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Abstract. We introduce STORMED hybrid systems, a decidable class
which is similar to o-minimal hybrid automata in that the continuous
dynamics and constraints are described in an o-minimal theory. How-
ever, unlike o-minimal hybrid automata, the variables are not initialized
in a memoryless fashion at discrete steps. STORMED hybrid systems
require flows which are monotonic with respect to some vector in the
continuous space and can be characterised as bounded-horizon systems
in terms of their discrete transitions. We demonstrate that such systems
admit a finite bisimulation, which can be effectively constructed pro-
vided the o-minimal theory used to describe the system is decidable. As
a consequence, many verification problems for such systems have effective
decision algorithms.

1 Introduction

Embedded processors and electronic controllers are seeing increasingly ubiqui-
tous use and in critical cases require extremely accurate and predictable func-
tionality. Such devices compute discrete steps while interacting with an envi-
ronment with continuous dynamics and meeting real-time constraints. Hybrid
automata [1] are a popular formal model used to describe such systems. They
have (finitely many) discrete states, and continuous states evolving with time.
The discrete and continuous states dictate when discrete transitions take place
as well as what the effect of the transition is on the continuous part. Once such
a system is modeled, the verification problem asks whether the formal model
meets certain correctness requirements.

While the problem of verifying a general hybrid automaton against even sim-
ple properties (like invariants) is known to be undecidable, important decidable
classes have been identified. Timed automata [2], certain special kinds of rect-
angular hybrid automata [9], and o-minimal hybrid automata [10] are important
classes of general hybrid automata for which many verification problems are
decidable. The decidability in all these cases is proved by demonstrating the
existence of a finite, computable partition of the state space that is bisimilar
to the original system. However, all these classes of decidable automata suffer
from serious drawbacks — timed and rectangular hybrid automata have very
simple dynamics for the way the continuous variables evolve, while o-minimal
systems have strong reset conditions on discrete transitions, that decouples the
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discrete dynamics from the continuous one, leaving the continuous state largely
unaffected by the discrete transitions. The many undecidability results in the
area [1, 9, 3, 4, 12] have reinforced the folklore belief that one must either restrict
the continuous dynamics or the discrete dynamics to something simple, in order
to achieve decidability. Notable exceptions like dynamical systems with piecewise
constant derivatives [3] and polygonal hybrid systems [8] are however restricted
to very low dimensions (only 2 variables are allowed to obtain decidability).

In this paper we introduce a new class of hybrid automata that we call
STORMED hybrid systems (STORMED h.s.). These adhere to the following
constraints. First the guards of any two transitions are separable in space by
some minimum, non-zero distance. Next, all the constraints (i.e, the guards, in-
variants, and flows) must be definable in a order-minimal (or o-minimal) theory.
Further we require the existence of a vector φ such that the flows in all the con-
trol states have a positive projection on φ, and the projections of the guards to
have delimited-ends on this vector φ. These automata also have monotonic re-
sets, which either leave the continuous state unchanged or advance its projection
along φ. A form of monotonicity was also captured in [5].

Our main result in this paper is that STORMED h.s. can be shown to be
bisimilar to a finite state transition system. Moreover the finite transition sys-
tem can be effectively constructed provided the o-minimal theory in which the
automaton is defined is decidable. Thus, STORMED h.s. can be verified against
rich branching time properties expressed in logics such as CTL and µ-calculus [7].

STORMED h.s. are both more general in some respects, and more restric-
tive in some ways, when compared with other subclasses of hybrid automata
investigated before. They allow for a richer continuous dynamics than timed au-
tomata and rectangular hybrid automata, and the discrete transitions can affect
the continuous dynamics in non-trivial ways unlike o-minimal systems. However,
they are required to have separable guards, monotonic flows/resets and delimited
ends on guard constraints. In spite of these restrictions, we believe STORMED
h.s. can be conveniently used to model interesting systems. For example, mono-
tonicity is implicitly present in terms of a depleting resource, like fuel or time,
while separability of guards translates to infrequency of discrete steps.

Finally we look at some relaxations of the STORMED model, and prove
that removal of any single constraint cannot be tolerated. Such an investiga-
tion demonstrates that our model is reasonably tight; most relaxations of the
constraints yield undecidable models.

2 Preliminaries

Equivalence Relations and Partitions. A binary relation R on a set A is a subset
of A×A. We will say aRb to denote (a, b) ∈ R. An equivalence relation on a set A
is a binary relation R that is reflexive, symmetric and transitive. An equivalence
relation partitions the set A into equivalence classes : [a]R = {b ∈ A | aRb}.
A partition Π of the set A defines a natural equivalence relation ≡Π , where
a ≡Π b iff a and b belong to the same partition in Π . In this paper, we will use
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the partition Π to mean both the partition, as well as the equivalence relation
associated with it. Finally, we will say an equivalence relation R1 refines another
equivalence relation R2 iff R1 ⊆ R2.

