
Utilization and SLO-Based Control for Dynamic Sizing
of Resource Partitions

Zhikui Wang Xiaoyun Zhu Sharad Singhal

Hewlett Packard Laboratories
1501 Page Mill Rd, Palo Alto, CA 94304

{zhikui.wang, xiaoyun.zhu, sharad.singhal}@hp.com

Abstract. This paper deals with a shared server environment where the server is
divided into a number of resource partitions and used to host multiple
applications at the same time. In a case study where the HP-UX Process
Resource Manager is taken as the server partitioning technology, we investigate
the technical challenges in performing automated sizing of a resource partition
using a feedback control approach, where the CPU entitlement for the partition
is dynamically tuned to regulate output metrics such as the CPU utilization or
SLO-based application performance metric. We identify the nonlinear and
bimodal properties of the models across different operating regions, and discuss
their implications for the design of the control loops. To deal with these
challenges, we then propose two adaptive controllers for tracking the target
utilization and target response time respectively. We evaluate the performance
of the closed-loop systems while varying certain operating conditions. We
demonstrate that better performance and robustness can be achieved with these
controllers compared with other controllers or our prior solution.

1. Introduction

Resource partitioning is a type of virtualization technology that enables multiple
applications to share the system resources on a single server while maintaining
performance isolation and differentiation among them [1][2][3]. On most current
systems, partition sizes are pre-determined and allocated to applications by system
administrators, posing a challenging configuration problem. On the one hand, each
partition has to be provided with enough resources to meet service level objectives
(SLOs) of the applications hosted within it in spite of changes in workloads and the
underlying system. On the other hand, excessive over-provisioning makes inefficient
use of resources on the system. Offline capacity planning or calendar-based
scheduling using profiles of past application resource usage are not always accurate or
up-to-date and cannot handle unexpected short-term spikes in demand.

Our work aims to develop formal control-theory based techniques to automatically
size a resource partition based on its CPU utilization, the SLO and the time-varying
workload of its hosted applications. This work is the continuation of our earlier work
in [4] where we used a resource partition to host an Apache Web server and designed
and implemented an adaptive PI controller to regulate the mean response time (MRT)
of HTTP requests around a target value. The controller self-tunes its gain parameters

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

based on online estimation of the dynamic model. In this paper, we describe a new set
of modeling experiments and demonstrate how the system’s input-output relation
changes with various operating conditions of the system. As a result, we show that
controlling the MRT using the CPU entitlement alone is effective when the Web
server partition’s CPU utilization is close to its CPU entitlement, but may not work
well when the application is underutilizing its entitled CPU. We present an alternative
design for controlling the relative utilization of the partition, scalable to the time-
varying workload. We also propose to incorporate CPU utilization information into
the control of SLO-based metrics so that the closed-loop system achieves more robust
performance across different operating regions.

This paper is organized as follows. In section 2, we describe the technology, the
overall architecture and the test bed in our case study. Related work is reviewed in
Section 3. Section 4 describes how the input-output behavior of the system was
modeled, and discusses its implication on control designs. Section 5 presents different
controllers and their performance evaluation using our test bed. Finally, we
summarize our results, along with directions for future work in Section 6.

2. A Case Study using a Feedback Control Approach

We conducted the case study where we used the HP-UX Process Resource Manager
(PRM) [1] as an example of the resource partitioning technology. PRM is a resource
management tool that can be used to partition a server into multiple PRM groups,
where each PRM group is a collection of users and applications that are joined
together and allocated certain amounts of system resources, such as CPU, memory,
and disk bandwidth. If CPU or memory capping is enabled, PRM ensures that each
PRM group’s usage of CPU or memory does not exceed the cap regardless of whether
the system is fully utilized. We consider an FSS (Fair Share Scheduler) PRM group
that is assigned a percentage of the CPU cycles (referred to as “CPU entitlement”) by
specifying a number of shares. Because this percentage is enforced by the scheduler
in the HP-UX kernel, it can be changed at any time thereby enabling dynamic sizing
of the PRM group. We describe the architecture and test bed setup in this section.

