targeted for large data sizes. In other FPGA architectures,
such as those in [10], the performance degrades significantly
when data size increases and the data does not fit in the on­
chip memory. The bottleneck is the data transfer between
the off-chip and on-chip memories. This problem has been
addressed in [2], but it requires an additional transpose oper­
ation. We avoid it by implementing a new two-dimensional
(2D) decomposition algorithm, and designing a customized
memory interface which maximizes the external memory
bandwidth. The proposed algorithm partitions the original
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data into a mesh of sub-blocks, performs data exchange op­
eration between sub-blocks and then computes 2D DFT on
the sub-blocks. The size of the sub-blocks is a function of
the FPGA resources. The experimental results demonstrate
that our architecture based on 2D decomposition achieves
better performance than optimized architectures based on RC
decomposition.

The rest of the paper is organized as follows. Section 2
briefly introduces ID and 2D DFT and derives the proposed
2D decomposition algorithm. Section 3 describes in detail our
novel FPGA architecture for 2D DFT. Section 4 describes the
automatic system generator. Various configurations of our ar­
chitecture are evaluated in Section 5, and concluding remarks
are given in Section 6.

2. 2-DIMENSIONAL DECOMPOSITION FOR
2D-DFT

In this section, the decomposition of ID DFT is described in
Section 2.1, followed by the 2D decomposition algorithm for
2D DFT in Section 2.2 and the functional components of the
2D DFT in Section 2.3.

2.1. Decomposition of ID DFT

A ID DFT of length N can be decomposed and computed
by a series of smaller transforms and permutations. We first
represent DFT in the matrix-vector multiplication form as

where FN is the twiddle factor matrix.
The decomposition of 1D DFT is essentially representa­

tion of FN as a product of sparse matrices and is described as
follows [11], [12], [13].

FN == PN,p(lp Q9Fm)DN(Fp Q9 1m) (2)

where N == p . m. p and m are both integers, and 1m is the
m x m identity matrix. DN is a diagonal matrix of twiddle
factors, and Q9 is the Kronecker or tensor product and can be
expressed as

DN(j,j) == W~ mod m)·LJ/mJ for j == 0,1 ... N - 1 (3)

An Q9 e; == [ak,zBm]O:S;k,Z<n for A == [ak,z]O:S;k,Z<n (4)

Finally, PN,p denotes the permutation with stride p.
The traditional radix-2 FFT can be considered a specific

case of recursive decomposition with factor p == 2.

2.2. 2D decomposition algorithm

The general form of 2D DFT is described in matrix form as
follows:

(5)
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where input X and output Yare of size M x N, and FM and
FN are DFT matrices.

The expression (FM . X) is traditionally calculated by ap­
plying an M-point DFT for each column of X. As described
in Section 2.1, an M -point DFT can be replaced by the sparse
matrix product form as depicted in Eq. (2). Hence, by parti­
tioning a column of size Minto p sub-blocks, the expression
(FM . X) can be written as follows:

where the permutation PM,p term in Eq. (2) is taken into ac­
count in the final stage.

Similarly, the expression (X ·FN ) in Eq. (5) can be written
as follows:

Extending such a partitioning to both row-wise and
column-wise elements, the 2D decomposition of Eq. (5)
on a p x q mesh is written as follows:

Y is obtained by applying a bit-reverse permutation (P) on
YofEq. (8).

2.3. Functional components of the 2D decomposition al­
gorithm

Eq. (9) pictorially demonstrates the sequence of operations
involved in the computation of the decomposed 2D-DFT.

Y = P((Ip Q9 F M / p) D/vI(Fp Q9 I/VI/p)· x . sr, ® IN/q)DN(Iq ® FN/ q))
....-.......--'

Step 1

Step 2

Step 3

(9)

Input X of size M x N, is partitioned into a p x q mesh
where each sub-block in the mesh is of size M / p x N / q.
The four main steps are described below Figure 1 presents the
functional flow of the proposed 2D decomposition algorithm.

