
Improvement on Solving the Constraint System in Automated Test 

Data Generation for Database Stored Procedure Testing 

Feng Liyun
a,
*, Zeng Qiang

a
 and Hong Mei

a
 

a Computer Science college of Sichuan University, Chengdu and 610065, China 

Abstract. Stored procedure has occurred independently in database application systems. How to test the 

stored procedure effectively becomes an urgent problem in automated testing. Test data generation is a vital 

part in automated test of stored procedure. However, the current approaches of test data generation for stored 

procedure needs manual intervention and the solution of the constraint system which limits test data can not 

effectively cover all the situations. Existing approaches can not solve constraint system with character string 

and strict inequality. This paper improved the approach to generate test data, perfected existing approach to 

solve constraint system and reduced the limitation on solving the constraint system. 

Keywords: Software Automated Testing, Database System Testing, Database Stored Procedure Testing; 

Automated Generation of Test Data, Solution for Constraint System 

1. Introduction 

In many leading-edge domains such as aviation, spaceflight and military, the vital mission systems are 

based on database system. The quality of database is the groundwork for these mission systems and needs to 

be assured by testing the database system. Stored procedure, as an advanced and significant function in 

database system, has been widely applied because of its advantages-- it can simplify the high-level application 

development, reduce the network flow, enhance the security and so on. Therefore, stored procedure should be 

tested as a separate segment. Since stored procedures are stored in back-end server, testing them is difficult 

and limited by result visualization problem. 

The major difference between stored procedure testing and general software testing is that the database 

states will influence the test result. That means even if the input parameters are same, the execution result of 

the stored procedure might be different under different database state. Furthermore, the data amount of one 

database state is usually large, so it is inefficient to construct testing data manually or even it is impossible to 

construct manually when massive test data is needed. Stored procedure testing is hence necessary to be 

automated.  

In order to implement automated tests of stored procedure, there are four problems need to be solved: 

a. Analysis of stored procedure code and automated generation of test data (include input parameter and 
database states) 

b. Automated generation of expected test results  
c. Automated execution of test program (scripts) and record of the test result. 
d. Automated analysis of test result and attained conclusion  

To solve the first problem---automated generation of test data, Mei Hong[1] has proposed the method 

aimed at automated generation of test data for stored procedure on the basis of generating test data 

automatically for the third programming language. The method is divided into three steps: First, establish the 

constraints of test data. Second, solve the constraints. Finally, generate test data according to solution result of 

 

* Corresponding author. 

E-mail address: xiaoyuer198856@163.com. 

2012 International Conference on Image, Vision and Computing (ICIVC 2012) 

IPCSIT vol. 50 (2012) © (2012) IACSIT Press, Singapore 

DOI: 10.7763/IPCSIT.2012.V50.18 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the constraints. The existing algorithm reverse query processing and multi-reverse query processing have 

solved the issues of automated generation and combination of database states[2],[3]. These algorithms make it 

possible to test stored procedure automatically. 

However, current approaches on solving the constraint system can not meet the requirements of 

automated test cases generation for stored procedure testing. Character strings and strict inequality appear in 

the constraint system inevitably. But general approaches can not solve this kind of constraint system, so it is 

necessary to refine and improve the existing approaches about solving constraint system. 

2. Related Work 

Nikolai Tillmann[4] proposed an unit test tool PEX for .NET. Pex can produce a small test suite with high 

code coverage for a .NET program. It performs a systematic program analysis to determine test inputs for 

Parameterized Unit Tests and also learns the program behavior by monitoring execution traces. Koushik 

Sen[5] addressed the problem of automating unit testing with memory graphs as inputs and proposed an 

approach to exploring all feasible execution paths using a combination of symbolic and concrete execution to 

generate test inputs. Zhongxing Xu[6] described a prototype tool, called SimC, which automatically generates 

test data for unit testing of C programs. The tool symbolically simulates the execution of the given program 

and is capable of generating test data for programs involving pointer and structure operations. J. Zhang[7] 

described an implemented toolkit whose goal is to find values for input variables such that a terminal state can 

be reached. J. Zhang[8] described constraint-based tools that can be used for decide the feasibility of paths. 

