Analysing interactions of fitted models

Helios De Rosario Martínez

December 27, 2012

Abstract

This vignette presents a brief review about the existing approaches for the post-hoc analysis of interactions in factorial experiments, and describes how to perform some of the cited calculations and tests with the functions of package phia in R. Those functions include the calculation and plotting of cell means, and testing simple effects, residual effects, and interaction contrasts, among other possibilities. They can be applied to linear and generalized linear models, with or without covariates, and to mixed or multivariate linear models for repeated measures experiments.

1 Introduction

The post-hoc analysis of interactions in factorial ANOVA is a controversial issue, that has generated many discussions and a variety of methods. The most frequent practice has traditionally been the analysis of simple main effects, i.e. the main effect of one factor at fixed values of the other factors. This type of analysis, however, has severly been criticized for its mixing both main and interaction effects. Marascuilo and Levin stated in 1970 that analysing the simple effects of a significant interaction was a typical case of the so-called "Type IV error": a wrong interpretation of a correctly rejected null hypothesis, since that analysis does not investigate the hypothesis that is presumably being tested [1]. On the other hand, they proposed the analysis of interaction contrasts (crossed contrasts of different factors) or the interaction effects (the value of the interaction after removing low-order effects). The latter option was avidly supported by Rosnow and Rosenthal as well, who called that concept residual or leftover contrasts $[2,3]$.

However, such proposals have not produced an established "correct" practice at all. In fact, the analysis of interactions has been a heated field of debate for years; see Games' defence of simple effect tests [4] and Levin's and Marascuilo's response [5], or the criticisms of Meyer and Petty's et al. to Rosnow's and Rosenthal's proposals $[6,7]$, as well as the answer to the latter [8]. Although the theoretical issues of simple effects test are generally acknowledged, an eventual consensus about the "best" alternative method is probably difficult to achieve. A general valid procedure is not possible in the first place, since the correct test depends on the specific problem addressed by the experiment.

Unfortunately, many researchers do not choose the method depending on the question they want to answer. In spite of the criticism received by the analysis of simple effects, various reviews of published research in the three last decades have shown that it still is by far the most frequent practice $[2,9,10]$. According to Pardo's et al. interpretation, this is partly due to the limitations of commonplace software packages, which do not provide direct facilities for analysing the contrasts that isolate the interaction effects [10].

On the other hand, the flexibility of R does allow to analyze any kind of contrast on the factors of fitted models, even beyond the two- or three-factorial designs that are discussed in the literature. After all, any contrast can be described as a linear combination of the model coefficients. Thus, since the mathematical details of fitted models (like their matrices of coefficients and covariances) are easily available in R , the values and errors of those contrasts can easily be calculated, and moreover there are contributed functions that facilitate the statistical tests based on such combinations of coefficients, like linearHypothesis in package car [11], or glht in multcomp [12], which is specially suited for testing main effects.

The package phia (Post-Hoc Interaction Analysis) provides a usable interface for calculating the different types of contrasts related to interactions that are mentioned in the cited literature, as well as other combinations of factors that could be of interest for the researcher. The functionality of this package also extends to more complex models, like generalized linear models, mixed-effects models, multivariate linear models for repeated measures designs, and models with covariates. The testing procedures provided by this package are the ones covered by linearHypothesis, i.e. tests based on F and χ^{2} statistics, with adjusted p-values if needed. The following sections of this paper give a more detailed description of the main types of contrasts that can be used for analysing interactions, and examples of using the functions of this package for calculating and testing them.

2 Mathematical formulation of interactions

Interactions are often described in terms of a linear, two-way factorial model, where the response Y is a function of factors A and B. Interactions are said to exist when the effect on the dependent variable of a change in the level of one factor depends on the level of another factor [13]. This is often represented by the following formula:

$$
\begin{equation*}
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{i j k} \tag{1}
\end{equation*}
$$

where α_{i}, β_{j} represent the "main effect" of the i-th and j-th levels of A and B, respectively, $(\alpha \beta)_{i j}$ is the effect of the interaction in that or combination of levels, and $\varepsilon_{i j k}$ is the error term of the k-th observation in that combination or "cell".

R analyzes such models in the more general framework of linear models, defined by the following matrix equation:

$$
\begin{equation*}
\underset{(n \times m)}{\mathbf{Y}}=\underset{(n \times(r+1))((r+1) \times m)}{\mathbf{X}}+\underset{(n \times m)}{\mathbf{E}}, \tag{2}
\end{equation*}
$$

where \mathbf{Y} contains the n observations of the m-dimensional response variable (with m often equal to $1), \mathbf{X}$ is the model matrix that only depends on the observed values of the predictor variables and the structure of the model, \mathbf{B} is the coefficient matrix for that model structure and data (with r degrees of freedom - d.o.f.), and \mathbf{E} contains the error term.

The structure of \mathbf{X} and \mathbf{B} is very simple for linear regression models, where all predictors are numeric variables. Let's take a regression model with an univariate response and two regressors (X_{1} and X_{2}), including their interaction. In this case (2) would just be the formulation in matrix form of the regression equation:

$$
\left(\begin{array}{c}
Y_{1} \tag{3}\\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & X_{11} & X_{21} & X_{11} X_{21} \\
\vdots & \vdots & \vdots & \vdots \\
1 & X_{1 n} & X_{2 n} & X_{1 n} X_{2 n}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{12}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)
$$

This model has 3 terms, each with one d.o.f., that are represented by different columns of \mathbf{X} and coefficients in \mathbf{B} (besides the intercept represented by the column of ones and β_{0}). Two of them are the main effects of the regressors, represented by their values in \mathbf{X} and the "slopes" β_{1}, β_{2}; the other one is the interaction term, represented by the product $X_{1 i} X_{2 i}$ and the coefficient β_{12}. For more complex regression models, there may be as many terms as possible products of regressors, so that if there are k of them, there may be up to $k^{2}-1$ terms.

If some or all the predictor variables are factors, the same equations hold, but the representation of the terms in the model matrix would not be scalar values as $X_{1 i}, X_{2 i}$, or $X_{1 i} X_{2 i}$. The main term of each factor would be represented by a set of "dummy variables", whose number would be equal to the d.o.f. of the factor (the number of levels minus 1), and interactions would be represented by all the possible products of the corresponding dummy variables. Thus, for instance, if there are two factors A and B with 3 and 4 levels, respectively, the term of A would be represented by 2 dummy variables, B by 3 of them, and their interaction by $2 \times 3=6$ dummy variables.

The problem is that the coefficients that define the interactions in this framework are not always useful for describing the model in practical terms. The products of regressors are usually meaningless variables, and this poses a difficulty in the interpretation of the associated coefficients (see section 7 below). This issue is further aggravated when there are factors involved in the interactions, since the meaning of the dummy variables may be even more opaque. That is one of the reasons that motivate the different ways of describing interactions, which are commented on next.

3 Analysis of simple effects in factorial models

3.1 Calculation and plots of "cell means"

Let us take, for this and later sections, an example data set based on R.J. Boik's hypothetical data [14], which he used for demonstrating how to analyze interaction contrasts in linear models, although it will be used here for a larger variety of interaction analyses. It represents a hypothetical experiment, where people affected by hemophobia were treated with different fear reduction therapies and different doses of antianxiety medication, in a balanced factorial design, and the effect of these combined treatments was measured by their electrodermal response in an experimental session.

First we need to create the linear model from the data. We will use the data frame Boik also included in package phia, that has the response edr, and two factors (therapy, with levels control, T1, and T2; and medication, with levels placebo, D1, D2, and D3). We use the function some of package car (imported by phia) to see some cases:

```
> library(phia)
> some(Boik)
    therapy medication edr
control D1 44.37315
control D2 44.86313
control D3 52.47952
99 T1 placebo 50.66701
45 T1 D3 23.27694
46 T1 D3 23.97744
48 T1 D3 21.34225
63 T2 D2 37.17547
65 T2 D2 38.73687
67 T2 D3 31.09070
```

Before proceeding with detail analyses of the interactions, we should first check if the factorial model is coherent with the data, and if the interaction between both factors is actually significant. We can do this by examining the residuals of the model (see figure 1) and the ANOVA table.

```
> mod.boik <- lm(edr ~ therapy*medication, data=Boik)
> par(mfcol=c(1,2))
> plot(mod.boik, 1:2) # Plot diagnostics for the model
> Anova(mod.boik)
Anova Table (Type II tests)
Response: edr
\begin{tabular}{llrrcc} 
& Sum Sq & Df & value & \(\operatorname{Pr}(>F)\) \\
therapy & 2444.1 & 2 & 63.813 & \(1.399 \mathrm{e}-15\) & \(* * *\) \\
medication & 2370.9 & 3 & 41.269 & \(1.342 \mathrm{e}-14\) & \(* * *\) \\
therapy:medication & 1376.4 & 6 & 11.979 & \(8.539 \mathrm{e}-09\) & \(* * *\)
\end{tabular}
Residuals 1149.0 60
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Figure 1: Residuals vs. fitted values and Q-Q plot of mod.boik

Although the plots of figure 1 show a minor departure of normality for the residuals, specially due to a couple of extremely low observations, for the sake of balance we will keep all data, and assume that the model assumptions hold. Then we see in the ANOVA table that the interaction between therapy and medication is significant, so it does makes sense to investigate this effect. ${ }^{1}$

In factorial experiments like this one, the dependency between factor levels and the response variable is usually represented in a contingency table, where the rows and columns are related to the different levels of both treatments, and each cell contains the adjusted mean of the response for the corresponding interaction of factors. When there is an interaction effect, the cell means are taken as the most straightforward way of representing this effect. These values can be obtained from the model coefficients with the function interactionMeans in package phia, using the fitted model as first (and in this case only) argument:

