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Abstract. This paper deals with a shared server environment where the server is 
divided into a number of resource partitions and used to host multiple 
applications at the same time. In a case study where the HP-UX Process 
Resource Manager is taken as the server partitioning technology, we investigate 
the technical challenges in performing automated sizing of a resource partition 
using a feedback control approach, where the CPU entitlement for the partition 
is dynamically tuned to regulate output metrics such as the CPU utilization or 
SLO-based application performance metric. We identify the nonlinear and 
bimodal properties of the models across different operating regions, and discuss 
their implications for the design of the control loops. To deal with these 
challenges, we then propose two adaptive controllers for tracking the target 
utilization and target response time respectively. We evaluate the performance 
of the closed-loop systems while varying certain operating conditions. We 
demonstrate that better performance and robustness can be achieved with these 
controllers compared with other controllers or our prior solution. 

1. Introduction 

Resource partitioning is a type of virtualization technology that enables multiple 
applications to share the system resources on a single server while maintaining 
performance isolation and differentiation among them [1][2][3]. On most current 
systems, partition sizes are pre-determined and allocated to applications by system 
administrators, posing a challenging configuration problem. On the one hand, each 
partition has to be provided with enough resources to meet service level objectives 
(SLOs) of the applications hosted within it in spite of changes in workloads and the 
underlying system. On the other hand, excessive over-provisioning makes inefficient 
use of resources on the system. Offline capacity planning or calendar-based 
scheduling using profiles of past application resource usage are not always accurate or 
up-to-date and cannot handle unexpected short-term spikes in demand.  

Our work aims to develop formal control-theory based techniques to automatically 
size a resource partition based on its CPU utilization, the SLO and the time-varying 
workload of its hosted applications.  This work is the continuation of our earlier work 
in [4] where we used a resource partition to host an Apache Web server and designed 
and implemented an adaptive PI controller to regulate the mean response time (MRT) 
of HTTP requests around a target value. The controller self-tunes its gain parameters 
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based on online estimation of the dynamic model. In this paper, we describe a new set 
of modeling experiments and demonstrate how the system’s input-output relation 
changes with various operating conditions of the system. As a result, we show that 
controlling the MRT using the CPU entitlement alone is effective when the Web 
server partition’s CPU utilization is close to its CPU entitlement, but may not work 
well when the application is underutilizing its entitled CPU. We present an alternative 
design for controlling the relative utilization of the partition, scalable to the time-
varying workload. We also propose to incorporate CPU utilization information into 
the control of SLO-based metrics so that the closed-loop system achieves more robust 
performance across different operating regions. 

This paper is organized as follows. In section 2, we describe the technology, the 
overall architecture and the test bed in our case study. Related work is reviewed in 
Section 3. Section 4 describes how the input-output behavior of the system was 
modeled, and discusses its implication on control designs. Section 5 presents different 
controllers and their performance evaluation using our test bed. Finally, we 
summarize our results, along with directions for future work in Section 6. 

2. A Case Study using a Feedback Control Approach 

We conducted the case study where we used the HP-UX Process Resource Manager 
(PRM) [1] as an example of the resource partitioning technology. PRM is a resource 
management tool that can be used to partition a server into multiple PRM groups, 
where each PRM group is a collection of users and applications that are joined 
together and allocated certain amounts of system resources, such as CPU, memory, 
and disk bandwidth. If CPU or memory capping is enabled, PRM ensures that each 
PRM group’s usage of CPU or memory does not exceed the cap regardless of whether 
the system is fully utilized.  We consider an FSS (Fair Share Scheduler) PRM group 
that is assigned a percentage of the CPU cycles (referred to as “CPU entitlement”) by 
specifying a number of shares. Because this percentage is enforced by the scheduler 
in the HP-UX kernel, it can be changed at any time thereby enabling dynamic sizing 
of the PRM group. We describe the architecture and test bed setup in this section. 