Step 1. Row-wise data exchange with twiddle-factor multipli­
cation:

There are q sub-blocks in each row, and each element in­
side one sub-block has to do data exchange with the corre­
sponding elements in the other (q - 1) sub-blocks. This data
exchange (DX) operation can be implemented as a q-point ID
FFT followed by a twiddle-factor multiplication (with DN ) .

Since there are M / p . N / q elements in each sub-block, there
are (MN /pq)(q . log2 q) arithmetic operations with q-point
ID FFT for each row, and (MN /pq)(q ·log2 q)p for all rows.
Including M N operations for twiddle-factor multiplication
(DN ) , it takes a total of (MN/pq)(q· log2q)p + MN ~

O[MN(l + log2 q)] arithmetic operations. Note that all q­
point ID FFTs can be computed in parallel.
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Fig.!. The functional flow graph of 2D DFT

Step 2. Column-wise data exchange with twiddle-fa ctor mul­
tiplication:
Y2 = DM(Fp 0 IM/p ) . Y1

Similar to Step 1, the DX is repeated for the p sub-blocks
in each column. This step has a complexity of O[MN(l +
log2 p)] operations .

Step 3. Local2D DFT on each sub-block:
Y= it; 0 FM / p)Y2 (Iq 0 F N / q )

After the row-wise and column-wise data exchange with
twiddle-factor multiplications, 2D FFT computation is per­
formed on each sub-block of size M jp· N f q. This opera­
tion is fully parallel for all sub-blocks, and only limited by
resource constraints in the underlying architecture . No data
communication is required between any sub-blocks.

Step 4. Output permutation:
Y = P(Y)

A bit-reverse permutation is required before generating
the output. This is done by the host computer before display.

Note that there are other 2D decomposition methods, such
as Vector Radix FFT [14], which recursively decomposes the
2D DFT into small-sized ones, like 2 x 2 or 4 x 4 2D DFT.
While this method can effectively reduce the number of mul­
tiplications , the recursive decomposition makes hardware
implementation and memory addressing much more compli­
cated .

3. PROPOSED 2D-DFT ARCHITECTURE

3.1. Architecture for 2D Decomposition

The input data is stored in the external memory, and is logi­
cally partitioned into a mesh of sub-blocks , as shown in Fig­
ure 2. During each step mentioned in Section 2, portions
of data are loaded into the FPGA local memory, processed ,
and then stored back to the external memory. Note that only
row-wise accesses to the external memory are adopted in the
proposed design . The architecture and its operations are de­
scribed in details as follows.

The data exchange stage consists of the first four blocks
in Figure 1. In this stage, equal number of samples from the
same position in each sub-block are loaded into local mem­
ory. Note that the data in the external memory are accessed
only along the row direction as depicted in Figure 2. This pat­
tern is especially advantageous for accessing a dynamic mem-
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ory, such as DDR2-400 SDRAM, which only favors row-wise
burst access . Then, both the row-wise and column-wise data
exchange are performed by the processing-element (PE) ar­
ray. The operations are repeated until the entire data is tra­
versed, as shown in Figure 2.

In the local 2D DFT stage (corresponding to the fifth
block in Figure 1), fixed number of contiguous sub-blocks
of the 2D data are loaded into FPGA local memory and the
PE array computes 1D transforms along rows and then along
columns. This operation is repeated for all the blocks.

The PE array consists of multiple PEs, where each PE is
formed by a primitive ID FFT IP core and a complex multi­
plier. The primitive FFT is used for both data exchange and
local 2D DFT. The complex multiplier is used for twiddle­
factor multiplication during data exchange. All PEs operate
in parallel and access data from/to multi-banked local mem­
ory simultaneously without conflicts. The choice of number
of PEs and size of the primitive FFTs are explained in See­
tion 4. Note that for ease of implementation, an input size of
N x N is always assumed, where N is a power of 2, otherwise
zero-padding is applied.

While the PE array can finish computations very fast,
the bottleneck is the interface to external memory. Xilinx's
Multi-Port Memory Controller (MPMC), for instance, is a
very versatile controller supporting SDRAM/DDR/DDR2
memory. However, its peak throughput is only 50% of a
DDR2-SDRAM DlMM's peak transfer rate. To alleviate this
bottleneck, we design a customized high throughput memory
interface.