```
> (boik.means <- interactionMeans(mod.boik))
```

therapy	medication	adjusted mean
control	placebo	50.20043
T1	placebo	49.89963
T2	placebo	45.69925
control	D1	47.49899
T1	D1	38.20065
T2	D1	39.09930
control	D2	45.99989
T1	D2	28.50055
T2	D2	36.50036

[^0]

Figure 2: Result of plot(boik.means)

10	control	D3	47.89981
11	T1	D3	18.99962
12	T2	D3	32.69961

This function calculates by default the cell means for the highest order interaction between factors. To obtain means for lower-order interactions, the optional argument factors allows defining the names of the factors included in the desired interaction. ${ }^{2}$ If this argument gives only one factor, the result will be the means of its zero-order interaction (i.e. the marginal means for that factor). Thus, for instance:

```
> interactionMeans(mod.boik, factors="therapy")
    therapy adjusted mean
control 47.89978
T1 33.90011
T2 38.49963
```

The output of interactionMeans can be plotted via the generic plot method, that produces the set of plots shown in figure 2. The off-diagonal panels are the typical interaction plots, that can also be created by interaction.plot from the columns of boik.means, where the lack of parallelism between lines reveals how one factor changes the effect of the other one. In this case, we see that the control group hardly obtains any benefit from the medication, whereas with the other therapies (T1 and T2) the fear to blood is reduced proportionally to the medication dose, and more markedly for the former. On the other hand, the diagonal panels represent the marginal means of each factor.

If the interaction involved more than two factors, the graphical device would have as many rows and columns as factors, and the off-diagonal panels would show the first-order interaction means for each pair of factors. For interactions with many factors, the matrix of panels may be cluttered, so it would be more convenient to show them in separate figures. The argument multiple (TRUE by default) can be modified for this purpose:

[^1]```
> plot(boik.means, multiple=FALSE) # Not printed in this paper
```


### 3.2 Caveat: low-order interactions and the marginality principle

The basic methods of statistical analysis in R favour the so-called "marginality principle", whereby the main effects of factors with non-null interactions should not be interpreted or tested [15]. And the same warning applies to interactions that are themselves contained in interactions of higher order. Thus, although the plots described in the previous section are commonplace in the study of interactions, they are not necessarily meaningful in all circumstances.

For instance, since the interaction between therapy and medication is significant, according to the marginality principle we should not take care of the main effects of those factors (regardless of what the corresponding lines of the ANOVA table indicate), so the diagonal panels of figure 2 would be irrelevant for this model. Likewise, if a model has more than two factors and an interaction of second or higher order is significant, no plot containing those factors would actually be of interest, since the method plot on the result of interactionMeans only represents main effects and firstorder interactions. (This is a limitation of the graphic representation alone, since the data frame can represent higher-order interactions).

A suitable alternative for representing higher-order interactions are the functions effect and allEffects in package effects [16]. For factorial models, their outputs contain the same type of data as interactionMeans, although they handle the numeric predictors of the model in another way, and the types of models that can be analyzed is different (see sections 6 and 7 ). Those functions are specially devised to analyze and plot the interactions of highest order in the model, through more sophisticated graphic tools, and they also calculate and plot confidence intervals of the means.

### 3.3 Testing simple effects

The tabulation or graphical representation of cell means may give us a hint of the underlying structure of interactions, but they do not suffice to assure whether a specific change in the factors plays a significant role in an interaction. As commented on above, the most frequent approach for solving this issue is testing the simple effects, as an extension of the post-hoc methods widely applied to main factor effects.

The available methods for the post-hoc analysis of main effects are manifold. The most basic procedure consists in evaluating multiple contrasts between factor levels, possibly with corrections of the $p$-value in order to protect the family-wise error rate. Pairwise comparisons between levels are usually a default strategy when the researcher has no previous plan, although this is inefficient when the factor has many levels. Tukey's method for testing pairwise contrasts, and Scheffé's method for all possible contrasts within a factor, are probably the most popular ones. The package multcomp provides useful tools for this kind of main effects contrasts.

Testing simple main effects for interactions consists in evaluating contrasts across the levels of one factor, when the values of the other interaction factors are fixed at certain levels. This test is then repeated at other fixed levels, and the results are compared. For instance, we could test the effect of medication at the different levels of therapy. This can be done with the function testInteractions, using the arguments fixed and across to define the factors that are fixed and tested across their levels in each test:

```
> testInteractions(mod.boik, fixed="therapy", across="medication")
F Test:
P-value adjustment method: holm
 medication1 medication2 medication3 Df Sum of \(\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>\mathrm{F})\)
\(\begin{array}{llllllll}\text { control } & 2.3006 & -0.4008 & -1.8999 & 3 & 54.38 & 0.9465 & 0.4239\end{array}\)
 \(\begin{array}{lllllll}\mathrm{T} 1 & 30.9000 & 19.2010 & 9.5009 & 3 & 3153.95 & 54.8985\end{array}\)
 \(\begin{array}{lllllllll}\mathrm{T} 2 & 12.9996 & 6.3997 & 3.8007 & 3 & 538.99 & 9.3818 & 7.117 \mathrm{e}-05\end{array}\)
Residuals
```

```
control
 T1 ***
 T2 ***
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The columns medication1, ... medication3 in the resulting table contain the value of the three orthogonal contrasts across the levels of medication, for each level of therapy (the only fixed factor in this example). ${ }^{3}$ The rest of columns show the information of the multivariate test applied to those contrasts. These tests just quantify the qualitative interpretation that was made from the plots: the medication does not have a significant effect for the control therapy group, but its effect is remarkable for the other groups.

The criticism often posed to this method is that interactions are mixed with main effects (or lower order interactions within), so the tests are not really related to the term that is supposedly under investigation. Using this example, the post-hoc analysis of the term therapy:medication is being performed because the ANOVA told us that it is significant; and this means that the coefficients of the matrix $\mathbf{B}$ related to this term are unlikely to be null. However, the tests of simple effects that have just been described do not only involve those coefficients, but also the coefficients related to the lower-order terms therapy and medication. ${ }^{4}$

On the other hand, many researchers like simple effects for their relatively straightforward interpretation. Moreover, the interference of lower-order coefficients may be regarded a lesser issue when the marginality principle is considered. In this theoretical framework, the presence of a high-order interaction makes lower order terms meaningless, so that their effects are absorbed by the interaction. Therefore, the coefficients of lower-order terms would partially be related to the interaction effect as well.

## 4 Analysis of residual effects

To address the conceptual problems of simple effects, Rosnow and Rosenthal encouraged the analysis of residual effects, by "peeling away" the lower-order effects from cell means [2]. For instance, let us see the cell means calculated in boik. means, in a table with the marginal means for both factors and the grand mean:

```
> boik.mtable <- xtabs(boik.means$"adjusted mean" ~ therapy+medication, boik.means)
> boik.mtable <- addmargins(boik.mtable, FUN=mean, quiet=TRUE)
> print(boik.mtable, digits=4)
 medication
therapy placebo D1 D2 D3 mean
 control 50.2 47.5 46.0 47.9 47.9
 T1 49.9 38.2 28.5 19.0 33.9
 T2 45.7 39.1 36.5 32.7 38.5
 mean 48.6 41.6 37.0 33.2 40.1
```

The "corrected means" would result from subtracting the lowest-order effect (the grand mean) from the rest of values of the table, and then sweeping out the corrected marginal means from the individual cells.

[^2]```
> boik.resid <- boik.mtable - boik.mtable[4,5] # Subtract the mean
> boik.resid <- sweep(boik.resid, 1, boik.resid[,5]) # Subtract row means
> boik.resid <- sweep(boik.resid, 2, boik.resid[4,]) # Subtract column means
> print(boik.resid, digits=4)
            medication
\begin{tabular}{lrrrrr} 
therapy & placebo & D1 & D2 & D3 & mean \\
control & -6.1993 & -1.9006 & 1.1997 & 6.9002 & 0.0000 \\
T1 & 7.4996 & 2.8007 & -2.3000 & -8.0003 & 0.0000 \\
T2 & -1.3003 & -0.9001 & 1.1003 & 1.1001 & 0.0000 \\
mean & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000
\end{tabular}
```

These values can also be calculated (and moreover tested) by testInteractions via the argument residuals, instead of fixed or across:

```
> testInteractions(mod.boik,residual=c("therapy","medication"))
```

F Test:
P-value adjustment method: holm

T2 (resid.) : placebo (resid.) -1.3003 1 $20.291 .0595 \quad 1.0000$
control (resid.) : D1 (resid.) $-1.90061 \quad 43.35 \quad 2.2635 \quad 0.8262$
T1 (resid.) : D1 (resid.) $2.800711 \quad 94.134 .9153 \quad 0.2434$
T2 (resid.) : D1 (resid.) -0.9001 1 9.72 0.5077 1.0000
control (resid.) : D2 (resid.) $1.19971717 .27 \quad 0.9019 \quad 1.0000$
T1 (resid.) : D2 (resid.) -2.3000 1 63.48 3.3148 0.5155
T2 (resid.) : D2 (resid.) 1.10031 14.53 0.7586 1.0000
control (resid.) : D3 (resid.) $6.90021 \quad 571.3529 .83539 .515 \mathrm{e}-06$ ***
T1 (resid.) : D3 (resid.) -8.0003 1 768.06 $40.10734 .069 \mathrm{e}-07$ ***
T2 (resid.) : D3 (resid.) $1.1001 \quad 1 \quad 14.52 \quad 0.7584 \quad 1.0000$
Residuals

Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05{ }^{\prime} .{ }^{\prime} 0.1$ ' ' 1

However, these results may cause confusion, and their actual interest may be dubious in many cases, including the analysis of this model. We can plot the corrected means (ommiting the margins of the table) for a clearer inspection of what is happening; see figure 3:

```
> matplot(t(boik.resid[-4,-5]), type="b", xaxt="n", ylab="Interaction residuals")
> axis(1, at=1:4, labels=levels(Boik$medication))
```

The lines of this plot (representing the three therapies) show the typical symmetry of residual effects. The line labelled with 1 (the control group without specific therapy) shows a negative residual effect of the placebo (a lower electrodermal response), that goes up to positive values as the medication dose increases. The residual effects of the group treated with therapy T1 are the opposite, whereas the the T2 group has a trend similar to the controls, but quite smaller.