Sen, K[9] put forward the use of CUTE（Concolic Unit Testing Engine）in Java. The researches above are 

primarily focused on how to establish path-driven constraint system and find the solution of them for the third 

generation programming language. The problem is that they do not relate to the database state 

MeiHong [1] studied the issue of automated generation of test case for stored procedure testing and 

proposed a method to generate constraints for stored procedure which is the basis of this paper. However, the 

character string variables in the constraint system still remain unsolved. 

3. The Improvement of Solution on Constraint System for Stored Procedure 
Testing 

Current general approaches to solve the constraint system can not meet the requirements of automated test 

cases generation for stored procedure testing. In the constraint system, character strings and strict inequality 

appear inevitably. General approaches can not solve this kind of constraint system. 

Variables can be divided into two types, which are string variable and numerical variable. Numerical 

value can not have direct relationship with string variable itself, but properties of the string such as the length, 

the location of a character, which associated with the numerical values. When strings and numeric variables 

both occur in a judgment condition, we can define one numerical variable to replace one property of the 

string. After replacing all the string property, there are only numerical variables in the judgment condition. 

According to the type of variables appeared in the determining condition, we divide constraint system into 

two types: strings variables constraint system and numeric variables constraint system. The process of 

improved solution of constraint systems is shown in Figure 1: 

3.1. Solution of strings variables constraint system 

One string variable judgment condition has two variables and a judgment relationship at most---- E1 and 

E2 can be either a string variable or a constant. As the transitivity of judgment relationships, string variable 

judgment condition finally comes down to the judgment relationship between a string variable and a string 

constant, as shown in (1). 



Split  the 

constraint system

Strings variables

constraint system

Numerical variables

 constraint system 

Replace the determining 

Conditions with the 

variables and constants

Remove the 

strict inequality 

in constraint system

Using set theory to solve Using linear to solve

A set of feasible solution

 

Figure 1 Process of the Improved Solution of Constraint System 

The solutions of the two types are described in detail as follow. 

1 1

2 2

1 1 2

2 1 2

1 2

:   

:   
:   

:   n n

r r

r r

r r

n

r E OP E

r E OP E
R Var OP Con

r E OP E












                                                                                                                       (1) 

Var represents string variable, and Con represents string constants. 

The string is an ordered set of characters, and it can be expressed as <A, ≦ >, where A represents all the 

characters in a string, ≦  represents the preorder relationship between the characters. There is preorder 

relationship between any two characters, so <A, ≦ > also is a line ordered set. Thus, solving a string variable 

judgment conditions could be converted to solve the line ordered sets <A, ≦ >, as shown in (2). 

   Var OP Con    <X, ≦ > OP <C, ≦ >                                                                                              (2) 

X represents sets of string variable, C represents string constants, and OP represents judgment 

relationship. 

We will discuss the solution of string determining condition whit different OP separately: 

a) <X, ≦ > ＝ < C, ≦ > 

According to the extension theorem, two sets are equivalent only if they have the same members ---- X = 

C. And <A, ≦ > is a line ordered set, so there is only one unique solution Con for Var. 

b) <X, ≦ > ≠ < C, ≦ > 

According to the extension theorem, any two sets are not equivalent when they contain different elements, 

or different number of elements, so two strings is not equal when the length of Var is not the same as Con or 

the characters is different at the same location. 

c) <X, ≦ >   < C, ≦ >  
<X, ≦ > is a subset of < C, ≦ >. As < A, ≦ > is a line ordered set, there are two line ordered sets <con1, 

≦ > and <con2, ≦ > making the following equation established: 