Figure 1 illustrates a shared server that has m resource partitions, where each
partition can be a PRM group. We consider the scenario where each PRM group is
used to host one application. The resource controller interacts with each partition i
through two modules, Ai and Si, where Si is the sensor that periodically measures the
performance metric for application i, and Ai is the actuator that dynamically sets the
CPU entitlement for partition i according to the output of the resource controller. The
timing of the controller is based on the notion of a “sampling interval”. At the
beginning of each sampling interval, the controller collects from Si the measured
performance for the last sampling interval, compares it to the desired performance,
computes the needed CPU entitlement for the current sampling interval using certain
control algorithms and passes it to Ai for actuation. In the remainder of this paper, we
focus on resource control for one such partition. The results should be extensible to
controlling multiple partitions with multiple resource types using any partitioning
technology.

Fig. 1. CPU entitlement control system architecture

In the case study, we took the Apache Web server (version 2.0.52) as an example
of the hosted applications. We set up an FSS PRM group on an HP-UX server to host
the Web server. We refer to this PRM group as the “Web server partition”. We used a
modified version of httperf 0.8 (ftp://ftp.hpl.hp.com/pub/httperf) on a Linux 2.4.18-3
client to continuously send HTTP requests to the Web server and to log the response
time of every request. We developed a sensor module that parses the httperf log and
computes the mean response time (MRT) of all the requests completed during each
sampling interval. We also used a PRM provided utility prmmonitor to measure the
average CPU utilization of a partition for every interval. The CPU entitlement (with
capping enabled) for the Web server partition can be adjusted at the beginning of
every interval to bound the percentage of CPU cycles used by the Web server in that
interval. We chose the simplest possible workload where a single static page was
repeatedly fetched from the Web server at a fixed rate, ensuring that CPU was the
only potential bottleneck resource in the system as the workload intensity varied.

3. Related Work

Our approach differs from prior work on operating systems support for server
resource reservation and enforcement [5]-[7] or scheduling [8][9] in that it is more
generic and can be used on any commodity operating system that supports a resource
partitioning technology, and applications that can be hosted inside a partition. In [10]
a feedback-driven adaptive scheduler was presented to allocate a percentage of CPU
cycles to a thread. In contrast, our controller allocates a percentage of CPU cycles to a
whole application so that the assigned CPU entitlement can be tied directly to the
application’s SLO. Although the proposed feedback loop is already in use in some
existing workload management tools [11][12], our approach is distinct in that we rely
on classical control theory to guide the design of the algorithms.

Feedback control theory has been applied to solve a number of performance or
quality of service (QoS) problems in computer systems in recent years. (See [13][14]

Partition 1

(application 1)

A1

S1

Partition 2

(application 2)

A2

S2

Partition m

(application m)

Am

Sm

Resource
Controller

Shared Server
CPU entitlement

Measured
utilization/performance

Desired
utilization/
performance

and the references therein.) The effect of this approach depends heavily on the fitness
of the mathematical models used to characterize the dynamic behavior of the systems.
Much prior work employs a “black-box” approach and uses linear input-output
models to capture the dynamic relation between control knobs (inputs) and
performance metrics (outputs). However, a single linear model is often insufficient to
uniformly capture a system’s behavior under all operating conditions. More recent
work addresses this issue by applying adaptive control theory to computer systems
such as storage systems [15], resource containers [4] and caching services [16]. This
approach allows the parameters of the linear models to automatically adapt to changes
in operating conditions using online system identification. In [17] the authors offered
insights into how to obtain appropriate models for the actuator, sensor, and the
controlled system using benchmarking and linear regression based estimation
techniques, while using CPU utilization as the output. The resulting relation between
the adaptation level and the CPU utilization is a time-varying static gain with no
dynamics but with a time delay. In this paper, we focus on the system’s nonlinear and
bimodal behavior, and present quantitative study on model fitness and variability.