The first problem is that a hasty interpretation of these values would lead to nonsense. Of course, they do not mean that the hemophobia of people that did not participate in any theraphy worsened with the medication! The correct interpretation is that for these people, the effect of increasing medication was lower than value expected by the average of marginal means, and the opposite happened with the group treated with therapy T1.

But this reasoned interpretation, albeit mathematically sound, only has sense as long as the expectations based on the marginal averages mean anything, and this is contrary to the principle of marginality commented on above. Since the factors therapy and medication do interact, the marginal

Figure 3: Residual effects of mod.boik
means depend on the distribution of the sample across the factors; they are not reliable information about the response that we can expect for the different factor levels, except for a population with the same distribution as the sample (in this case a balanced distribution). See, for instance, Games' and Meyer's discussion on this issue (although they do not explicitly refer to the "principle of marginality") [4, 6].

That principle can be neglected if there is a good reason to study the marginal means that are obtained with a specific experimental design, but these circumstances are rare and special [17]. In the current example there is no compelling reason to do so, therefore the significant differences found for the placebo and the highest dose in different therapies are rather uninformative.

5 Interaction contrasts

Another alternative to simple effects is the study of interaction contrasts, which were in fact the subject of the paper where our working data is derived from, although Boik used a slightly different procedure for their analysis. Like in the analysis of interaction residuals, the hypothesis tested by interaction contrasts is not affected by the coefficients of main effects, but this approach overcomes the problem commented on about interaction residuals, because it does not make use of marginal means, it only uses the data of cells $[5,6]$. Interaction contrasts are defined as "differential effects", or more descriptively as "differences of differences", or "contrasts between contrasts". They basically consist in calculating one or more contrasts across a factor, and then iterating on the results of that operation across the remaining factors.

For instance, the test of simple effects previously calculated for mod.boik could be transformed into a test of interaction contrasts, if instead of fixing the levels of therapy for evaluating the contrasts across medication, we do pairwise contrasts between therapy levels. For this we must use the argument pairwise instead of fixed:

```
> testInteractions(mod.boik, pairwise="therapy", across="medication")
F Test:
```

```
P-value adjustment method: holm
            medication1 medication2 medication3 Df Sum of Sq F Pr(>F)
control-T1 -28.599 -19.6019 -11.4008 3 1332.10 23.1869 1.302e-09
control-T2 
    T1-T2 17.900 12.8013 5.7002 3 5 56.55 9.6874 5.270e-05
Residuals
control-T1 ***
control-T2 *
    T1-T2 ***
Residuals
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

These tests show how the contrasts across medication differ between pairs of therapy groups. We can see that the effect of therapy T1 differs from the controls and the other therapy, even more than T2 from the controls. This was not so clear from the simple effects tests. Moreover, these results are not disturbed by the main effects of factors at all, because the calculation of contrasts has removed them for both factors, without having defined them explicitly.

The most basic interaction contrasts involve pairwise contrasts for all factors. That is what testInteractions does by default, when only the model is specified.

```
> testInteractions(mod.boik)
F Test:
P-value adjustment method: holm
                    Value Df Sum of Sq F Pr (>F)
control-T1 : placebo-D1 -8.9975 1 121.43 6.3411 0.1448291
control-T2 : placebo-D1 -3.8985 1 22.80 1.1905 0.6951907
    T1-T2 : placebo-D1 5.0990 1 39.00 2.0365 0.6951907
control-T1 : placebo-D2 -17.1985 1 443.68 23.1687 0.0001563 ***
control-T2 : placebo-D2 -4.9984 1 
    T1-T2 : placebo-D2 12.2002 1 223.27 11.6587 0.0149653 *
control-T1 : placebo-D3 -28.5994 1 1226.89 64.0665 8.678e-10 ***
control-T2 : placebo-D3 -10.6990 1 171.70 8.9661 0.0439050 *
    T1-T2 : placebo-D3 17.9004 1 480.63 25.0981 8.163e-05 ***
control-T1 : D1-D2 -8.2010 1 100.88 5.2681 0.2270868
control-T2 : D1-D2 -1.0999 1 1.81 0.0948 0.7592877
    T1-T2 : D1-D2 7.1012 1 
control-T1 : D1-D3 -19.6019 1 576.35 30.0962 1.479e-05 ***
control-T2 : D1-D3 -6.8005 1 69.37 3.6224 0.4326396
    T1-T2 : D1-D3 12.8013 1 245.81 12.8360 0.0095516 **
control-T1 : D2-D3 -11.4008 1 194.97 10.1810 0.0270962 *
control-T2 : D2-D3 -5.7007 1 48.75 2.5455 0.6951907
    T1-T2 : D2-D3 5.7002 1 48.74 2.5450 0.6951907
Residuals
    1149.01
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

If all the factors of the model had 2 levels, this would have been an optimal strategy for analysing the interaction, since the result would have been reduced to one test, corresponding to the single d.o.f. of such an interaction. But the factors with more levels heavily increase the number of tests, so that for our 3×4 factorial design, with $2 \times 3=6$ d.o.f., we obtain 18 overredundant tests. Such a high number of tests is difficult to interpret, let aside the lack of reliability of the p-values (with or without corrections, that can be set by the argument adjustment in testInteractions).

A more sensible strategy consists in defining a small number of meaningful contrasts that can be of interest for the researcher. For instance, we might be interested in knowing the effect of crossing the following contrasts for each factor

1. For therapy: controls vs. any therapy, and one therapy vs. the other.
2. For medication: placebo vs. any real dose, the minimum dose vs. the maximum, and the medium dose vs. the average of all doses.

These contrasts can be defined by the following vectors of coefficients, ordered as the factor levels:

```
> cntrl.vs.all <- c(2, -1, -1) # Control vs. both therapies
> T1.vs.T2 <- c(0, 1, -1) # Therapy T1 vs. T2
> plcb.vs.all <- c(3, -1, -1, -1) # Placebo vs. all doses
> D1.vs.D3 <- c(0, 1, 0, -1) # Min. dose vs. max.
> D2.vs.avrg <-c(0, -1, 2, -1) # Med. dose vs. average
```

Now, testInteractions allows defining of such custom contrasts, via the argument custom. This argument must be a named list of matrices, one per factor, with the vectors of coefficients arranged in columns. So we build those matrices, and although it is not necessary, we also assign names to their rows for the sake of clarity, and normalize the columns to get all the results in the same scale. ${ }^{5}$

```
> therapy.contr <- cbind(cntrl.vs.all, T1.vs.T2)
> medication.contr <- cbind(plcb.vs.all, D1.vs.D3, D2.vs.avrg)
> # Add row names
> rownames(therapy.contr) <- levels(Boik$therapy)
> rownames(medication.contr) <- levels(Boik$medication)
> # Normalize columns, so that their norm is 1
> normrows <- sqrt(colSums(therapy.contr^2))
> therapy.contr <- sweep(therapy.contr, 2, normrows, "/")
> normrows <- sqrt(colSums(medication.contr^2))
> medication.contr <- sweep(medication.contr, 2, normrows, "/")
```

Thus we make the list that will be passed to testInteractions:

```
> (custom.contr <- list(therapy=therapy.contr, medication=medication.contr))
$therapy
\begin{tabular}{lrr} 
& cntrl.vs.all & T1.vs.T2 \\
control & 0.8164966 & 0.0000000 \\
T1 & -0.4082483 & 0.7071068 \\
T2 & -0.4082483 & -0.7071068
\end{tabular}
$medication
\begin{tabular}{lrrr} 
& plcb.vs.all & D1.vs.D3 & D2.vs.avrg \\
placebo & 0.8660254 & 0.0000000 & 0.0000000 \\
D1 & -0.2886751 & 0.7071068 & -0.4082483 \\
D2 & -0.2886751 & 0.0000000 & 0.8164966 \\
D3 & -0.2886751 & -0.7071068 & -0.4082483
\end{tabular}
```

And then we use this list to define the contrasts in testInteractions:
> testInteractions(mod.boik, custom=custom.contr)

[^3]```
F Test:
P-value adjustment method: holm
 Value Df Sum of Sq F Pr (>F)
cntrl.vs.all : plcb.vs.all -8.7671 1 461.17 24.0819 4.448e-05 ***
 T1.vs.T2 : plcb.vs.all 7.1851 1 309.75 16.1749 0.0006558 ***
cntrl.vs.all : D1.vs.D3 -7.6217 1 348.54 18.2005 0.0003582 ***
 T1.vs.T2 : D1.vs.D3 6.4007 1 245.81 12.8360 0.0020468 **
cntrl.vs.all : D2.vs.avrg -1.3001 1 10.14 0.5296 0.9392219
 T1.vs.T2 : D2.vs.avrg -0.4044 1 0.98 0.0512 0.9392219
Residuals
 60 1149.01
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

This table of results is much clearer than the former. Moreover, all these contrasts are orthogonal to each other (none of them can be obtained by combination of the others), so the tests are independent, and the adjustment of $p$-values is reliable. Taking some care about the meaning of positive and negative figures of the column of Values, we can obtain the following conclusions:

1. According to the first two tests, the benefit of taking medication (pooling over the three doses) is greater if the subject also receives some therapy, and this effect is specially marked for therapy T1.
2. And according to the second two tests, the therapies interact in the same manner with the benefit of increasing the medication from the minimum to the maximum. On the other hand, we cannot say that the therapy influences the difference between the medium dose and the average of all doses.

## 6 Multivariate models for repeated-measures

Repeated-measures experiments are common in many disciplines, including psychology and agriculture, although in the latter they are usually found with the specific strucutre and name of "split-plot" designs. The classical approach for analysing this kind of experiments is via multi-strata ANOVA or univariate mixed-effects models, where the subjects or plots are introduced as factors with random effects, added to the error term (see section 9). However, when the design is balanced and adequately sized, the multivariate approach is recommended if it possible, since it does not depend on the sphericity assumption and the results are more robust [18].