3.2. High Throughput Memory Interface

The customized memory interface, as shown in Figure 3,
has has a 128-bit wide internal data-bus . Since the DDR2
SDRAM device has an operating frequency of 200MHz and
an user application in FPGA runs at 100MHz, the memory
interface operates at 200MHz and has a 256-bit wide data
bus between the interface and the application . This enables
data transfer rates of up to 256 bits at 100 MHz or 3200
MBytes per sec. Together with double buffering technique
on local memory, the customized memory interface enables
us to completely overlap communication with computation
and avoid any loss of performance due to communication
bottle-neck. This memory interface can be ported onto any
FPGA board with SDRAM DlMMs .
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4. AUTOMATIC 2D DFT SYSTEM GENERATOR

Given the specification of input data, our system can automat­
ically generate a 2D DFT implementation based on the pro­
posed 2D decomposition algorithm. The automation flow is
shown in Figure 5. A design optimizer determines the best de­
composition based on input specifications, and passes this in­
formation to the system generator, which generates hardware
module in Verilog or VHDL. Then, the HDL files are fed into
the FPGA tool to produce final configuration bit-files. Note
that no user intervention is required for the entire process.

The input specifications include data size, target device,
memory type, and accuracy requirement. The data size is a
power of two, typically from 512 x 512 to 4096 x 4096. The
target FPGA platform is Virtex5 from Xilinx. For memory
type, only DDR2 SDRAM is currently supported to provide
large memory bandwidth . However, the memory interface is
easy to extend to other memory types by replacing SDRAM
controller block. The user can choose either 16-bit implemen­
tation for resource constrained designs, or 32-bit implemen­
tation for high accuracy designs .

The design optimizer is used to find the best partition for
input data. While the sub-block size K can be any number
such that N / K in an integer, the design optimizer sets K to be
ffi or its closest power-of-two . By doing this, the maximum
size of DFTs used in data exchange and local DFT can be
minimized . Also, the same FFT IP core can be used for both
data exchange and local DFTs and on-chip hardware resource
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Fig. 4. Automation flow of generating architecture for 2D
Decomposition based 2D DFT

can be saved.
The number of PEs is set to the number of image samples

accessible from external memory per cycle. This is because
Xilinx FFT IP can deal with 1 datum/cycle . So if the memory
interface is 256 bits and data width of an image sample is
32 bits, we can read 8 samples from external memory to the
FPGA and, therefore, the design optimizer will choose '8' as
the number of PEs.

Once the design optimizer decides the primitive FFT and
memory partitioning, the system generator generates all the
required hardware modules . The modules are infrastructure
block, FFT core block and memory interface block. The in­
frastructure blocks such as UART and host connection are



fixed, whereas other blocks are user specified and provided in
a template format, with several parameters that are set based
on decisions of the design optimizer. After the generation
of these modules, scripts for Xilinx flow are produced to run
Xilinx tool automatically. Finally, the configuration bit file
consisting of both hardware bit file and software binaries are
generated from FPGA tool.

5. EVALUATION

5.2. Comparison of performance

Table 1 shows the performance of the 2D DFT architecture for
different input sizes and different architecture configurations .
The performance is specified in terms of frame rate, which
refers to the number of frames of input data that the 2D DFT
architecture can process in a second. The size of the FFT
primitive is chosen by the optimal partitioning strategy for
the input data. It can be seen that the performance is inversely
proportional to the input data size, but directly proportional to
the number of PEs.

Table 1 Performance for different input sizes

Input size Primit ive #ofPE
Computation

Frame rates
time(ms)

1024 x 1024 32PT FFT
8 5.4 182
4 10.7 92

2048 x 2048 64PTFFT
8 22.4 44
4 43.4 23

409 6 x 4096 64PT FFT
8 90.4 11
4 174.3 5

In this section, the 2D DFT architecture generated using the
DFT system generator is evaluated. First, the evaluation on
high throughput memory interface is presented in Section 5.1.
Then, the evaluation of performance for various input sizes
are presented and compared with existing solutions in Sec­
tion 5.2. For the evaluations, Xilinx 10.1 tool set and Model­
sim 6.4 were used, and Virtex5FX device is considered as the
candidate FPGA device.