Performance control of Web servers has been studied extensively in the literature.
For instance, application-level mechanisms were proposed in [18][19][20] to provide
different levels of service to requests of different classes. While these approaches
were mainly based on heuristics or queuing models, other work has applied classical
control theory to manage Web server delay or server resource utilization using
admission control [21] and content adaptation [17], connection scheduling and
process reallocation [22], or application parameter tuning [23]. All of these methods
require modification to the server application software (with the exception of [20]),
which may not be feasible for other enterprise applications. Our focus is not
controlling Web server performance in particular, but rather providing a general
approach for dynamic sizing of any resource partitions.

4. Modeling of the Input-Output Relation

We first describe a set of modeling experiments and demonstrate the nonlinear and
bimodal behavior of the system.

4.1 Static input-output relation

To understand the system’s long-term average behavior in the whole operating range,
we varied the CPU entitlement (denoted by u) for the Web server partition from 0.2 to
0.9, at 0.05 increments. At each setting, the Web server was loaded for 60 seconds
with a fixed workload, while the average CPU utilization (denoted by v) of the Web
server partition was observed and the MRT of all requests returned during this period
was computed. Figure 2 shows the static relation between the CPU entitlement, the
(absolute and relative) CPU utilization, and the MRT for different workload
intensities ranging from 200 to 1100 requests/second (or r/s). Note that each data
point is the average of 10 samples obtained from 10 repeated experiments. In addition

to u and v, let y denote the inverse of MRT (1/MRT), and r denote the relative CPU
utilization of the partition, i.e., r = v / u.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CPU Entitlement (u)

C
P

U
 U

til
iz

at
io

n
(v

)
Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

CPU Entitlement (u)

M
R

T

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

 (a) CPU utilization vs. CPU entitlement (b) MRT vs. CPU entitlement

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

CPU Entitlement (u)

C
PU

 R
el

at
iv

e
U

til
iz

at
io

n
(r)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

1.2

1.4

CPU Entitlement (u)

1/
M

R
T

(y
)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

(c) Relative CPU utilization vs. CPU entitlement (d) 1/MRT vs. CPU entitlement

Fig. 2. Long-term relation between CPU entitlement, CPU utilization and MRT

Our key observations from these figures follow:
• As shown in Figure 2(a), for any given request rate, as the CPU entitlement varies,

the CPU utilization demonstrates a clear bimodal behavior that can be
approximated using the following equation:





>=

<
=

.if,
,if,

Vuv
Vuu

v
(1)

Here V is the maximum portion of CPU needed for a given workload. Figure 2(c)
shows a different visualization of the same behavior through the relative CPU
utilization. The following equation is equivalent to (1), except expressing the CPU
utilization in a relative term:





>=

<
=

.if,/
,if ,1
VuuV

Vu
r

(2)

• Similarly, the same bimodal behavior is observed in the relation between the MRT
and the CPU entitlement in Figure 2(b). Since the MRT is clearly a nonlinear
function of the CPU entitlement, we plot 1/MRT vs. CPU entitlement in Figure
2(d) to better illustrate the relation. As we can see, when the system is overloaded

(r = 1 in Figure 2(c)), there exists a linear mapping from the CPU entitlement to
1/MRT, and its slope is independent of the request rate. However, when the system
is underloaded (r < 1 in Figure 2(c)), 1/MRT increases rapidly with increasing
CPU entitlement, indicating a sharp drop in the MRT.
The linear mapping between the CPU entitlement and 1/MRT for the overload

region implies that a linear input-output model is plausible for this region if 1/MRT is
chosen as the system output. When the system is reasonably underloaded (r < 0.8), the
MRT becomes independent of the CPU entitlement setting. Therefore, we expect that
the MRT is uncontrollable using the CPU entitlement in this region. In the next
Section, we verify this behavior using model identification.

4.2 Dynamic linear model identification

We chose the following linear auto-regressive model as the potential one to represent
the dynamic relation between the CPU entitlement and the inverse of MRT:

,)()()()(
1

01
∑ +−−+∑ −=
−

==

m

j

n

i
i kjdkuibikyaky ε

(3)

where the parameters ai, bj, the orders m, n, and the delay d characterize the dynamic
behavior of the system, y(k) is the inverse of MRT for sampling interval k, u(k) is the
CPU entitlement for sampling interval k, and)(kε is the residual term. For
convenience, we refer to such a model as “ARXmnd” in the following discussion.