<C, ≦ > ＝ <con1, ≦ > + < X, ≦ > + <con2, ≦ > 

d) <X, ≦ >   < C, ≦ >  
<X, ≦ > is not a subset of < C, ≦ >. So any two ordered sets <con1, ≦ > or <con2, ≦ > will make the 

following inequation established: 
<C, ≦ > ≠ <con1, ≦ > + < X, ≦ > + <con2, ≦ > 

e) <X, ≦ >   < C, ≦ >  
<C, ≦ > is a subset of <X, ≦ >. As < A, ≦ > is a line ordered set, there are two line ordered sets <con1, 

≦ > and <con2, ≦ > making the following equation established: 

<X, ≦ > ＝ <con1, ≦ > + <C, ≦ > + <con2, ≦ > 

Adding a string of any length (including zero) before the first character or after the last character of Con 

could be the value of Var. 

f) <X, ≦ > !  < C, ≦ > 



<C, ≦ > is not a subset of < X, ≦ >. So any two ordered sets <con1, ≦ > or <con2, ≦ > will make the 
following inequation established: 

<X, ≦ > ≠ <con1, ≦ > + < C, ≦ > + <con2, ≦ > 

When X contains less elements than C , C contains some elements not in X or < C, ≦ >contains preorder 

relationships not in <X, ≦ >, the above inequation is established.  

We can successful get the value of variables in the judgment condition which contains string variables and 

constants using the method above. But there are a prerequisite that there are constants in the constraint system, 

and string variables have direct or indirect relationship with the constants. Otherwise, all the variables in the 

constraint system are unsolvable. 

The algorithm of solving string variable constraint system is shown in Figure 2. 

Solution of numerical variables constraint system 

Previous studies often use linear programming, nonlinear programming and genetic algorithms to solving 

numerical variables constraint system. 

In the linear programming, the linear programming model is defined as shown in (3) ,(4)and (5): 

max ;

.  ,

     0.

Z CX

s t AX b

X





                                                                                                                                              (3) 

( ) ,ij m nA a n m 
                                                                                                                          (4) 

1 2( ) , , , 0, ( , , , )n m

nr A m X R b R b C c c c     
                                                                                  (5) 

The result of linear programming solution is often the point on the border. So it makes the linear 

programming method is only applicable to loose constraint condition such as X≥0 but not applicable to strict 

inequality such as X>0 [10] .  But in stored procedure, strict inequality will inevitably occur in those 

constraint systems for each path which is because of the complementarities of the paths. 

The idea of nonlinear programming solution is using approximate method to convert the nonlinear 

constraints system into similar linear constraints system, and then using the linear programming. Therefore, 

the nonlinear programming also demands the judgment condition to be non-strict inequality [10]. 

Although genetic algorithms avoid the constraints of strict inequality, it brings in the defects of genetic 

algorithm. One drawback is that the genetic algorithm depends on the initial population, but initial population 

is often generated randomly which makes the speed and the results of solution can not be guaranteed. 

The improved solution of numerical variables constraint system is described as follows. 

During testing stored procedure, we only need to execute stored procedure path once to test whether the 

data is processed correct or not in the certain path. So we don not need the complete solution set of the 

constraint system. We can make appropriate adjustment on the numerical variables constraint system as long 

as the solution results of the adjusted constraint system do not expand. Based on this idea, we can convert the 

strict inequality to non- strict inequality. 

The improved method is as follows. First, transform the inequality to make sure that there are only 

constants at the right of inequality. If the inequality does not contain a constant, we can add 0. Then convert 

strict greater than to non-strict greater than, and increase the constant a unit; convert strict less than to non-

strict less than, and decrease the constant a unit. For instance x <1 can be converted to x <= 0.  

After such adjusted, constraint system does not contain strict inequality. The new constrain system can 

meet the requirements of linear programming. Then we use linear programming to solve the adjusted 

constraint system. Linear programming solve method is quite mature; the paper will not elaborate on it. We 

use LP_solve tool to solve constraint system. 