An example of such an analysis in R is published in the web appendices to Fox's and Weisberg's $R$ Companion to Applied Regression [19]. We will use that example, based on the OBrienKaiser data set of package car [20].

| treatment gender pre. 1 pre. 2 pre. 3 pre. 4 pre. 5 post. 1 post. 2 post. 3 post. 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | control |  | M | 5 | 6 |  | 5 |  | 7 | 7 | 4 | 5 | 7 | 5 |
| 7 | A |  | M | 5 | 5 |  | 6 |  | 4 | 5 | 7 | 7 | 8 | 10 |
| 10 | B |  | M | 4 | 4 |  | 5 |  | 3 | 4 | 6 | 7 | 6 | 8 |
| 11 | B |  | M | 3 | 3 |  | 4 |  | 2 | 3 | 5 | 4 | 7 | 5 |
| 15 | B |  | F | 2 | 2 |  | 3 |  | 4 | 4 | 6 | 6 | 7 | 9 |
| 16 | B |  | F | 4 | 5 |  | 7 |  | 5 | 4 | 7 | 7 | 8 | 6 |
| post. 5 fup. 1 fup. 2 fup. 3 fup. 4 fup. 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 4 | 7 | 6 | 69 | 9 | 7 |  | 6 |  |  |  |  |  |  |
| 7 | 8 | 8 | 9 | 9 11 |  | 9 |  | 8 |  |  |  |  |  |  |
| 10 | 8 | 8 | 8 | 8 | 9 | 7 |  | 8 |  |  |  |  |  |  |
| 11 | 4 | 5 | 6 | 68 | 8 | 6 |  | 5 |  |  |  |  |  |  |
| 15 | 7 | 7 | 7 | 78 | 8 | 6 |  | 7 |  |  |  |  |  |  |
| 16 | 7 | 7 | 8 | 810 |  | 8 |  | 7 |  |  |  |  |  |  |

That data set has 16 rows with observations of people classified by two between-subjects factor (gender, with levels F, M; and treatment, with levels control, A, and B), so that each subject has 15 measures distributed in columns. These 15 columns correspond to 5 consecutive observations in 3 different phases (pre-test, post-test, and follow-up); this within-subjects model may be coded in a data frame with two crossed factors:

```
> (idata <- expand.grid(hour=ordered(1:5), phase=c("pre", "post","fup")))
 hour phase
 1 pre
 pre
 pre
 pre
 pre
 post
 post
 post
 post
 post
 fup
 fup
 fup
 fup
5 fup
```

The between-subjects factor treatment, however, is not balanced in this case, as can be seen in the following frequency table:

```
> addmargins(table(OBrienKaiser[c("gender","treatment")]))
 treatment
gender control A B Sum
 F
 M }\begin{array}{lllll}{3}&{2}&{3}&{8}
 Sum
```

We skip the exploration of the data that is already done in [19], and proceed to defining the multivariate model.

```
> mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,
+ post.1, post.2, post.3, post.4, post.5,
+ fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender,
+ data=OBrienKaiser)
```

The multivariate ANOVA with response transformation for repeated measures may be done with the function Anova in car, using the auxiliary data frame idata, and the formula idesign with the within-subjects design. For the sake of coherence with the published example, we report a type-III test.

```
> Anova(mod.ok, idata=idata, idesign=~phase*hour, type=3)
Type III Repeated Measures MANOVA Tests: Pillai test statistic
 Df test stat approx F num Df den Df }\operatorname{Pr}(>F
(Intercept) 1 0.96736 296.389 1 10 9.241e-09 ***
treatment [
gender 1 0.26789 3.659 1 10 0.0848003.
```



Figure 4: Means of the treatment : phase interaction for the O'Brien and Kaiser model

| treatment:gender | 2 | 0.36350 | 2.855 | 2 | 100.1044692 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| phase | 1 | 0.81363 | 19.645 | 2 | $90.0005208 * * *$ |  |
| treatment:phase | 2 | 0.69621 | 2.670 | 4 | 20 | 0.0621085 | .

Besides the intercept, the only significant effects at $\alpha=0.05$ are the main effects of phase and hour. Nevertheless, let us suppose that we have reasons to be more liberal, and want to investigate the interaction treatment: phase that is near the $\alpha$ level of significance. (The main effect treatment is also near that level, but we may ignore it since we will focus on its interaction with another factor). First we may explore and plot the cell means of this interaction with interactionMeans, using the auxiliary data frame idata to specify the within-subjects model (idesign is not needed). We will only plot the panel with phase in the $X$-axis and different lines for each treatment, using the optional arguments atx and traces:

```
> ok.means <- interactionMeans(mod.ok, c("hour","treatment","phase"), idata=idata)
> plot(ok.means, atx="phase", traces="treatment")
```

The plot of figure 4 shows that in the post-test and follow-up phases, the response of the control group more or less remains at the same level as in the pre-test phase, whereas the response for the
other treatments increases. However, this plot does not show the confidence intervals for those means, so we need to test those differences to know if they are significant. An analysis of all the possible interaction pairwise contratsts between treatment and phase gives the following result:

```
> testInteractions(mod.ok, pairwise=c("treatment", "phase"), idata=idata)
Multivariate Test: Pillai test statistic
P-value adjustment method: holm
 Value Df test stat approx F num Df den Df Pr(>F)
control-A : pre-post 1.66667 1 0.20106 2.5165 1 10 0.862456
control-B : pre-post 2.62500 1 0.44686 8.0786 1 10 0.132872
 A-B : pre-post 0.95833 1 0.08787 0.9634 1, 1 10 1.000000
control-A : pre-fup 2.16667 1 0.45202 8.2489 1 1 0.132872
control-B : pre-fup 3.04167 1 0.67782 21.0383 1 10 0.009002 **
 A-B : pre-fup 0.87500 1 0.13478 1.5578 1 10 1.000000
control-A : post-fup 0.50000 1 0.04467 0.4675 1 1 10 1.000000
control-B : post-fup 0.41667 1 0.04032 0.4202 1 10 1.000000
 A-B : post-fup -0.08333 1 0.00150 0.0150 1 1 10 1.000000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Although the interaction contrasts result in one-dimensional values, we have trasformated a multivariate response to obtain them, so the rows of this table report Pillai tests of MANOVA. These tests show that the only significant contrast is between the pre-test and follow-up phases, when compared between the control group and treatment B. Given the similarity betwen the means of treatments A and B, we could have expected a significant difference between controls and treatment A as well, but the test does not reject the null hypothesis in that case, because the number of observations for treatment A is lower, and therefore the size of the effect is relatively smaller.

The main effect of hour could be analyzed similarly. As told above, there are other packages that handle main effects efficiently; however, the most typical procedures are designed for univariate analyses, and the recommended solution for post-hoc of this kind of multivariate models is using linearHypothesis from car [21, 22]. The function, testInteractions actually is wrapper for linearHypothesis, that does the required operations with a convenient user interface.

There are other possible ways of analysing this interaction, using other options of testInteractions, or by other methods as proposed by Keselman [18]. The reader is encouraged to try these alternatives.

## 7 Models with covariates

Data sets may include numeric predictors, as mentioned in section 2. When combined with factors, they are called covariates and ANOVA is called ANCOVA (Analysis of Covariance). The analysis of interactions that involve these variables is also different. A factorial model has a finite number of factor combinations where the adjusted mean of the response can be evaluated, but the possible values of a covariate are infinite. Therefore, the effects of covariates are usually represented as continuous functions within the range of their observed values (the model may allow the calculation of effects beyond that range, but such predictions would normally have little reliability). For instance, the functions effect and allEffects in package effects evaluate the adjusted mean of the response at a sample of values of the covariates, either automatically calculated by the function or specified by the user.

However, we have seen that the effects of factors may also be analyzed by the contrasts between levels. Obviously, for covariates there are infinite possible contrasts as well, although they are constrained by the d.o.f. of the model. Let us take a pure linear regression model without factors, and two covariates that do not interact:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i} \tag{4}
\end{equation*}
$$

For the effect of $X_{1}$, there are infinite pairs of values $X_{1 a} \neq X_{1 b}$ at which we could estimate "contrasts", but the expected value of the result would always be proportional to the difference between $X_{1 a}$ and $X_{1 b}$. The ratio between both differences would be equal to the derivative of $E(Y)$ with respect to $X_{1}$, which is equal to the model coefficient for $X_{1}$ :

$$
\begin{equation*}
\frac{\Delta E(Y)}{\Delta X_{1}}=\frac{\partial E(Y)}{\partial X_{1}}=\beta_{1} \tag{5}
\end{equation*}
$$

Thus, when covariates do not interact, their effects can just be described by the values of their corresponding model coefficients. They are a measure of the "slope" along the covariate, or the increment in the expected value of the response, when the covariate increases in one unit. Thus, if the researcher also wants the adjusted value of the response for different values of the covariate, as given by the functions of effects, the only additional information that he or she needs is the adjusted mean at an arbitrary point.

The functions of package phia only report the values of the slopes. Let us take the model for the prestige of Canadian occupations, defined in [11], p. 165. We will use the data set Prestige of package car, that contains several variables related to 102 different occupations:

```
> str(Prestige)
'data.frame': }102\mathrm{ obs. of 6 variables:
 $ education: num 13.1 12.3 12.8 11.4 14.6 ...
 $ income : int 12351 25879 9271 8865 8403 11030 8258 14163 11377 11023 ...
 $ women : num 11.16 4.02 15.7 9.11 11.68 ...
 $ prestige : num 68.8 69.1 63.4 56.8 73.5 77.6 72.6 78.1 73.1 68.8 ...
 $ census : int 1113 1130 1171 1175 2111 2113 2133 2141 2143 2153 ...
 $ type : Factor w/ 3 levels "bc","prof","wc": 2 2 2 2 2 2 2 2 2 2 ...
```

The variables that we will use are prestige (prestige score), education (average years of education), income (average income), and the factor type, that has three levels: bc (blue collar), prof (professional), and wc (white collar). As recommended in the source of this example, we will log-transform income, in order to obtain a more normal behaviour of that variable. However, mathematical operators in the model formula may confuse the functions of package phia, so we will do this transformation in the data frame:

```
> Prestige$log.income <- log2(Prestige$income)
```

We will consider a model with a linear relation between prestige and the covariates log.income (transformed income) and education, with different responses for the three types of ocupation (an interaction with type). We fit this model and do an ANOVA of it:

```
> mod.prestige <- lm(prestige ~ (log.income+education)*type, data=Prestige)
> Anova(mod.prestige)
Anova Table (Type II tests)
Response: prestige
\begin{tabular}{lrrrcc}
& Sum Sq & Df & F value & \(\operatorname{Pr}(>\mathrm{F})\) & \\
log.income & 1690.8 & 1 & 41.1670 & \(6.589 \mathrm{e}-09\) & \(* * *\) \\
education & 1209.3 & 1 & 29.4446 & \(4.912 \mathrm{e}-07\) & \(* * *\) \\
type & 469.1 & 2 & 5.7103 & 0.004642 & \(* *\) \\
log.income:type & 290.3 & 2 & 3.5344 & 0.033338 & \(*\) \\
education:type & 178.8 & 2 & 2.1762 & 0.119474
\end{tabular}
Residuals 3655.4 89
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

log.income


Figure 5: Plot of the interaction log. income: type

This analysis reveals a significant main effect of education, and a significant interaction between type and log.income, which we can explore with interactionMeans (see figure 5) and test with testInteractions, by just giving the name of the relevant covariate(s) in the argument slope.

```
> plot(interactionMeans(mod.prestige, "type", slope="log.income"))
> testInteractions(mod.prestige, pairwise="type", slope="log.income")
Adjusted slope for log.income
F Test:
P-value adjustment method: holm
 Value Df Sum of Sq F Pr(>F)
bc-prof 6.5356 1 256.2 6.2381 0.04302 *
 bc-wc 5.6530 1 140.9 3.4311 0.13459
prof-wc -0.8825 1 3.3 0.0808 0.77684
Residuals 89 3655.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The plot and ANOVA table show the adjusted values of the slope with respect to log.income (instead of the adjusted mean of the response), for the levels and contrasts of the factor type. That slope, i.e. the proportional relation between the occupation's income and its prestige, is greater for blue collar occupations, whereas the difference is smaller between the other two types. However, the tests only reveal significant differences between blue collar and professionals, due to the unbalancedness of data. We can see in the ANOVA table that although the the adjusted slope of bc-prof is relatively similar to bc-wc, the sums of squares are far greater in the former case, since there are many more cases of prof:

```
> table(Prestige$type) # Frequencies of occupation types
 bc prof wc
 44 31 23
```

If there had been a significant interaction between the covariate education and type, we could have analyzed it independently, since both covariates have an additive effect (they do not interact). Things may become more complicated if there are interactions between covariates. In that case, the slopes are not constant for given combinations of factors, but they are a function of the interacting covariates. For instance, in a regression with two interacting variables:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{12} X_{1} X_{2}+\varepsilon_{i} \tag{6}
\end{equation*}
$$

the slope with respect to $X_{1}$ is $\left(\beta_{1}+\beta_{12} X_{2}\right)$, and the slope for $X_{2}$ is $\left(\beta_{2}+\beta_{12} X_{1}\right)$.
This means that the results of previous calculations may depend on the values of the other covariates. For instance, let us take another model for the Prestige data, where we consider that log.income and education can interact (the influence of the occupation's income may vary with the average years of education), and we discard the data of white collar occupations to have a more balanced design and simpify things.

```
> mod.prestige2 <- update(mod.prestige, formula=. ..+(log.income:education)*type,
+ subset=(Prestige$type!="wc"))
> Anova(mod.prestige2)
Anova Table (Type II tests)
Response: prestige
\begin{tabular}{lrrrc}
& Sum Sq & Df & F value & \(\operatorname{Pr}(>F)\) \\
log.income & 1525.16 & 1 & 39.6299 & \(2.702 \mathrm{e}-08 * * *\) \\
education & 719.35 & 1 & 18.6918 & \(5.221 \mathrm{e}-05 * * *\) \\
type & 244.25 & 1 & 6.3466 & \(0.01415 *\) \\
log.income:type & 194.83 & 1 & 5.0625 & \(0.02774 *\) \\
education:type & 3.80 & 1 & 0.0988 & 0.75424 \\
log.income:education & 57.78 & 1 & 1.5013 & 0.22476 \\
log.income:education:type & 3.30 & 1 & 0.0858 & 0.77048 \\
Residels & 2578.49 & 67 & &
\end{tabular}
Residuals 2578.4967

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The significant effects shown by the ANOVA table are the same as for the previous model, including the interaction log.income:type. And since type now has only two levels, the post-hoc test of that interaction gives virtually the same result as that table:

```
> testInteractions(mod.prestige2, pairwise="type", slope="log.income")
Adjusted slope for log.income
F Test:
P-value adjustment method: holm
 Value Df Sum of Sq F Pr (>F)
bc-prof 12.721 1 194.19 5.0458 0.02799 *
Residuals 67 2578.49

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

However, the algorithm used by this test (the function testFactors) sets the covariates at definite values, and the interaction between covariates considered by the model makes the test sensitive to those values. The default values of the covariates are the averages of the cases observed in the model fit. Nevertheless, the user may choose other arbitrary values, using the extra argument covariates that is passed down to testFactors. This argument may contain a named numeric vector with the custom values of any covariate. For instance, we might want to set education at its 75 th quantile, and see what happens with the interaction log.income:type.

```
> # Look quantiles of the model frame (a subset of the original data)
> quantile(model.frame(mod.prestige2)$education)
 0% 25% 50% 75% 100%
 6.380 8.015 9.930 13.990 15.970
> testInteractions(mod.prestige2, pairwise="type", slope="log.income",
+ covariates=c(education=14))
Adjusted slope for log.income
F Test:
P-value adjustment method: holm
 Value Df Sum of Sq F Pr(>F)
bc-prof 10.862 1 62.02 1.6114 0.2087
Residuals 67 2578.49
```

Altering the value of education has substantially changed the result of the test on a term that contains log.income, because of the interaction between both covariates. See, however, that this interaction, and other terms that contain it, are not significant according to the ANOVA of the model. So it could be wise to simplify the model (turning back to the original one), and remove this needlessly problematic interaction.

Now, if an interaction between covariates were really significant, the interest of the researcher should focus on it. The high-order interactions in linear models have a constant effect at any combination of the covariates, so the problem of the arbitrary values used by the tests disappears. If the argument slope of interactionMeans or testInteractions has the names of two or more covariates of the model, the calculations will be done on the values of the coefficients related to those interactions (and higher-order terms that might contain it). As commented on at the beginning of this document, these coefficients may be more difficult to understand, since the "slope" along a product of covariates may seem meaningless, but it can just be interpreted as an extension of the analogy previously used between factor contrasts and derivatives with respect to covariates.

We have already seen that when two factors interact, their effect can be evaluated by means of "contrasts between contrasts". Likewise, when two covariates interact, we can study a "derivative of the derivative", i.e. the second-order partial derivative of the response, which is represented by the interaction coefficient. For the regression model of equation (6):

$$
\begin{equation*}
\frac{\partial^{2} E(Y)}{\partial X_{1} \partial X_{2}}=\beta_{12} \tag{7}
\end{equation*}
$$

This interpretation can be extended to third-order or higher interactions between covariates as well, although models with that complexity are rarer, and the very meaning of such interactions will probably more difficult to interpret than the coefficients used for representing them.

## 8 Generalized linear models

Generalized linear models (GLM) are very much like classical (Gaussian) linear models in most aspects, let aside the distribution of the error term and the expected value of the response, $\mu=E(Y)$, that is related to the linear predictor by means of a link function $\eta(\mu)$. Accordingly, the interactions of such models can be analyzed by the methods explained in previous sections, although the interpretaton of adjusted values in cell means and contrasts may be a bit more involved.

Let us take the example of the AMS survey about PhDs in mathematical sciences. This example uses the data set AMSsurvey of package car, that contains a cross-classification of all the PhDs awarded in the mathematical sciences for 2008-2009 in US, assigned to 24 different categories depending on various characteristics of the doctorate students [23].

```
> str(AMSsurvey)
```

```
'data.frame': 24 obs. of 5 variables:
 $ type : Factor w/ 6 levels "I(Pu)","I(Pr)",..: 1 1 2 2 3 3 4 4 5 5 ...
 $ class : Factor w/ 4 levels "Female:Non-US",..: 4 2 4 2 4 2 4 2 4 2 ...
 $ sex : Factor w/ 2 levels "Female","Male": 2 1 2 1 2 1 2 1 2 1 ...
 $ citizen: Factor w/ 2 levels "Non-US","US": 2 2 2 2 2 2 2 2 2 2 ...
 $ count : int 132 35 87 20 96 47 47 32 71 54 \ldots..
```

The data are structured in a data frame, with one row per category. The last variable is counts (the number of PhDs in each category), and the other are factors that identify the category. One of these factors is type, the type of institution the doctorate was affiliated with, and has 6 levels: I (Pu), I (Pr), II, III, IV, and Va; I to III are math departments in universities of progressively lower-quality with $p u$ blic and private institutions distinguished by the parenthetical abbreviations, IV are statistics and biostatistics departments, and Va are applied mathematics departments. The other independent factors are sex (the gender of the doctorate, a factor with levels Female and Male), and citizen (the citizenship status, a factor with levels Non-US and US). Moreover, there is an additional factor class that combines the levels of sex and citizen. The contents of the data frame are clearer if shown as a contingency table of type and class:

| class |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| type | Female:Non-US | Female:US | Male:Non-US | Male:US |
| $\mathrm{I}(\mathrm{Pu})$ | 29 | 35 | 130 | 132 |
| I (Pr) | 25 | 20 | 79 | 87 |
| II | 50 | 47 | 89 | 96 |
| III | 39 | 32 | 53 | 47 |
| IV | 105 | 54 | 122 | 71 |
| Va | 12 | 14 | 28 | 34 |

A saturated model of these data would represent count as a function of the three-way interaction of type, sex, and citizen. But as shown in [11, pp. 253-255] by term deletion in a GLM, the influences of sex and citizen are independent to each other, so we can use a simplified model. Since we are dealing with count data, the appropriate family would be a Poisson distribution. All in all, the model could be defined as follows:

```
> mod.ams <- glm(count ~ type*(sex+citizen), family=poisson, data=AMSsurvey)
```

The ANOVA of this model confirms that the high-order interaction terms that remain are significant:

```
> Anova(mod.ams)
Analysis of Deviance Table (Type II tests)
Response: count
 LR Chisq Df Pr(>Chisq)
type 233.336 5 < 2.2e-16 ***
sex 182.983 1 < 2.2e-16 ***
citizen 5.923 1 0.01494 *
type:sex
type:citizen 26.075 5 8.628e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The terms of interest are the interactions of type with sex and citizen. We may have a look on the adjusted means with interactionMeans, as in other models:


Figure 6: Adjusted (geometric) means of the interactions in mod.ams

```
> ams.means <- interactionMeans(mod.ams)
> plot(ams.means, atx="type", traces=c("sex","citizen"))
```

The resulting plots (see figure 6) are very similar to the ones shown in previous section, with the exception of the $Y$-axis scale, which is nonlinear in this case. The reason is that for GLM, interactionMeans does not average over values of the response variable (the counts of awarded PhDs); the calculations are actually done in the link function domain, and the plots are drawn in its scale, although the resulting averages and the $Y$-axis labels are eventually transformed to show values of the response. In this case the link function is $\eta=\log (\mu)$; therefore, the adjusted means are geometric (not arithmetic) means of the response variable, ${ }^{6}$ and the $Y$-axis is plotted in a logarithmic scale.

Nevertheless, the interpretation of the plot is not very affected by this issue. The mean number of male doctorates is higher in all institutions, but the difference seems larger in "first-class" universities (both public and private), and smaller in 'third-class" universities or statistics departments (group IV). On the other hand, the influence of US-citizenship seems negligible except for statistics departments, where there are more foreign doctorates. The tables of testInteractions just confirm that these differences are significant:

```
> testInteractions(mod.ams, pairwise=c("type","sex")) # test type:sex
Chisq Test:
P-value adjustment method: holm
 Value Df Chisq Pr(>Chisq)
I(Pu)-I(Pr) : Female-Male 0.90110 1 0.2274 1.0000000
 I(Pu)-II : Female-Male 0.46588 1 16.5948 0.0005090 ***
 I(Pu)-III : Female-Male 0.34405 1 26.1549 4.096e-06 ***
 I(Pu)-IV : Female-Male 0.29651 1 47.8081 7.051e-11 ***
 I(Pu)-Va : Female-Male 0.58250 1 3.9450 0.3290761
 I(Pr)-II : Female-Male 0.51702 1 9.8992 0.0165352 *
```

[^4]```
    I(Pr)-III : Female-Male 0.38181 1 17.7152 0.0003079 ***
    I(Pr)-IV : Female-Male 0.32905 1 31.1081 3.417e-07 ***
    I(Pr)-Va : Female-Male 0.64643 1 2.2978 0.6430680
        II-III : Female-Male 0.73848 1 2.3092 0.6430680
            II-IV : Female-Male 0.63644 1 7.5105 0.0552052 .
            II-Va : Female-Male 1.25031 1 0.7098 1.0000000
        III-IV : Female-Male 0.86182 1 0.6219 1.0000000
        III-Va : Female-Male 1.69308 1 3.5240 0.3629141
            IV-Va : Female-Male 1.96453 1 6.9022 0.0688734 .
Residuals
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> testInteractions(mod.ams, pairwise=c("type","citizen")) #test type:citizen
Chisq Test:
P-value adjustment method: holm
                    Value Df Chisq Pr(>Chisq)
I(Pu)-I(Pr) : Non-US-US 0.97956 1 0.0137 1.0000000
    I(Pu)-II : Non-US-US 0.97949 1 0.0162 1.0000000
    I(Pu)-III : Non-US-US 0.81756 1 1.1332 1.0000000
        I(Pu)-IV : Non-US-US 0.52428 1 16.8929 0.0005932 *
        I(Pu)-Va : Non-US-US 1.14251 1 0.3055 1.0000000
        I(Pr)-II : Non-US-US 0.99993 1 0.0000 1.0000000
    I(Pr)-III : Non-US-US 0.83462 1
        I(Pr)-IV : Non-US-US 0.53522 1 12
        I(Pr)-Va : Non-US-US 1.16636 1
            II-III : Non-US-US 0.83468 1
            II-IV : Non-US-US 0.53526 1
            II-Va : Non-US-US 1.16643 1
        III-IV : Non-US-US 0.64128 1
        III-Va : Non-US-US 1.39747 1
            IV-Va : Non-US-US 2.17920 1
Residuals 6
Residuals 6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Notice, however, that the interpretation of the column Value in these tables requires considering the relation between the link function and the response variable. We have combined pairwise contrasts, that result in differences in the domain of the link function; for instance if we focus on the interaction contrast I(Pu)-II : Female-Male, the adjusted value of the link is:

$$
\begin{equation*}
\left(\eta_{I(P u), F}-\eta_{I(P u) M}\right)-\left(\eta_{I I, F}-\eta_{I I, M}\right) \tag{8}
\end{equation*}
$$

But $\eta_{i, j}=\log \left(\mu_{i, j}\right)$, therefore the previous equation is equivalent to:

$$
\begin{equation*}
\log \left(\frac{\mu_{I(P u), F}}{\mu_{I(P u), M}} \div \frac{\mu_{I I, F}}{\mu_{I I, M}}\right) \tag{9}
\end{equation*}
$$

And if we go back to the response variable domain, the logarithm is cancelled, so we get that the interaction contrasts is, in this case, a "ratio of ratios", rather than a "difference of differences". In other words, the figure 0.47 in the column Value for the mentioned interaction contrast means that the proportion of females vs. males in "first-class" public universities is 0.47 times (less than half) the proportion in "second-class" universities.

GLM may include covariates, and the analysis of interactions may involve terms that contain them. In that case, the means and contrasts reported by interactionMeans or testInteractions are always
in the link function domain, since the response variable keeps no linear relation with the predictors at all, and therefore there is no such thing as "slopes" of that variable, except in very local, differential environments.

Anyway, if there is some reason to do it, it is possible to obtain the derivatives of the response variable with respect to the covariates, via the "chain rule". The slopes reported by the functions of phia are derivatives of the link function, $\partial \eta / \partial X_{i}$, and if model is the name of the object with the fitted GLM, we can obtain the derivative of the expected response with respect to the link, $d \mu / d \eta$, as a function:
> dm.de <- family(model)\$mu.eta
Now, to get the derivative of μ with respect to the covariate X_{i} at a specific value X, we just have to evaluate de.dm at that value - type eval $(\mathrm{dm} . \mathrm{de}(\mathrm{X}))$, with the desired value bound to X - , and then mutliply:

$$
\begin{equation*}
\frac{\partial \mu}{\partial X_{i}}(X)=\frac{\partial \eta}{\partial X_{i}} \frac{d \mu}{d \eta}(X) \tag{10}
\end{equation*}
$$

More generally, all the calculations that may be done with classical linear models can also be applied to GLM, but it is necessary to consider that the model is defined in terms of the link function, whereas the outcomes are usually reported in units the response variable, and the calculations must be defined according to the domain where they operate.

9 Mixed-effects models

9.1 Differences with fixed-effects models

Linear and generalized linear models assume error independency between observations, i.e. that there is no correlation between the values of the residual error. However, this assumption may be violated in many experiments, where the observations are clustered in groups associated to noise factors, e.g. sets of measures taken in different environments, with different instruments, or in different subjects. Such factors are normally uninteresting for the purposes of the study, but their influence may nontheless be significant. This conflict is solved by including the influence of those factors in the model, so that (2) is expanded as follows (simplifying the model to an univariate response):

$$
\begin{equation*}
\underset{(n \times 1)}{\mathbf{Y}}=\underset{(n \times(r+1))}{\mathbf{X}} \underset{((r+1) \times 1)}{\beta}+\underset{(n \times s)(s \times 1)}{\mathbf{Z}}+\underset{(n \times 1)}{\varepsilon}, \tag{11}
\end{equation*}
$$

where the additional coefficients \mathbf{u} and their corresponding model matrix \mathbf{Z} are related to the s groups of observations associated to the noise factors (plus their possible interctions with other factors and covariates).

Now, if it is possible to assume that the effects of the noise factors (i.e. the coefficients represented in \mathbf{u}) are random values from a normal distribution, the model may be simplified, so that instead of fitting the individual values of \mathbf{u}, it is only necessary to fit their covariance matrix $\boldsymbol{\Psi}$, that is usually constrained as a function of one or a few parameters. This is what is known as a mixed-effects model (with a combination of both "fixed" and "random" effects). ${ }^{7}$ These models may be analyzed in R with the functions included in the packages nlme [24] and lme4 [25]. In the following examples we will use the latter, which is more flexible and efficient, although the procedure for analysing interactions is the same in both cases.

The functions of package phia for the post-hoc analysis of mixed-effects models are used just like in the case of linear and generalized linear models. Multivariate responses in mixed-effects models are

[^5]not supported, however, although in some cases this may be worked around by a modification of the data structure, as will be shown in the examples. From a theoretical point of view, another difference is that the tests are not exact, so there may be concerns about the reliability of the reported p-values, as will be discussed in the examples as well.

Note, moreover, that the analysis is limited to the fixed effects, for good reasons. Random effects are normally noise that must be controlled, but are not interesting for the conclusions of the study, and that is in fact why their effect is generally simplified as a set of random values. Accordingly, the parameters that are fitted in the model are not the specific values of the random effects, but their covariances or other parameters that define their distribution. In other wordks: the model does not really tell anything of those specific values, so we should not interrogate it about them.