In the experiments, the CPU entitlement was randomly varied in [0.2, 0.8]. The
sampling interval was fixed at 15 seconds while the rate varied from 200 r/s to 1100
r/s. The experiment was repeated for each rate. The model in (3) was estimated
offline using least-squares based methods [24] in the Matlab System ID Toolbox [25]
to fit the input-output data collected from the experiments. The models are evaluated
using the r2 metric defined in Matlab as a goodness-of-fit measure. In general, the r2
value indicates the percentage of variation in the output captured by the model.

Table 1. r2 values (in percentage) of first-order models

 (a) under different workloads (b) for different input-output pairs

200 400 600 700 900 1100
ARX110 -10.2 12.8 2.8 63.1 70.3 78.3
ARX111 -1 6.7 2.7 -5 0.09 6.4

Model Rate (r/s)

Range of Entitlement [0.2, 0.5] [0.5, 0.8]
Ent --> 1/MRT 77.6 26
Util --> 1/MRT 84.3 65.5

Ent --> Util 86 31.5
From the data in Tables 1(a), we can find that a simple linear model does not fit the

input-output data when the system is significantly underloaded, i.e., with a rate below
or equal to 600 r/s. This is consistent with our earlier observation from Figure 2(d).
In contrast, when the request rate is above 600 r/s, the ARX 110 model fits quite well,
providing a good basis for controller design. Moreover, ARX111 (first-order model
with one-step delay) does not explain the system behavior for any request rate,
showing that no significant delay is observed in the system dynamics for a sampling

interval of 15 seconds. Other observation can be made on time-varying parameters
along with change of workload, different model delays when the sampling interval
was changed significantly. For more detailed analysis, see [26].

Similar experiments and analysis were repeated for a different server, and the same
qualitative results were observed. Our main conclusion is that, due to the existence of
first-order ARX models for the dynamic relation between the CPU entitlement and
1/MRT when the system is overloaded, the MRT should be controllable using simple
controllers such as the adaptive PI controller used in [4]. On the other hand, it will be
quite challenging to regulate the MRT in the underload region because our
observations from the modeling exercise suggest that the MRT is simply
uncontrollable using the CPU entitlement as the only input.

From Figure 2, we know that the MRT is not correlated with the CPU entitlement
in the underload region. However, the MRT should always be dependent upon the real
CPU utilization of the Web server process. This was confirmed from the following
exercise, where offline identification experiments were repeated when the CPU
entitlement was randomly varied in the two regions, as shown in Table 1(b), under a
fixed workload of 900r/s. In the underload case where the entitlement range is [0.5,
0.8], 1/MRT is only weakly correlated with the CPU entitlement with r2=26%.
However, the r2 value of the models between the CPU utilization and 1/MRT is
always much higher. Therefore, it should be helpful to introduce the CPU utilization
into the control loop for the MRT so that more robust performance can be achieved.

5. Controller Design and Performance Evaluation

The CPU utilization of a Web server is a common metric that is monitored to
determine whether more or less CPU resource should be allocated to the server.
Compared to SLO-based metrics such as response times, the relative utilization of the
resource partition is easier to measure on the server side, more directly related to the
CPU entitlement and its control is more intuitive. The downside is that the relation
between a given relative utilization level and the client-perceived service level varies
with the resource demand of the workload. No guarantees can be given to metrics
such as the MRT for an arbitrary workload when only the relative utilization is being
controlled. This is in contrast to using the MRT as the controlled output that is more
directly related to the SLO but its relation with the CPU entitlement is rather complex.
In this section, we present controller designs for dynamic sizing of the Web server
partition using both output metrics, and discuss possible ways to combine these two
metrics to provide more effective control across the whole operating region.

5.1 Control of relative utilization

We first consider dynamic sizing of the Web server partition using its relative
utilization, r(k), as the output and the CPU entitlement, u(k), as the input. The goal is
to maintain dynamically the relative utilization at a reference value, rref. This value
can be chosen higher for more predictable workloads, and lower for more variable
workloads. From offline identification experiments, we observed that r(k) responds

quickly to changes in u(k) with negligible delay and inertia when the sampling
interval is set at 15 seconds. Therefore, the nonlinear static model (2) can be used to
represent the input-output relation.