Figure 1 illustrates a shared server that has m resource partitions, where each 
partition can be a PRM group. We consider the scenario where each PRM group is 
used to host one application. The resource controller interacts with each partition i 
through two modules, Ai and Si, where Si is the sensor that periodically measures the 
performance metric for application i, and Ai is the actuator that dynamically sets the 
CPU entitlement for partition i according to the output of the resource controller. The 
timing of the controller is based on the notion of a “sampling interval”. At the 
beginning of each sampling interval, the controller collects from Si the measured 
performance for the last sampling interval, compares it to the desired performance, 
computes the needed CPU entitlement for the current sampling interval using certain 
control algorithms and passes it to Ai for actuation. In the remainder of this paper, we 
focus on resource control for one such partition. The results should be extensible to 
controlling multiple partitions with multiple resource types using any partitioning 
technology. 



 
Fig. 1. CPU entitlement control system architecture 

In the case study, we took the Apache Web server (version 2.0.52) as an example 
of the hosted applications. We set up an FSS PRM group on an HP-UX server to host 
the Web server. We refer to this PRM group as the “Web server partition”. We used a 
modified version of httperf 0.8 (ftp://ftp.hpl.hp.com/pub/httperf) on a Linux 2.4.18-3 
client to continuously send HTTP requests to the Web server and to log the response 
time of every request. We developed a sensor module that parses the httperf log and 
computes the mean response time (MRT) of all the requests completed during each 
sampling interval. We also used a PRM provided utility prmmonitor to measure the 
average CPU utilization of a partition for every interval. The CPU entitlement (with 
capping enabled) for the Web server partition can be adjusted at the beginning of 
every interval to bound the percentage of CPU cycles used by the Web server in that 
interval. We chose the simplest possible workload where a single static page was 
repeatedly fetched from the Web server at a fixed rate, ensuring that CPU was the 
only potential bottleneck resource in the system as the workload intensity varied.  

3. Related Work 

Our approach differs from prior work on operating systems support for server 
resource reservation and enforcement [5]-[7] or scheduling [8][9] in that it is more 
generic and can be used on any commodity operating system that supports a resource 
partitioning technology, and applications that can be hosted inside a partition. In [10] 
a feedback-driven adaptive scheduler was presented to allocate a percentage of CPU 
cycles to a thread. In contrast, our controller allocates a percentage of CPU cycles to a 
whole application so that the assigned CPU entitlement can be tied directly to the 
application’s SLO. Although the proposed feedback loop is already in use in some 
existing workload management tools [11][12], our approach is distinct in that we rely 
on classical control theory to guide the design of the algorithms. 

Feedback control theory has been applied to solve a number of performance or 
quality of service (QoS) problems in computer systems in recent years. (See [13][14]  
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and the references therein.) The effect of this approach depends heavily on the fitness 
of the mathematical models used to characterize the dynamic behavior of the systems. 
Much prior work employs a “black-box” approach and uses linear input-output 
models to capture the dynamic relation between control knobs (inputs) and 
performance metrics (outputs). However, a single linear model is often insufficient to 
uniformly capture a system’s behavior under all operating conditions. More recent 
work addresses this issue by applying adaptive control theory to computer systems 
such as storage systems [15], resource containers [4] and caching services [16]. This 
approach allows the parameters of the linear models to automatically adapt to changes 
in operating conditions using online system identification. In [17] the authors offered 
insights into how to obtain appropriate models for the actuator, sensor, and the 
controlled system using benchmarking and linear regression based estimation 
techniques, while using CPU utilization as the output. The resulting relation between 
the adaptation level and the CPU utilization is a time-varying static gain with no 
dynamics but with a time delay. In this paper, we focus on the system’s nonlinear and 
bimodal behavior, and present quantitative study on model fitness and variability.  