Transition Systems and Bisimulation. A transition system is given by S =
(Q, Q0,→), where Q is a set of states, Q0 subseteqQ is the set of initial states,
and →⊆ Q×Q is the transition relation. For a transition system S = (Q, Q0,→),
a simulation relation is a binary relation R ⊆ Q×Q such that if (q1, q

′

1) ∈ R and
q1 → q2 then there is q′2 such that q′1 → q′2 and (q2, q

′

2) ∈ R. A binary relation
R is said to be a bisimulation iff both R and R−1 are simulation relations. q1 is
said to be bisimilar to q2 when there is a bisimulation R such that (q1, q2) ∈ R,
and we denote this by q1

∼= q2. Bisimilarity ∼= is an equivalence relation and a
bisimulation [11]. It is said to be of finite index if it has finitely many equiva-
lence classes. A bisimulation R is said to respect a partition Π iff R refines the
equivalence relation defined by Π .

First Order Logic. In this paper we will consider first order vocabularies con-
sisting of only relation symbols and constant symbols; we will call A to be a
τ -structure if it is a structure over the vocabulary τ . Recall that a k-ary relation
S ⊆ Ak, where A is the domain of A, is said to be definable in the structure
A if there is a formula ϕ(x1, x2, . . . xk), with free variables x1, . . . xk, such that
S = {(a1, . . . , ak) | A |= ϕ[xi 7→ ai]

k
i=1}. A k-ary function f will be said to be

definable if its graph, i.e., the set of all (x1, . . . , xk, f(x1, . . . xk)), is definable. A
theory T (A) of a structure A is the set of all sentences that hold in A. T (A)
(or sometimes simply) is said to be decidable if there is an effective procedure
to decide membership in the set T (A). One consequence of this is that it is
also decidable to check the emptiness of a definable relation, and whether two
definable relations are equal.

O-minimality. A binary relation ≤ on a set A is said to be a total ordering if it
is reflexive, transitive, antisymmetric ((a ≤ b ∧ b ≤ a) ⇒ a = b) , and total
(a ≤ b∨b ≤ a). The set A is said to be totally ordered if there is a total order on
it. An interval is a set defined in a totally order set, using one or two bounds as
follows: {x : a ≤ x ≤ b} , {x : x ≤ a}, and {x : a ≤ x}. Trivially, {x : a ≤ x ≤ b}
with a = b, is an interval consisting of a single point. We write A = (A,≤, . . .)
to convey that the τ -structure A has an ordering relation ≤ and other elements
in its structure. A totally ordered first-order structure A = (A,≤, . . .) is o-
minimal (order-minimal) if every definable set is a finite union of intervals [16].
The theory of this structure is also called o-minimal. Examples of o-minimal
structures include (R, <, +,−, ·, exp) and (R, <, +,−, ·), where +,−, ·, exp are
the addition, subtraction, multiplication and exponentiation operations on reals,
respectively. Additional examples can be found in [15, 16]. The theory of (R, <
, +,−, ·) is known to be decidable [14].
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3 Hybrid Systems and Special Subclasses

Hybrid systems mix discrete events with continuous dynamics. One formal rep-
resentation that has been found to conveniently model the behavior of such
systems is hybrid automata [9]. In this section, we recall the basic definition and
introduce special classes of such systems, as a prelude to STORMED hybrid
systems that we define in the next section and is the main object of study in
this paper.

Definition 1 A hybrid automaton H is a tuple (Q, ∆, X, X0, q0, I,F ,R,G) where

– Q is a finite set of (discrete) control states,
– ∆ ⊆ Q × Q is the set of edges between control states,
– X = R

n, is the domain of the continuous (part of the) state,
– X0 ⊆ X is the set of initial continuous states,
– q0 ∈ Q is initial control state,
– I : Q → 2X , is the function that associates with every control state an

invariant,
– F : Q × X → (R+ → X) is the function that associates with each (q, x) ∈

Q×X, a flow function that describes how the continuous state changes with
time,

– G : ∆ → 2X is the function that assigns to each edge a guard, which is a
condition on the continuous state that must hold in order to take the discrete
transition,

– R : ∆ → 2X×X is the function that associates with each edge a reset, which
is a binary relation that describes how the continuous state changes when a
discrete transition is taken.

In the above hybrid automaton, we call n the dimension of H.
Notation: In order to make the text more readable, we will often write the
argument of a function as a subscript. In particular, Iq will be used to denote
the invariant associated with control state q instead of I(q), and similarly G(p,q)

and R(p,q) to denote the guard and reset conditions associated with an edge
(p, q) instead of G(p, q) and R(p, q). We will use F(q,x) for the flow associated
with (q, x) instead of F(q, x). Also, we call members of Q × X locations.