Define the tracking error at sampling interval k as

).()(krrke ref −= (4)

We can then use the classical integral (I) controller,

)1()1()(−−−= keKkuku i , (5)

to dynamically tune the CPU entitlement based on the tracking error. In theory,
integral control ensures zero steady state error, i.e., the measured relative utilization
should converge to rref, and the integral gain Ki determines the aggressiveness of the
tuning. The main challenge here is to choose the right gain parameter such that the
closed-loop system is stable, and the relative utilization tracks the reference value as
quickly as possible. Although an optimum Ki value may be chosen carefully for
certain workload, it may not be applicable to a different workload. Based on the
analysis in Section 4, we propose an I controller:

)1()()1()(−−−= kekKkuku i (6)

with a time-varying adaptive gain:





−>−−

−=−−
=

).1()1(when,/)1(

),1()1(when,/)1(
)(

2

1

kvkurkv

kvkurku
kK

ref

ref
i λ

λ

(7)

The intuition behind this adaptive gain is from the bimodal property of the relative
utilization w.r.t. CPU entitlement. When the system is overloaded, the CPU utilization
is actually capped by the entitlement. The system needs to react fast to the increase of
the workload. When underloaded, it is desirable for the system to be conservative to
avoid going into the overload region, which may lead to unavailability and large
response times. The controller (6-7) can act as expected with different gains in the
two regions. It is scalable and adaptive to the workload, and shows good convergence
performance when 2λ is in (0, 2). More analysis can be found in [26].

0 50 100 150 200
0

200

400

600

800

No. of Sample

W
or

kl
oa

d
In

te
ns

ity
 (r

 /
s)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Relative Utilization (r)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

I (Ki=2)

I (Ki=1)

I (Ki=0.5)

Adaptive

 (a) Time-varying workload (b) CDFs of relative utilization

Fig. 3. Performance of controllers from entitlement to relative utilization

The performance of the adaptive controller (6-7) was tested in an experiment
where a synthetic workload as shown in Figure 3(a) was applied. For comparison, our
adaptive controller was used along with an I controller with different fixed gains to
regulate the relative utilization at around 75%. The target (relative utilization)
tracking performance for different controllers is shown in Figure 3(b) by the
cumulative distributions of the resulting relative utilization, where the vertical dashed
line indicates the ideal distribution. Other performance measures such as average
CPU entitlement, throughput, and mean and 95th percentile of response times are
compared in Table 2. It can be observed that the adaptive controller achieves better
tracking performance upon change of the workload, lower CPU consumption, higher
throughput and smaller response times compared to the I controller with fixed gains.

Table 2. Average performance of the utilization controllers

Controller CPU Ent Throughput (r/s) MRT (sec) 95-p RT (sec)
I (Ki=2) 0.43 359 1.02 4.15
I (Ki=1) 0.38 368 0.51 2.49

I (Ki=0.5) 0.38 363 0.64 2.71
Adaptive 0.37 370 0.31 1.69

5.2 Control of mean response time

In this section, we highlight the challenges in controlling the mean response time
(MRT). Using examples, we show that even the adaptive PI controller presented in [4]
may not work well when a sudden change in the workload pushes the system into the
underload region. We then describe a new controller design by introducing the CPU
utilization measurement into the control loop.

Based on the analysis in Section 4, we consider an ARX110 model to represent the
dynamic relation between the CPU entitlement (u) and the inverse of MRT (y), which
is estimated online as done in [4]. Define the tracking error

),()(kyyke ref −= (8)

where yref(k) is the target value for 1/MRT. Then a PI controller implements the
following algorithm:

)2()1()()1()(−−−++−= keKkeKKkuku pip (9)

The closed-loop system is of second order and the gain parameters, Kp and Ki, can be
chosen using the pole placement algorithm according to design specifications such as
overshoot, rising time and settling time [28].