Although the level of abstraction needed to understand this principle may be high in a complex model, it may be better grasped in a trivial model, defined just as the average of a set of random values, plus the variance of the residual error. Doing a post-hoc about a random effect in a mixedeffects model is like asking in this case if two arbitrary observations are too far apart. This may be a legitimate diagnostic question at best, but a positive answer would just mean that the chosen model is inadequate for those data.

9.2 Fitting and analysing a mixed-effects model

As an example to illustrate the post-hoc analysis of mixed-effects models, we will use Snijders' and Bosker's data with language achievements of 2287 high-school students [26], included in the package nlme. Following one of the examples worked by Snijders and Bosker, we will study the scores of a language test as a regression of the students' IQ in verbal tasks and their socio-economical status (SES), possibly influenced by their gender, and the average SES and IQ of their schoolmates. In addition, we will explore the strategy to analyze repeated-measures with a mixed-effects model, by comparing the achievements in two repetitions of the language test: at the start and end of the school year. All in all, the variables of interest in the original data frame bdf are:
langPRET: Score in the first repetition of the test.
langPRET: Score in the second repetition of the test.
pupilNR: Student code.
IQ.ver.cen: Student IQ (school-centered).
ses: Student socio-economical status (SES).
sex: Student gender.
schoolNR: School code.
schoolSES: School average SES
avg.IQ.ver.cen: School average IQ.
We first create a subset of the data frame with those variables, taken from the namespace of nlme without attaching it (with the operator : :). ${ }^{8}$ We will also add meaningful labels to the sex factor, and simplify some variable names for the sake of clarity.

```
> Snijders <- nlme::bdf[c("langPRET","langPOST", # Outcomes
+ "pupilNR", "IQ.ver.cen", "ses", "sex", # Student-related variables
+ "schoolNR", "schoolSES", "avg.IQ.ver.cen")] # School-related variables
Snijders$sex <- factor(Snijders$sex, labels=c("F","M"))
names(Snijders) <-
    c("score.1", "score.2", "student", "IQ", "SES", "sex", "school", "avgSES", "avgIQ")
```

[^6]Following Snijders and Bosker, for a better model fit we will also include quadratic components of IQ around 0 (remember that the IQ variable is centered), with the same sign as the IQ value [26, p. 122].

```
> Snijders$IQ2.pos <- with(Snijders, (IQ > 0)*IQ^2)
> Snijders$IQ2.neg <- with(Snijders, (IQ < O)*IQ^2)
```

The model proposed by Snijders and Bosker was focused on the result of one of the tests (say score.2, and contained the following fixed terms: the crossed linear effect of IQ and SES, both at student level (IQ*ses) and at school level (avgIQ*avgSES), the quadratic effects of IQ (IQ2.pos, IQ2.neg), and the effect of gender (sex). They also considered that the average scores and the linear effect of IQ could be grouped by school. Such a model could be fitted as follows:

```
> library(lme4)
> form1 <- score.2 ~
+ IQ * SES + IQ2.pos + IQ2.neg + sex + avgIQ * avgSES + # Fixed part
+ (IQ | school) # Random part
> mod.snijders.1 <- lmer(form1, data=Snijders)
```

Now, this is one of the cases where we cannot use the multivariate approach described in section 6 for analysing the effect of repeating the test. We could attempt a similar analysis step-by-step, fitting two models with different dependent variables, corresponding to the response transformations that are used in the analysis of within-subjects effects. Both models would have the same right-hand side of the formula as form1 above. The dependent variable in one of them would be the average of score. 1 and score. 2 ; in the other one it would be their difference:

```
> form2.1 <- update(form1, (score.1+score.2)/2~.)
> form2.2 <- update(form1, (score.2-score.1)~.)
```

If we consider that score. 1 and score. 2 are two subsets of the same variable, distinguished by a two-level factor (say repetition), the model fitted with form2.1 would tell us the effects of the terms defined in that formula on the pooled variable, whereas the model fitted with form2. 2 would define the effects of the interaction between repetition and those terms (i.e. repetition:IQ, repetition: SES, etc.).

On the other hand, we may fit a single model that accounts for all the terms that we want to analyze with more flexibility. For that, we first have to transform the "wide" data frame with score. 1 and score. 2 as different columns, into a "long" data frame with both of them in one column. We will also need the repetition factor explicitly defined in the data frame, and a variable that identifies each original row (the already existing variable student in the original frame can do that work). We can get all this with the reshape function:

```
> Snijders.long <- reshape(Snijders, direction="long", idvar="student",
+ varying=list(c("score.1","score.2")), v.names="score", timevar="repetition")
> # The within-subjects factor must be coded as a factor
> Snijders.long$repetition <- as.factor(Snijders.long$repetition)
> # See the variables of the long data frame
> str(Snijders.long)
'data.frame': 4574 obs. of 11 variables:
    $ student : Factor w/ 2287 levels "17001","17002",..: 1 2 3 4 5 6 7 8 9 10 ...
    $ IQ : num 3.166 2.666-2.334 -0.834 -3.834 ...
    $ SES : num 23 10 15 23 10 10 23 10 13 15 %..
    $ sex : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
    $ school : Ord.factor w/ 131 levels "47"<"103"<"2"<..: 119 119 119 119 119 119 119 119 119 119 .
    $ avgSES : num 11 11 11 11 11111 11 11 11 11 ...
```

```
$ avgIQ : Named num -1.51 -1.51 -1.51 -1.51 -1.51 ...
    ..- attr(*, "names")= chr "1" "1" "1" "1" ...
$ IQ2.pos : num 10.02 7.11 0 0 0 ...
$ IQ2.neg : num 0 0 5.448 0.696 14.7 ...
$ repetition: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ score : num 36 36 33 29 19 22 20 44 34 31 ...
- attr(*, "reshapeLong")=List of 4
..$ varying:List of 1
.. ..$ : chr "score.1" "score.2"
..$ v.names: chr "score"
..$ idvar : chr "student"
..$ timevar: chr "repetition"
```

Now we can use this data frame to fit a model based on the formula form1, adding the interactions of repetition with the terms we want (in the multivariate approach, all the interactions of betweensubjects and within-subjects terms are always included). The price that is paid for that is the addition of the random effects of student, since now we have more than one observation for each value of this factor.

We will consider that the repetition only interacts with the student-related terms. Regarding the random effects, the student factor can only influence the intercept term, since all the other terms of the model are constant for the two measures of each student. Thus, the new formula and the model fitted with it will be:

```
> form3 <- score ~
+ repetition * (IQ * SES + IQ2.pos + IQ2.neg + sex) + # Student-related
+ avgIQ * avgSES + # School-related
+ (IQ | school) + (1 | student) # Random part
> mod.snijders.3 <- lmer(form3, data=Snijders.long)
> # See the main parameters of the model (ommit correlations table)
> print(mod.snijders.3, correlation=FALSE)
```

Linear mixed model fit by REML
Formula: form3
Data: Snijders.long
AIC BIC logLik deviance REMLdev
2860028741 -14278 2848128556
Random effects:
Groups Name Variance Std.Dev. Corr
student (Intercept) 13.7342403 .70597
school (Intercept) 3.5534901 .88507
IQ $\quad 0.042341 \quad 0.20577-1.000$
Residual 18.0403574 .24739
Number of obs: 4574, groups: student, 2287; school, 131
Fixed effects:

	Estimate		Std. Error
t value			
(Intercept)	31.854396	0.948309	33.59
repetition2	4.273219	0.387303	11.03
IQ	2.651863	0.224042	11.84
SES	0.090741	0.012922	7.02
IQ2.pos	-0.131333	0.046655	-2.81
IQ2.neg	0.146037	0.039513	3.70
sexM	1.239280	0.240115	5.16
avgIQ	1.646245	0.778591	2.11
avgSES	-0.040526	0.049205	-0.82

IQ:SES	-0.014035	0.006067	-2.31
repetition2:IQ	1.413393	0.230067	6.14
repetition2:SES	0.067266	0.012209	5.51
repetition2:IQ2.pos	-0.179175	0.048871	-3.67
repetition2:IQ2.neg	0.164296	0.040657	4.04
repetition2:sexM	1.390741	0.251980	5.52
avgIQ:avgSES	-0.045500	0.042052	-1.08
repetition2:IQ:SES	-0.010653	0.006202	-1.72

As said above, the methods for analysing a model like this are similar to the ones used in fixed-effects models. However, there are important caveats about the results that must be considered.

The main objective of many researchers in their using statistical techniques for data analysis is to obtain p-values to accept or reject their hypothesis, but the calculation of those values in mixed-effects models is problematic. That is the reason why the table of coefficients of a model fitted by lmer does not show p-values, as may be seen above, nor are they presented in the ANOVA table given by the standard anova method [27]. ${ }^{9}$

There are different techniques for working around this problem, like the Kenward-Roger approximation or parametric bootstrap, which are implemented in the package pbkrtest [28]. An alternative approach is assuming that the covariances of the random part of the model are equal to the estimated values, and then use standard tests [29]. The function Anova of package car produces tables with p-values based on Wald tests, following the latter assumption [30], and by extension, the same happens with the test functions of package phia, which are also dependent on the function linearHypohtesis from car.