Before defining the semantics of the hybrid automata, we observe some con-
ditions that the flow function must satisfy for it to define “reasonable continuous
dynamics”; we call this time-independent spatially consistent.

Definition 2 The flow function F : Q × X → (R+ → X) is said to be time-
independent spatially-consistent (TISC) if for every q ∈ Q and x ∈ X, F(q,x)

satisfies the following conditions:

1. F(q,x) is continuous and F(q,x)(0) = x.
2. It satisfies the following “semi-group” property: for every t ≥ 0 and x′ ∈ X,

if F(q,x)(t) = x′ then for every t′ ≥ 0, F(q,x)(t + t′) = F(q,x′)(t
′).

Henceforth, we will assume all flows in the hybrid automata to be TISC flows.
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Remark 3 TISC flows are a very basic requirement on the continuous dynamics
satisfied by most definitions of hybrid automata in the literature (except in [6]).
Typically the requirement is ensured by specifying the continuous dynamics in
a control state by a differential equation which gives the derivative with respect
to time of the continuous state evolution. The dynamics of the flow itself is then
described in terms of the “integrals” of these differential constraints. In this
paper, we find it convenient to instead directly talk about the flows themselves,
rather than the differentials. Notice that a TISC flow is not required to be
differentiable and therefore it allows for more general dynamics than is typically
considered.

The semantics of a hybrid automaton H is defined in terms of a transition
system [[H]] = (C, C0,→), where

– C = Q × X is the set of states,
– C0 = q0 × X0 is the set of initial states, and
– the transition relation → is the union of time transitions →t and discrete

transitions →d given by:
• (q1, x1) →t (q2, x2) iff q1 = q2 and there is a t ∈ R+ such that x2 =
F(q,x1)(t) and for all t′ ∈ [0, t], F(q,x1)(t

′) ∈ Iq1
.

• (q1, x1) →d (q2, x2) iff there is an edge (q1, q2) ∈ ∆ such that x1 ∈ Iq1
,

x2 ∈ Iq2
, x1 ∈ G(q1,q2), and (x1, x2) ∈ R(q1,q2).

In a time transition, the discrete part q1 of the state does not change but the
continuous part changes according to the flow Fq1

while remaining within the
invariant Iq1

. On the other hand, in a discrete transition, control state changes
according to an edge in the automaton, the continuous part of the state before
the transition is required to satisfy the guard associated with the edge, and the
result of taking the transition changes the continuous state according to the reset
conditions associated with the edge.

An execution starting from state (q, x) is a sequence of states (q1, x1), (q2, x2),
. . . , (qk, xk) such that (q1, x1) = (q, x), and for all i < k, (qi, xi) → (qi+1, xi+1).
(qk, xk) is said to be reachable from (q, x). For a hybrid automaton H, we say a
control state q is reachable, if for some x ∈ X , x0 ∈ X0, (q, x) is reachable from
an initial state (q0, x0). For a hybrid automaton H, the reachability problem is
to determine if a given control state is reachable.

3.1 Special Definitions

In this subsection we look at some special restrictions on hybrid automata that
will be relevant for defining STORMED hybrid system that we consider in this
paper.

3.2 Separable guards

A hybrid system H = (Q, ∆, X, X0, q0, I,F ,R,G) is said to have separable guards
if there exists dmin > 0 such that for every pair of distinct edges (p1, q1), (p2, q2) ∈
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∆, min{‖x1 − x2‖ | x1 ∈ G(p1,q1) and x2 ∈ G(p2,q2)} ≥ dmin. The guards of H are
said to be dmin-separable.

Here ‖ · ‖ denotes euclidean distance. Also, we will be using the dot product
x · y, where x, y ∈ X , to denote the real value of the length of the projection of
y onto x as it is commonly used.

The guard separability removes the so-called Zeno behavior, i.e., it avoids
infinite number of discrete steps in finite time.

Thus far, our discussion on hybrid automata did not address the issue of how
the automaton is formally presented. The general definition presented does not
give an effective presentation. We will consider automata where all the condi-
tions, guards, invariants, etc. are described in a logical theory, and even more
specifically in an o-minimal theory.

3.3 O-minimal Definability

A hybrid system H is said to be definable in an o-minimal structure A = {A,≤
, . . .} (or simply called o-minimal), if all its initial conditions, invariants, flows,
resets and guards are definable in A.

Remark 4 In the literature, o-minimal hybrid automata [10] refer to hybrid
automata as defined above with the additional restriction that all resets are
strong. In other words, for any edge (p, q) the reset R(p,q) is of the form G(p,q)×X ′

for some X ′ ⊆ X . This allows one to decouple the system into separate dynamical
systems, with the discrete transitions “resetting” the continuous state on each
discrete step. We do not need this decoupling in STORMED, but we do make
use of o-minimality.