The controller (9) with adapted parameters was tested in an experiment where the
target MRT was fixed at 1.5 seconds, but the rate of the workload was changed from
900 r/s to 500 r/s at the 30th sampling interval, which pushes the system suddenly into
the underload region. Figure 4(a) shows the performance of the closed-loop system,
where we can see that both the CPU entitlement and the resulting MRT became
unstable because the loss of controllability of the MRT by the CPU entitlement leads

to over-provisioning of the CPU resource. This is consistent with our observation
from Figure 3(b) that the MRT is not a stable metric in the underload region.

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

500

1000

MRT Reference
MRT

Entitlement (u)
Utilization (v)

Workload

No. of Sample

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 6060
0

0.5

1

0 10 20 30 40 50 60
0

500

1000
Workload

Entitlement (u)
Utilization (v)

MRT Reference
MRT

No. of Sample
 (a) Adaptive PI Controller (b) Improved Adaptive PI controller

Fig. 4. Performance of controllers from CPU entitlement to MRT

Given the suggestion of Figure 3(a) that the CPU utilization is a more stable
metric, we propose one design that attempts to incorporate the measured CPU
utilization into the control loop to extend the controllable region, as illustrated in
Figure 5, where G2 is the mapping from CPU entitlement to CPU utilization, and G1 is
the mapping from CPU utilization to 1/MRT.

PI
Controller

G2

EstimationDesign

1/MRTref e

Specification

Ent 1/MRTG1
Util

(a,b)

(Kp, Ki)

Fig. 5. . An adaptive control loop with incorporation of measured CPU utilization

From Table 1(b) in Section 4.2, we know that the CPU utilization has a tighter
relation with the MRT than the CPU entitlement does in the underload region. In the
following design, the ARX110 model was estimated online between the measured
CPU utilization (v(k), as the input) and 1/MRT (y(k), as the output). Moreover, the
term u(k-1) in the PI controller in (9) is replaced by v(k-1) as follows:

)2()1()()1()(−−−++−= keKkeKKkvku pip (10)

The parameters were chosen according to the same specification as in the prior
designs. The previous experiments with varying workload intensity were repeated
using the new controller in (10). The closed-loop performance is shown in Figure
4(b), which shows that the stability of the system is maintained, even with a
significantly reduced workload. In this control design, introducing the CPU utilization
into the model estimation leads to a more truthful and stable model. Moreover, over-
tuning of the CPU entitlement can be avoided since it is based on the measured
utilization. However, one implicit assumption in this solution is that the utilization

measurement tracks the entitlement immediately, that is, G2=1. This is satisfied in the
overload region where v(k)=u(k). Offset exists in the underload region between the
expected value of the utilization and its measurement. That is why, as shown in
Figure 4(b), the measured MRT is above the target value when the system is
underloaded. This steady-state error can be estimated approximately and fixed
partially as suggested in [26]. Therefore, the proposed solution can improve the
robustness of the controller (9) significantly only in or close to the overload region.

6. Conclusions

This paper identifies challenges in applying control theory to dynamic sizing of a
resource partition using CPU entitlement as the input and the mean response time or
the relative CPU utilization as the output. We recognize that this input-output relation
varies significantly as the resource partition moves between the overload and the
underload regions, which has a noticeable impact on the performance of any
controller design. We evaluate the closed-loop performance of an adaptive integral
controller for controlling relative utilization of a resource partition. We also present a
new adaptive controller design for regulating the mean response time that
incorporates information on measured CPU utilization and improves the robustness of
prior adaptive algorithms.

To make the system work well across all operating regions, we need to respect the
bimodal behavior of the system and develop a better way to integrate the control of
relative utilization (using controller (6-7)) and the response time (using controller
(10)) in possibly different regions. This is one topic of our ongoing work. Another
interesting direction is to apply the same approach to dynamic sizing of a resource
partition in terms of its physical memory allocation. The distinct interaction between
application performance and its memory may make it much more challenging to
design a sensible controller that works under all operating conditions.