This being said, we can first look what terms are significant according to the Wald tests:

```
> Anova(mod.snijders.3)
Analysis of Deviance Table (Type II tests)
Response: score
            Df Chisq Pr(>Chisq)
repetition 1 2882.6799 < 2.2e-16 ***
IQ 1 479.2561 < 2.2e-16 ***
SES 1 110.2877 < 2.2e-16 ***
IQ2.pos 1 30.8976 2.720e-08 ***
IQ2.neg 1 45.3548 1.644e-11 ***
sex 1 89.5821 < 2.2e-16 ***
avgIQ 1 12.0594 0.0005153 ***
avgSES 1
IQ:SES 1 13.7840 0.0002051 ***
repetition:IQ 1 52.3654 4.608e-13 ***
repetition:SES 1 28.8549 7.801e-08 ***
repetition:IQ2.pos 1 13.4414 0.0002461 ***
repetition:IQ2.neg 1 16.3300 5.321e-05 ***
repetition:sex 1 30.4621 3.405e-08 ***
avgIQ:avgSES 1 1.1707 0.2792618
repetition:IQ:SES 1 2.9505 0.0858501.
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The ANOVA table shows that most terms of our model are significant for the Wald test at $\alpha=0.05$. The exceptions are the terms related to avgSES, and the second-order interaction of repetition with IQ and SES.

[^7]All the remaining main and interaction effects of factors and covariates could further be investigated, as explained in the previous sections. Just as an example, let us focus on the only interaction between factors: repetition: sex. We can see the table of average scores, and calculate the simple main effects and pairwise interactions:

```
> # Cell means
> interactionMeans(mod.snijders.3)
    repetition sex adjusted mean
1 1 F 33.67415
2 2 F 39.82938
3 1 M 34.91343
4 2 M 42.45940
> # Simple effect of sex at each repetition
> testInteractions(mod.snijders.3, fixed="repetition", across="sex")
Chisq Test:
P-value adjustment method: holm
    Value Df Chisq Pr(> Chisq)
1 -1.2393 1 26.638 2.454e-07 ***
2-2.6300 1 119.972 < 2.2e-16 ***
-
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> # Pairwise interactions (default)
> testInteractions(mod.snijders.3)
Chisq Test:
P-value adjustment method: holm
    Value Df Chisq Pr(> Chisq)
1-2 : F-M 1.3907 1 30.462 3.405e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

These results show that female students had significantly lower scores than boys, and that in the second repetition that difference was two times the initial one. Note, however, that the size of the difference is small in spite of the statistical significance (gender differences were between 1 and 3 points, for scores that were normally over 30 points).

That is something that often happens when models are fitted to very large data bases, and that reminds us that p-values must always be taken carefully and with a critical thought. In this case, where we used thousands of observations, we may suspect that many of the effects with low p-values in the ANOVA table may be irrelevant. In fact, if we look at the coefficients of the model (in the table above) and the ranges of the associated covariates in the data frame, we can see that most effects are negligible in size when compared with the differences associated to repetition and the linear effect of IQ. This means that they are not relevant from a practical point of view, even though they may contribute to a significantly better fit of the model.

Acknowledgements

I thank Professors John Fox and Michael Friendly, for their encouragement and advise in the creation of the functions of package phia.

References

[1] L. A. Marascuilo and J. R. Levin, "Appropriate post hoc comparisons for interaction and nested hypotheses in analysis of variance designs: The elimination of type IV errors," American Educational Research Journal, vol. 7, no. 3, pp. 397-421, 1970.
[2] R. L. Rosnow and R. Rosenthal, "Definition and interpretation of interaction effects," Psychological Bulletin, vol. 105, no. 1, pp. 143-146, 1989.
[3] R. L. Rosnow and R. Rosenthal, "'Some things you learn aren't so": Cohen's paradox, Asch's paradigm, and the interpretation of interaction," Psychological Science, vol. 6, no. 1, pp. 3-9, 1995.
[4] P. A. Games, "Type IV errors revisited.," Psychological Bulletin, vol. 80, no. 4, pp. 304-307, 1973.
[5] J. R. Levin and L. A. Marascuilo, "Type IV errors and Games.," Psychological Bulletin, vol. 80, no. 4, pp. 308-309, 1973.
[6] D. L. Meyer, "Misinterpretation of interaction effects: a reply to Rosnow and Rosenthal," Psychological Bulletin, vol. 110, no. 3, pp. 571-573; discussion 574-576, 1991.
[7] R. E. Petty, L. R. Fabrigar, D. T. Wegener, and J. R. Priester, "Understanding data when interactions are present or hypothesized," Psychological Science, vol. 7, no. 4, pp. 247-252, 1996.
[8] R. L. Rosnow and R. Rosenthal, "Contrasts and interactions redux: Five easy pieces," Psychological Science, vol. 7, no. 4, pp. 253-257, 1996.
[9] K. J. Ottenbacher, "Interpretation of interaction in factorial analysis of variance design," Statistics in Medicine, vol. 10, no. 10, pp. 1565-1571, 1991.
[10] A. Pardo, J. Garrido García, M. A. Ruiz, and R. San Martín Castellanos, "La interacción entre factores en el análisis de varianza: errores de interpretación," Psicothema, vol. 19, no. 2, pp. 343349, 2007.
[11] J. Fox and S. Weisberg, An R Companion to Applied Regression. Thousand Oaks CA: Sage, second ed., 2011.
[12] T. Hothorn, F. Bretz, and P. Westfall, "Simultaneous inference in general parametric models," Biometrical Journal, vol. 50, no. 3, pp. 346-363, 2008.
[13] Y. Dodge, The concise encyclopedia of statistics. Springer, 2008.
[14] R. J. Boik, "Interactions, partial interactions, and interaction contrasts in the analysis of variance.," Psychological Bulletin, vol. 86, no. 5, pp. 1084-1089, 1979.
[15] J. A. Nelder, "A reformulation of linear models," Journal of the Royal Statistical Society. Series A (General), vol. 140, no. 1, pp. 48-77, 1977.
[16] J. Fox and J. Hong, "Effect displays in R for multinomial and proportional-odds logit models: Extensions to the effects package," Journal of Statistical Software, vol. 32, pp. 1-24, 102009.
[17] W. Venables, "Exegeses on linear models." Paper presented to the S-PLUS User's Conference (Washington, DC, 8-9th October, 1998), 2000.
[18] H. J. Keselman, "Testing treatment effects in repeated measures designs: an update for psychophysiological researchers.," Psychophysiology, vol. 35, no. 4, pp. 470-478, 1998.
[19] J. Fox and S. Weisberg, "Multivariate Linear Models in R. an appendix to An R Companion to Applied Regression, second edition," July 2011.
[20] R. G. O'Brien and M. K. Kaiser, "MANOVA method for analyzing repeated measures designs: an extensive primer.," Psychological Bulletin, vol. 97, no. 2, pp. 316-333, 1985.
[21] J. Fox, "Post-hoc after Anova() car package using linear.hypothesis() in a repeated measure analysis." R-help Archive, September 272007.
[22] J. Fox, "Multiple comparisons on anova.mlm object." R-help Archive, April 172010.
[23] P. Phipps, J. W. Maxwell, and C. A. Rose, "2009 Annual Survey of the Mathematical Sciences in the United States (first report)," Notices of the AMS, vol. 57, no. 2, pp. 250-259, 2010. Supplementary Table 4.
[24] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team, nlme: Linear and Nonlinear Mixed Effects Models, 2012. R package version 3.1-105.
[25] D. Bates, M. Maechler, and B. Bolker, lme4: Linear mixed-effects models using S4 classes, 2012. R package version 0.999999-0.
[26] T. A. B. Snijders and R. J. Bosker, Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Sage, 1999.
[27] D. Bates, "lmer, p-values and all that." R-help Archives, May 192006.
[28] U. Halekoh and S. Højsgaard, pbkrtest: Parametric bootstrap and Kenward Roger based methods for mixed model comparison, 2012. R package version 0.3-4.
[29] J. J. Faraway, Extending the Linear Model with R: generalized linear, mixed effects and nonparametric regression models. Boca Raton: Chapman \& Hall / CRC, 2006.
[30] B. Bolker, "F and wald chi-square tests in mixed-effects models." R-sig-ME Archives, October 4 2011.

[^0]: ${ }^{1}$ The data set is based on the results reported in Boik's paper for the different tests, but not directly copied from his original work (that actually gives no data set). Thus, the residual plots are irrespective of Boik's paper, and due to rounding inaccuracies, the last decimals of the tables in that paper are not exactly the same as those reported in this vignette. Regarding the ANOVA calculations, the Anova function of package car is used to be consistent with later sections, although for this set of balanced data the results would be the same if we had used anova from the base R package.

[^1]: ${ }^{2}$ But consider the contradiction of this approach with the marginality principle discussed in the next section.

[^2]: ${ }^{3}$ The specific contrasts that are calculated depend on various elements. In this case, since the original data frame defines medication as an ordered factor, polynomial contrasts are computed by default. For unordered factors they would have been "sum-to-zero contrasts". This default behaviour can be overriden by setting other contrast in the original data frame, the model fit, or with additional arguments in testInteractions.
 ${ }^{4}$ interactionTest calls repeatedly the function testFactors, which in its turn defines a linear combination of the model coefficients and passes it down to linearHypothesis. The hypothesis matrices used for these tests can be looked at to see what coefficients are actually involved.

[^3]: ${ }^{5}$ These matrices are transformed combinations of Helmert and polynomial contrasts, so they could have been defined by the functions contr.helmert and contr.poly as well.

[^4]: ${ }^{6}$ The adjusted link function $i s$ an arithmetic mean, but then: $\mu\left[\sum\left(\eta_{i}\right) / n\right]=\exp \left[\sum\left(\log \mu_{i}\right) / n\right]=\prod \mu_{i}^{1 / n}$.

[^5]: ${ }^{7}$ The structure of the random part of the model is similar to the error term. In fact, in the limit case where all the groups of random factors only contain one observation, \mathbf{Z} is equivalent to the identity matrix, and the coefficients \mathbf{u} cannot be distinguished from the residual errors ε. Obviously, in that case no special technique would be necessary for fitting the model, and the linear regression method would just do the work (although with an increased residual error). It is also possible to work with generalized mixed-effects models, where both the coefficients of random effects and the residual error follow a non-normal distribution.

[^6]: ${ }^{8}$ Since the namespaces of nlme and lme4 partially overlap, it is not advisable to load both packages in the same session.

[^7]: ${ }^{9}$ Mixed models fitted with lme from package nlme do show p-values, but this does not mean that they should always be trusted.