The subclass of hybrid automata that we will consider in this paper will have
monotonicity requirements on the flow. We define these next.

3.4 Monotonic Flows

The set of flows F of H is monotonic with respect to a vector φ ∈ X , if there
exists an ǫ > 0 such that for every q ∈ Q, x ∈ X , and t, τ ≥ 0,

φ · (F(q,x)(t + τ) −F(q,x)(t)) ≥ ǫ‖F(q,x)(t + τ) −F(q,x)(t)‖,
where a · b refers to the dot-product between the vectors. We call such a set of
flows (ǫ, φ)-monotonic.

The above monotonicity requirement says that as the continuous state evolves
with time according to any flow, the projection on the vector φ increases at a
minimum rate ǫ. This guarantees that the projection on φ will never decrease.

Some obvious examples of monotonic flows are:

1. Linear flows of the form F(q,x)(t) = x + αq(t), where x ∈ R
n, and αq ∈

(R+ − {0})n.
2. Analytic flows with their time-derivatives ranging on only one half-space, i.e.,

there exists a φ such that for all q ∈ Q and x ∈ X , we have ∇tF(q,x)(t) ·φ >
ǫ‖∇tF(q,x)(t)‖.
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3.5 Monotonic Resets

The collection of reset sets R of H is said to be monotonic with respect to some
φ ∈ X , if there exist ǫ, ζ > 0 such that for every (p, q) ∈ ∆ and x1, x2 ∈ X s.t.
(x1, x2) ∈ R(p,q), we have:

(i) if p = q, then either x1 = x2 or φ · (x2 − x1) ≥ ζ, and
(ii) if p 6= q, then φ · (x2 − x1) ≥ ǫ‖x2 − x1‖.

We call such a collection of resets (ǫ, ζ, φ)-monotonic.

Remark 5 Notice that in the case when the discrete state changes, we do not
require the reset to move the continuous state along φ by a minimum value. It
only requires the change in the continuous state along φ is lower bounded by the
actual change in the continuous state. In particular, it forbids resets that take
the continuous state back along φ. Also our definition allows for identity resets.

Our definition guarantees that a minimum distance of min{ζ, ǫdmin} is trav-
eled along φ between two successive discrete transitions when the flow of the
hybrid systems is (ǫ, φ)-monotonic and its guards are dmin-separable. The only
exception is when the discrete state does not change and the reset is the identity
map. However in this case we can behave as if the transition was never taken.
In all other cases, condition (i) avoids Zeno behaviors in a discrete self-loop, and
condition (ii) ensures that we cannot have infinitely fast switching along φ when
the guards are separable. To see the last remark, if the reset itself changes the
value of the continuous state enough to move it to another guard, then ‖x2−x1‖
will be at least dmin. Hence the distance traveled along φ would be at least ǫdmin.
Otherwise, suppose ‖x2−x1| < dmin, it moves at least φ·(x2−x1) along φ which
is at least ǫ‖x2 − x1‖, and it needs to travel a minimum of (dmin − ‖x2 − x1‖)
before taking the next transition. But since the flow is (ǫ, φ)-monotonic, it moves
another ǫ(dmin − ‖x2 − x1‖) at least along φ. Hence it moves at least ǫdmin in
total.

4 STORMED Hybrid Systems

In this section we formally introduce the special class of hybrid systems that we
study in this paper, and show that they admit a finite bisimulation.

Definition 6 (STORMED Hybrid Systems) A STORMED hybrid system
is a tuple (H,A, φ, b−, b+, dmin, ǫ, ζ) where H = (Q, ∆, X, X0, q0, I,F ,R,G) is a
hybrid automaton, A is an o-minimal structure, b−, b+, dmin ∈ R, and φ ∈ X is
a vector such that the following conditions are satisfied:

(S) The guards of H are dmin-Separable.
(T) The flows of H are TISC.
(O) H is definable in the O-minimal structure A.

(RM) Resets and flows F(·,·)(·) are Monotonic: (ǫ, ζ, φ)-monotonic and (ǫ, φ)-
monotonic respectively.
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(ED) Ends are Delimited: for all (p, q) ∈ ∆ we have {φ · x : x ∈ G(p,q) ∈ (b−, b+)
meaning that the projection of each of the guard sets on φ is bounded below
by (or is greater than) b− and bounded above by (or is less than) b+.

Before we turn to proving our main result on the existence of a bisimulation
for the STORMED systems, we will introduce a few definitions and a lemma to
aid the proof.