References

[1] HP Process Resource Manager, http://h30081.www3.hp.com/products/prm/index.html
[2] IBM Application Workload Manager,

http://www.ibm.com/servers/eserver/xseries/systems_management/director_4/awm.html
[3] SUN Solaris Resource Manager, http://www.sun.com/software/resourcemgr/index.html
[4] X. Liu, X. Zhu, S. Singhal, and M. Arlitt, “Adaptive entitlement control of resource

partitions on shared servers,” 9th International Symposium on Integrated Network
Management, May, 2005.

[5] G. Banga, P. Druschel, and J.C. Mogul, “Resource Containers: A new facility for resource
management in server systems,” 3rd USENIX Symposium on Operating Systems Design
and Implementation, Feb. 1999.

[6] M.B. Jones, D. Rosu, and M.-C. Rosu, “CPU reservations and time constraints: Efficient,
predictable scheduling of independent activities,” 16th ACM Symposium on Operating
Systems Principles, 1997.

[7] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource Kernels: A resource-centric
approach to real-time and multimedia systems,” ACM Conference on Multimedia
Computing and Networking, 1998.

[8] P. Goyal, X. Guo, and H. Vin, “A hierarchical CPU scheduler for multimedia operating
systems,” 2nd USENIX Symposium on Operating System Design and Implementation,
October, 1996.

[9] C. Waldspurger and W. Weihl, “Lottery Scheduling: Flexible proportional-share resource
management,” 1st USENIX Symposium on Operating System Design and
Implementation, 1994.

[10] D.C. Steere, et al., “A feedback-driven proportion allocator for real-rate scheduling,” 3rd
USENIX Symposium on Operating System Design and Implementation, 1999.

[11] HP-UX Workload Manager, http://h30081.www3.hp.com/products/wlm/index.html
[12] IBM Enterprise Workload Manager,

http://www.ibm.com/developerworks/autonomic/ewlm/
[13] J.L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of Computing

Systems, Wiley-Interscience, 2004.
[14] T.F. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson, ``Practical application of control

theory to Web services,'' invited paper, American Control Conference, June 2004.
[15] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance isolation and

differentiation for storage systems,” 12th IEEE International Workshop on Quality of
Service, 2004.

[16] C. Lu, T.F. Abdelzaher, J. Stankovic, and S. Son, “A feedback control approach for
guaranteeing relative delays in Web servers,” IEEE Real-Time Technology and
Applications Symposium, 2001.

[17] T.F. Abdelzaher, K.G. Shin, and N. Bhatti, “Performance guarantees for Web server end-
systems: A control-theoretical approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, 2002.

[18] J. Almeida, M. Dabu, A. Manikutty and P. Cao (1998), “Providing differentiated levels of
service in Web content hosting,” SIGMETRICS Workshop on Internet Server
Performance, June 1998.

[19] L. Eggert and J. Heidemann, “Application-Level differentiated services for Web servers,”
World Wide Web Journal, Vol. 3, No. 1, pp. 133-142, March, 1999.

[20] V. Kanodia and E. Knightly, “Multi-Class latency-bounded Web services,” 8th IEEE
International Workshop on Quality of Service, June, 2000.

[21] P. Bhoj, S Ramanathan, and S. Singhal, “Web2K: Bringing QoS to Web servers,” HP Labs
Technical Report, HPL-2000-61, May 2000.

[22] Y. Lu, C. Lu, T. Abdelzaher, and G. Tao, “An adaptive control framework for QoS
guarantees and its application to differentiated caching services,” IEEE International
Workshop on Quality of Service, May, 2002.

[23] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, “MIMO control of an
Apache Web server: Modeling and controller design,” American Control Conference,
2002.

[24] L. Ljung, System Identification: Theory for the User (2nd Edition), Prentice Hall, 1999.
[25] Matlab System Identification Toolbox, http://www.mathworks.com/products/sysid/
[26] Z. Wang, X. Zhu, S. Singhal, “Utilization and SLO-Based Control for Dynamic Sizing of

Resource Partitions”, HP Labs Technical Report, HPL-2005-126, July 2005.
[27] Apache Web server, http://www.apache.org/
[28] K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning (2nd Edition),

Instrument Society of America, 1995.