5.1. Memory throughput for RC- and 2D decomposition­
based architectures

The performance of the memory interface for read, write and
read+write operations for various memory access patterns for
an input size of 2048 x 2048 and local memory size of 128 x
128 is shown in Figure 5. The memory interface operates at
100MHz, and one DDR2-400 SDRAM DIMM is considered .
The performance is measured in terms of the number of cy­
cles taken to read/write data from/to DDR2 SDRAM to/from
local memory. It can be observed that column access is much
slower compared to other access patterns , and hence it would
be the bottle-neck for direct RC method. On the contrary,
data exchange (DX) and local DFT (LFFT) are both row­
wise accesses . Therefore, the proposed 2D DFT avoids the
performance penalty caused by column access and hence can
achieve a higher performance.

Table 2 compares the performance in terms of computa­
tion time and frame rate for FPGA implementations corre­
sponding to (i) RC decomposition, (ii) Transpose (row-FFT
- transpose - row-FFT) and (iii) the proposed 2D decompo­
sition algorithm . This comparison is done for identical ar­
chitecture constraints such one DDR2-400 SDRAM DIMM
128 x 128 local memory size, 16-bit implementation and for
an input data size of 2048 x 2048. The evaluation for the
candidate architectures is performed using the proposed high
throughput memory interface and under the assumption that
the processing clements in FPGA support full performance
that matches with the communication time, so that the perfor­
mance is limited by the communication time. The table shows
that under identical conditions, the 2D decomposition archi­
tecture provides a 96.7% improvement compared to the RC
decomposition architecture and a 35.6% improvement com­
pared to the transpose-based architecture .

Fig. 5. Memory access time for different access patterns for
on-chip memory size of 128 x 128

D READ
• WRITE -

o READ+WRITE

~

w- ~ ~iLcl:l1-' -,--L-

RC Transpose 2D-DEC
Computation time (ms) 99 .98 68 .91 50.82

Frame rates 10 14 19

Table 2. Performance comparison for different architectures
for input size 2048 x 2048

Further, Table 3 presents a comparison of other existing
~D FFT implementations with the proposed 2D decomposi­
tion based DFT(2D-DEC) architecture that utilizes maximum
memory bandwidth on Virtex5 FPGA. Uzun et al. [15] have
used SRAM as the external memory with VirtexE FPGA. Our
2D-DEC architecture provides significant performance im­
provement for the same input data size of 1024 x 1024. Dil­
lon [16] has used multiple pipelined Virtex2 FPGAs for row­
FFTs and column-FFTs and includes huge SRAM as interme­
diate memory for an input size of 2048 x 2048. In contrast ,
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our 2D-DEC architecture uses a single FPGA with cheaper
DDR2 SDRAM as external memory and so has lower perfor­
mance. Lenart et al. [2] have implemented a transpose archi­
tecture with DDR SDRAM memory, but the performance is
based on 0.13JLm ASIC technology operating at 250 MHz.
Our 2D-DEC architecture operates at 100 MHz on a Virtex5
FPGA and still provides performance improvement. Note that
we would obtain similar improvement if implemented on a
Virtex-II platform since the clock speed is also 100MHz.

Table 3. Performance comparison with existing works
Input size Method Frequency Frame rate

1024 x 1024
Uzun [15] 27 MHz 13
2D-DEC 100 MHz 182

Dillon [16] 125 MHz 120
2048 x 2048 Lenart [2] 250 MHz 20

2D-DEC 100 MHz 44

6. CONCLUSION

In this paper, we have proposed an efficient architecture to
implement the 2D FFT for large input sizes based on a novel
2D decomposition algorithm. This architecture provides high
performance by leveraging the inherent parallelism of the
2D decomposition and by scheduling data communication to
overlap with computation. The memory bandwidth problem
is alleviated by employing a custom-designed high through­
put memory interface. In addition, a system generator is
provided, which can automate the generation of an optimized
version of the 2D FFT architecture for various input sizes.
The evaluation of this architecture shows significant perfor­
mance enhancements over existing 2D FFT implementations.
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