Definition 7 Given a partition V of Q × X, define F ⋆
t (V) to be the coars-

est bisimulation1 with respect to →t that respects V. Further, define Fd(V) :=
{(s1, s2)|

(

∃s′1 . s1 →d s′1
)

⇒
(

∃s′2 . s2 →d s′2 ∧ s′1Vs′2
)

} ∩ V.

It can be easily observed that (a) The functionals F ⋆
t (·) and Fd(·) are monotonic;

(b) F ⋆
t (V) is a refinement of V and so is Fd(V), i.e. F ⋆

t (V) ⊆ V and Fd(V) ⊆ V ;
(c) F ⋆

t (·) is idempotent, i.e. F ⋆
t (F ⋆

t (V)) = F ⋆
t (V)

Definition 8 For a hybrid system, we define the i-th neighborhood Ni ∈ Q×X
to be the set of all locations starting from which there is no execution that can
have more than i non-trivial2 discrete transitions. Note that Ni+1 ⊇ Ni.

Lemma 9 Given a STORMED Hybrid System (H,A, φ, b−, b+, dmin, ǫ, ζ) and
a partition P = {P1, P2, ..., Pk} of its state space Q × X, let ∼= to be a bisim-
ulation relation on H refining P. Define a sequence of partitions {W0, W1, . . .}
inductively by setting W0 = F ⋆

t (P) and Wi+1 = F ⋆
t (Fd(Wi)). The following hold

for all i ≥ 0:

(a) Wi is a finite partition definable in the o-minimal theory,
(b) ∼=⊆ Wi, and
(c) Wi is a bisimulation on locations in the i-th neighborhood Ni that respects

P.

Proof: The proof follows by an induction on i. We show that if (q1, x1)Wi(q2, x2),
then (q1, x1) simulates (q2, x2) and vice versa. Details are given in the Appendix
A.

Lemma 10 Given a STORMED Hybrid System (H,A, φ, b−, b+, dmin, ǫ, ζ), any

execution of the system can have at most i⋆ = ⌈ b+−b−
η

⌉ non-trivial discrete

transitions, where η := min{ζ, ǫdmin}.

Proof: The proof follows from some simple observations extending Remark 5.
Details are given in the Appendix B.

1 The coarsest bisimulation with respect to a subset of the transition relation →′⊆→ is
the coarsest partition P = {Pi} of the state space Q×X such that P is a bisimulation
relation of the transition system given by (Q × X, q0 × X0,→

′).
2 We ignore the non-trivial (identity) discrete transitions, i.e. (q, x) →d (q, x), which

are allowed by monotonic resets because they are trivial and can be omitted for our
purposes.
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Theorem 11 (Finite Bisimulation) The transition system induced by a STORMED
hybrid system (H,A, φ, b−, b+, dmin, ǫ, ζ) has a finite bisimulation that respects
any A-definable partition P. Moreover, if A is decidable, then there is an effective
algorithm for constructing that bisimulation.

Proof: Again, let η := min{ζ, ǫdmin} and i⋆ := ⌈ b+−b−
η

⌉. We can simply observe
that since, by Lemma 10, any execution in a STORMED system can go through
at most i⋆ discrete transitions, all reachable states belong to Ni⋆ . Therefore, by
Lemma 9, Wi⋆ is a bisimulation for all reachable states in Q × X , it respects
P and it is definable in A. Therefore, if A is decidable, there exists an effective
algorithm for constructing Wi⋆ . �

Corollary 12 (Reachability) Given a STORMED hybrid system (H,A, φ, b−,
b+, dmin, ǫ, ζ),

1. the set-to-set reachability problem, which is, given two sets S1, S2 ⊆ Q × X,
if there is a point in S1 that can reach some point in S2, is decidable, if A
is.

2. Claim 1 is true even if the guards are not delimited, as long as the initial
conditions satisfy {φ · x : ∃q ∈ Q .(q, x) ∈ S1} ∈ [b−,∞] and the final set
satisfies {φ · x : ∃q ∈ Q .(q, x) ∈ S2} ∈ [−∞, b+].

Proof: First note that Claim 2 reduces to Claim 1 since there can be no discrete
transitions outside the set of states {(q, x) : x ∈ [b−, b+], q ∈ Q} that can reach
the set S2. Therefore we can restrict all guards along φ to [b−, b+] and be able to
answer the same question. To check reachability of a set S2 ⊆ Q×X from a non-
intersecting set S1, we can partition the state space to P = {S1, S2, Q×X \(S1∪
S2)} and get a finite bisimulation that respects P . This is possible because of
Theorem 11. The reachability problem then reduces to the reachability problem
of a finite automaton which is constructible if A is decidable, and hence the
reachability problem for STORMED hybrid systems is decidable. �

5 Examples of STORMED Hybrid Systems

We believe that STORMED hybrid system model will be useful in modeling
many system models. The constraints imposed by STORMED hybrid systems
are realized in some physical systems as follows.