4. Experimental Verification XPERIMENTAL VERIFICATION 

Example: testing path constraint system of stored procedure is shown in (6): 



  "bush"

  

10000

( ) / 10%

30

60

name

list name

sum base

sum base base

sum count price

base count

price

 
 


 
  
 

  
  
 

  
 

                                                                                                                         (6) 

After splitting and adjusting the constraint system above, we can get the string variable constraint system 

and numerical variable constraint system as shown in (7)and (8). 

  "bush"

  

name

list name

 
 

                                                                                                                               (7)  
10001

( ) / 11%

30

59

sum base

sum base base

sum count price

base count

price

  
 

 
  

  
  
 

                                                                                                                          (8) 

Solve the string and the numerical variable constraint system respectively and get a group of solution as 

shown in(9): 

"white"

"morewhite"

50

600

30000

18000

name

list

price

count

sum

base






 



 


                                                                                                                                     (9) 

According to the results of constraint system mentioned above, it is evident that the method of solving 

constraint systems introduced in this paper can efficiently solve constraint systems containing character 

strings or strict inequality. 

5. Conclusion and Future Work  

With the expanding use of stored procedure, the automated stored procedures test is an invertible trend. In 

this paper, we extract the requirements on test data and the database state and refer to reverse query processing 

algorithm, which effectively reduces the manual intervention in test data generation process. Meanwhile, the 

solving algorithm for string variable constraint system and the improvement of solving algorithm for 

numerical variables constraint system, effectively reduce the limitation of the string and strict inequality on 

the restraint system. 

Due to the limitation of time and capability, the data in the solution of the constraint system which 

generated by the approach introduced in our paper has no semantic meaning. How to solve the constraint 

system and generate test data with semantic meaning is the future research. 

6. References 

[1] Mei Hong, An Approach of Automated Test Cases Generation in Database Stored Procedure Testing[C], The 2nd 

International Workshop on Education Technology and Computer Science,2010 

[2] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In ICDE '07: Proceedings of the International 

Conference on Data Engineering, 2007:pages 506—515 

[3] Carsten Binnig, Donald Kossmann, Eric Lo. Multi RQP Generating Test Databases for the Functional Testing of 

OLTP Applications. Technical report, ETH Zurich, 2008 

[4] N. Tillmann and J. de Halleux. Pex - white box test generation for .NET. In Proc. Second International Conference 

on Tests and Proofs (TAP). 2008. 

[5] Koushik Sen , Darko Marinov , Gul Agha, CUTE: a concolic unit testing engine for C, Proceedings of the 10th 

http://portal.acm.org/citation.cfm?id=1081750&dl=GUIDE&coll=GUIDE&CFID=83846804&CFTOKEN=92058227


European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on 

Foundations of software engineering, 2005 

[6] Zhongxing Xu , Jian Zhang, A Test Data Generation Tool for Unit Testing of C Programs, Proceedings of the 

Sixth International Conference on Quality Software, 2006,p.107-116  

[7] J. Zhang, C. Xu, and X.Wang. Path-oriented test data generation using symbolic execution and constraint solving 

techniques.In Proceedings of the Second International Conference on Software Engineering and Formal Methods, 

2004. 

[8] J. Zhang and X. Wang. A constraint solver and its applicationto path feasibility analysis. International Journalof 

Software Engineering and Knowledge Engineering, 2001,11(2):139–156,  

[9] Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path model-checking tools. In: Ball, T., 

Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423.  

[10] Zhang Guang-mei，Li Xiao-wei. Automatic Generation of Basis Path Set in Path Test [J]. Computer 

Engineering,2007(22) 

http://portal.acm.org/citation.cfm?id=1191321&dl=GUIDE&coll=GUIDE&CFID=81971548&CFTOKEN=14311977
http://portal.acm.org/citation.cfm?id=1191321&dl=GUIDE&coll=GUIDE&CFID=81971548&CFTOKEN=14311977