– Monotonicity can be associated with energy or time depletion, or in vehicle
control problems, with non-decreasing trajectories.

– The Ends-Delimited property can be present as a deadline on the monotonic
direction or a spatial confinement.

– Separability of guards represents infrequency in making control decisions,
also based on location or time.

– TISC flows arise naturally, whereas o-minimality is not necessarily a common
property, but can be used as an approximation most of the time. Lineariza-
tion and other model reductions may also result to o-minimal realizations.
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In Appendix C, we give a toy example illustrating how the characteristics
of a physical system map to the constraints imposed by a STORMED hybrid
systems.

6 Relaxations of the STORMED model

In this section we show that relaxing the various constraints of the STORMED
model makes the reachability problem undecidable, and thus justify the tightness
of our definition of STORMED model. We consider TISC property of the flows
and o-minimal definablility of the system as intrinsic to our model. The theorem
below identifies relaxations which render the model undecidable.

Theorem 13 1. The reachability problem of the STORMED model with the
constraint on the monotonicity of resets removed is undecidable.

2. The reachability problem of the STORMED model with the constraint on the
ends being limited removed is undecidable.

Proof. We first present a proof of the undecidability of the reachability problem
of multi-rate timed automata along the lines of [1] , and then describe how it
can be modified to serve our purpose. Multi-rate timed automata can simulate
two counter-machines thus reducing the reachability problem for two counter-
machines to that of multi-rate automata. Consider a 2 counter-machine M with
counters C and D. In the multi-rate automaton A simulating it, there are two
variables x and y which store the values corresponding to the values of the
counters. A counter value of n is stored in the corresponding variable as 1/2n.
Hence an increment will halve the value of the variable and similarly a decrement
will double the value. The execution of A will synchronize with that of M every
two time units in the sense that if the i-th configuration of M points to location
p with the two counter values m and n, then A at time instant 2i will be in
state p with values of counters 1/2m and 1/2n. The parts of the automaton
corresponding to the operations increment, decrement and test for 0 is given in
Figure 1. Here g is a variable which keeps track of the global time. All variables
not shown are assumed to have a flow of 0.

Observe that automaton A satisfies all the STORMED constraints except
monotonic resets and separable guards. In order to prove part 1 of the above
theorem we modify A to obtain A1 such that A1 simulates M but has separable
guards. With every state q we associate a distinct even number hq. We introduce
a new variable v, and include in the transition going out of p a constraint v ∈
(hp, hp + 1]. If there is only one transition going out of p′ we add to its guard
the constraint v ∈ (hp′ , hp′ + 1], otherwise we add to the transition going from
p′ to q the constraint v = hp′ + 1, and to the transition going from p′ to r
the constraint v ∈ (hp′ , hp′ + 1/2]. We have three more variables g′, x′ and y′

whose values equal that of g, x and y, respectively, while entering any state.
However the values of x′ and y′ do not change while in state p and the value
of g′ does not change in state p′. It is easy to see that this can be ensured by
treating the variables x′, y′ and g′ similar to x, y and g respectively everywhere,
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Fig. 1. The parts of the multi-rate automaton A corresponding to the operations in-
crement, decrement and test for zero of the 2-counter machine M .

except that in state p, ẋ′ = 0 and ẏ′ = 0 and in state p′, ġ′ = 0. Finally we set
v̇ = hp/(2 − x′) + x′/(2 − x′) in state p corresponding to an operation on C. In
state p′ we set v̇ = hp′/(2 − g′) + g′/(2 − g′). Hence the value of v upon exiting
p would be hp + v1 and that upon exiting p′ would be hp′ + v1 where v1 is the
value of x when entering p. At any point of time the transitions that are enabled
in A1 is the same as that of A.

Now returning to part 2 of the theorem, we show how we can construct the
automaton A2 which restores the monotonicity of resets. However the ends will
no more be delimited. A2 is obtained from A1 by adding a new variable n which
increases monotonically at rate 1. The monotonicity is now along the flow of n.
This proves the above theorem. �

Relaxing combinations of the STORMED constraints causes undecidability
at very low dimensions. Without separability of guards and ends-delimited we
have undecidability in 4 dimensions. This follows from the results of [3] where
piecewise constant derivatives (PCD) with delimited ends in 3 dimensions is
shown undecidable. PCD flows are not monotonic but they can be made mono-
tonic by introducing a fourth dimension along which the flows are monotonic.
The results in [3] also imply that the reachability problem for STORMED h.s.
without guard separability or monotonicity is undecidable in 3 dimensions. With
just the relaxation on separability of guards, it follows from the results in [13]
that finite bisimulation does not exist even in two dimensions.
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7 Conclusions

We introduced a new class of hybrid automata called STORMED hybrid systems
and showed that they admit a finite bisimulation. Further, the bisimulation is
constructible if the o-minimal theory in which the elements of the system are
defined is decidable. STORMED automata allow the continuous variables to
have rich dynamics, while at the same time not decoupling the discrete states.
However, STORMED hybrid systems require monotonic flows/resets and sepa-
rable guards. But such constraints are often present in real systems, for example,
monotonicity appears in the form of a depleting resource. We also demonstrated
that the relaxation of certain constraints from the STORMED hybrid system
model results in a model that is undecidable. In the future it would be useful to
build a tool to algorithmically analyze systems described as STORMED hybrid
system, and evaluate its performance on models of embedded systems.
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A Proof of Lemma 9

Claim (a): Proof by induction on i. We know that for any finite partition P
definable in the o-minimal structure A, F ⋆

t (P) has only finitely many equivalence
classes and is definable in the o-minimal theory [6]. Therefore W0 is o-minimal
definable, hence the claim is true for i = 0. It is easy to see from the definition of
Fd that it is also definable. In addition, for any partition P which is definable in
the o-minimal theory, Fd(P) has finitely many equivalence classes because there
are finitely many discrete transitions possible from each part of P . Thus, from
these observations we have Wi+1 is definable in the o-minimal theory and has
finitely many equivalence classes, if Wi has, since Wi+1 = F ⋆

t (Fd(P)).
Claim (b): Proof by induction on i. Case i = 0: ∼=⊆ P . Since F ⋆

t (·) is mono-
tonic, F ⋆

t (∼=) ⊆ F ⋆
t (P). But since F ⋆

t (∼=) =∼=, we have ∼=⊆ F ⋆
t (P). Hence ∼=⊆ W0.

Case i ≥ 1: By induction hypothesis ∼=⊆ Wi−1. By monotonicity of the
functionals F ⋆

t (·) and Fd(·), we have F ⋆
t (Fd(∼=)) ⊆ F ⋆

t (Fd(Wi−1)). But since
∼= is a bisimulation, F ⋆

t (Fd(∼=)) =∼=. Hence ∼=⊆ F ⋆
t (Fd(Wi−1)) and therefore

∼=⊆ Wi.
Claim (c): We will prove the claim by induction on i. Case i = 0: Let

(q, x), (p, y) ∈ N0, and (q, x)W0(p, y). Suppose (q, x) → (q1, x1). Since (q, x) ∈
N0, it cannot take a discrete transition, hence (q, x) →t (q1, x1). But since
W0 = F ⋆

t (P), (q, x)F ⋆
t (P)(√, †) and hence there exist (p1, y1) such that (p, y) →t

(p1, y1). Therefore (p, y) simulates (q, x). We can argue similarly that (q, x) sim-
ulates (p, y). Hence W0 is a bisimulation on N0 refining P .

Case i > 1: By induction hypothesis Wi is a bisimulation on all locations
in Ni refining P . We need to prove that Wi+1 is a bisimulation relation on all
locations in Ni+1. Wi+1 is a refinement of P since Wi is a refinement of P and
Wi+1 = F ⋆

t (Fd(P)). Given two locations (q, x) and (p, y) in Ni+1 that satisfy
(q, x)Wi+1(p, y). We will prove that (p, y) simulates (q, x) and by symmetry, the
reverse will also be true.

(1) Suppose (q, x) →t (q1, x1). Since Wi+1 = F ⋆
t (Fd(Wi)) we know that there is

a (p1, y1) such that (p, y) →t (p1, y1) and (q1, x1)Wi+1(p1, y1). In addition
both (q1, x1) and (p1, y1) will still be in Ni+1 since no discrete transition has
occurred.

(2) Suppose (q, x) →d (q1, x1). Since Wi+1 = F ⋆
t (Fd(Wi)) ⊆ Fd(Wi) we know

that there is a (p1, y1) such that (p, y) →d (p1, y1) and (q1, x1)Fd(Wi)(p1, y1).
Note that both (q1, x1) and (p1, y1) will now be in Ni. We also know that
since Fd(Wi) ⊆ Wi we have (q1, x1)Fd(Wi)(p1, y1) ⇒ (q1, x1)Wi(p1, y1). By
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the induction hypothesis, we then have (q1, x1) ∼= (p1, y1). Further from
Claim (b), we have ∼=⊆ Wi+1, and hence (q1, x1)Wi+1(p1, y1).

Therefore Wi+1 is a bisimulation relation on all locations in Ni+1 which respects
P . This concludes the induction proof of Claim (c). �

B Proof of Lemma 10

We can prove this by showing there is a minimum distance the continuous part
of the state travels along φ between two consecutive discrete transitions. Indeed,
after a non-trivial discrete transition the reset advances the continuous state
along φ by ζ or some distance proportional by ǫ to the euclidean distance of the
total change. This is true by the definition of monotonic resets. In the latter case,
the discrete state changes and there cannot be another discrete transition until
the continuous part travels enough to reach another guard (separability). By
monotonicity of the flow, the distance traveled along φ will be ǫdmin. Therefore,
the minimum distance traveled along φ between two discrete jumps is η :=
min{ζ, ǫdmin}. Since, by the ends-delimited property we can only have discrete
transitions along {(q, x) : φ · x ∈ (b−, b+)} we can conclude that we can have at

most i⋆ = ⌈ b+−b−
η

⌉ discrete transitions in any execution. �

C Storm Landing Problem

Consider a situation where a small airplane is to land on an isolated airstrip,
and a moving storm system is obstructing the landing. The storm is simulated
by 3 cloud groups, as in fig. C. There are 3 airports around the airstrip and
controllers from each suggest trajectories to the airplane if it lies within their
communication range. The suggested trajectories change discretely 3 times for
each airport as time goes by. The question is if the small airplane can land
before it reaches a low-fuel limit. Not having enough fuel will force it return to
an airport away from the storm and miss its original destination.

There are 10 discrete states in Q. States 1, 2, and 3 represent the configuration
where the airplane is following different directions from tower 1. States 4,5,6
directions from tower 2, and states 7,8,9 from tower 3. The initial state is Q0 = 1.
The final state F = 10 represents the situation where the airplane has landed at
his destination. We have a fully interconnected graph for out discrete transitions,
i.e. ∆ = {(q1, q2) : q1, q2 ∈ {1, . . . , 10}}.

The continuous part of the state X lies in R
14. It Consists of:

– the location of the airplane xa ∈ R
3,

– the location of the 3 cloud groups xs1, xs2, xs3 each in R
3, and

– the gasoline fuel remaining in the airplane xg ∈ R

– time xt ∈ R

We will be using x as a symbol for the continuous state vector (xa, xs1, xs2, xs3, xg, xt).
Our X0 has xt = 0 and the other components initialized to some other constants.
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Fig. 2. An illustration of the STORMED storm system showing guards and continuous
states.

Each component of x has a different expression for its respective flow. The air-
plane location component xa follows airplane dynamics (to the degree simulated
by polynomial trajectories), xt will always follow time F(·,xt)(t) = xt+t, gasoline
fuel will always decrease at rate ρ liters per second F(·,xg)(t) = xg − ρt, starting
at full tank capacity C at time 0, and xs1, xs2, xs3 will follow a TISC o-minimal
flow according to weather prediction, again independent of the discrete state
(only time affects the weather).

The o-minimal structure for this STORMED hybrid system is M = {R, +, ·,≤
}. All suggested flows F(i,·)(·), i = 1, . . . , 9 are TISC polynomial trajectories and
lead to the final guard G⋆,F = {x : (xa = XA) ∧ (xg > L)}, where XA is a con-
stant the location of the destination airstrip and it is separated from all other
guards. The rest of the guards are separable by half-planes in time or space.
Recall that we have 3 discrete states for each tower, so their guards are only
separated in the xt component. This establishes separability. More specifically:
G(⋆, i) = {x : (xt ∈ Ti) ∧ (xa ∈ Ri)}

Where Ti =







[0, 1800) for i = 1, 4, 7
[1801, 3600) for i = 2, 5, 8
[360, 5400) for i = 3, 6, 9

, with values in seconds are the times

when the control towers change their flow directions and

Ri =







{x : ‖xa − S1‖ < 10000}for i = 1, 2, 3
{x : ‖xa − S2‖ < 10000}for i = 4, 5, 6
{x : ‖xa − S3‖ < 10000}for i = 7, 8, 9

, where S1, S2, S3 ∈ R
3 are the lo-
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cations of the control towers of the surrounding airports with a range of 10km
each. The invariants are I1 = . . . = IF = {x : (xg > L) ∧ (‖xa − xs1‖ >
D) ∧ (‖xa − xs2‖ > D) ∧ (‖xa − xs3‖ > D)}, where the constant L is the lowest
fuel level allowed and the constant D is the minimum safe distance from the
airplane to a cloud center.

By construction all constraints of a STORMED h.s. are satisfied, with the
exception of delimited guards: TISC flows, o-minimality, reset-free trajectories,
monotonicity along the decreasing fuel component xg, and finally the end guard
is delimited by the minimum fuel constant L. Since the initial and final states’
projections on the monotonic direction are bounded on the right and left respec-
tively and since the the theory of M is decidable, by cor. 12 there is an effective
algorithm to determine the destiny of the aircraft.