Performance control of Web servers has been studied extensively in the literature. 
For instance, application-level mechanisms were proposed in [18][19][20] to provide 
different levels of service to requests of different classes. While these approaches 
were mainly based on heuristics or queuing models, other work has applied classical 
control theory to manage Web server delay or server resource utilization using 
admission control [21] and content adaptation [17], connection scheduling and 
process reallocation [22], or application parameter tuning [23]. All of these methods 
require modification to the server application software (with the exception of [20]), 
which may not be feasible for other enterprise applications. Our focus is not 
controlling Web server performance in particular, but rather providing a general 
approach for dynamic sizing of any resource partitions.  

4. Modeling of the Input-Output Relation 

We first describe a set of modeling experiments and demonstrate the nonlinear and 
bimodal behavior of the system. 

4.1 Static input-output relation 

To understand the system’s long-term average behavior in the whole operating range, 
we varied the CPU entitlement (denoted by u) for the Web server partition from 0.2 to 
0.9, at 0.05 increments. At each setting, the Web server was loaded for 60 seconds 
with a fixed workload, while the average CPU utilization (denoted by v) of the Web 
server partition was observed and the MRT of all requests returned during this period 
was computed. Figure 2 shows the static relation between the CPU entitlement, the 
(absolute and relative) CPU utilization, and the MRT for different workload 
intensities ranging from 200 to 1100 requests/second (or r/s). Note that each data 
point is the average of 10 samples obtained from 10 repeated experiments. In addition 



to u and v, let y denote the inverse of MRT (1/MRT), and r denote the relative CPU 
utilization of the partition, i.e., r = v / u.  
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     (a) CPU utilization vs. CPU entitlement                   (b)  MRT vs. CPU entitlement 
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(c) Relative CPU utilization vs. CPU entitlement             (d) 1/MRT vs. CPU entitlement 

Fig. 2. Long-term relation between CPU entitlement, CPU utilization and MRT 

Our key observations from these figures follow: 
• As shown in Figure 2(a), for any given request rate, as the CPU entitlement varies, 

the CPU utilization demonstrates a clear bimodal behavior that can be 
approximated using the following equation: 
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Here V is the maximum portion of CPU needed for a given workload. Figure 2(c) 
shows a different visualization of the same behavior through the relative CPU 
utilization. The following equation is equivalent to (1), except expressing the CPU 
utilization in a relative term: 
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• Similarly, the same bimodal behavior is observed in the relation between the MRT 
and the CPU entitlement in Figure 2(b). Since the MRT is clearly a nonlinear 
function of the CPU entitlement, we plot 1/MRT vs. CPU entitlement in Figure 
2(d) to better illustrate the relation. As we can see, when the system is overloaded 



(r = 1 in Figure 2(c)), there exists a linear mapping from the CPU entitlement to 
1/MRT, and its slope is independent of the request rate. However, when the system 
is underloaded (r < 1 in Figure 2(c)), 1/MRT increases rapidly with increasing 
CPU entitlement, indicating a sharp drop in the MRT. 
The linear mapping between the CPU entitlement and 1/MRT for the overload 

region implies that a linear input-output model is plausible for this region if 1/MRT is 
chosen as the system output. When the system is reasonably underloaded (r < 0.8), the 
MRT becomes independent of the CPU entitlement setting. Therefore, we expect that 
the MRT is uncontrollable using the CPU entitlement in this region. In the next 
Section, we verify this behavior using model identification. 

4.2 Dynamic linear model identification 

We chose the following linear auto-regressive model as the potential one to represent 
the dynamic relation between the CPU entitlement and the inverse of MRT:  
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where the parameters ai, bj, the orders m, n, and the delay d characterize the dynamic 
behavior of the system, y(k) is the inverse of MRT for sampling interval k, u(k) is the 
CPU entitlement for sampling interval k, and )(kε  is the residual term. For 
convenience, we refer to such a model as “ARXmnd” in the following discussion. 

In the experiments, the CPU entitlement was randomly varied in [0.2, 0.8]. The 
sampling interval was fixed at 15 seconds while the rate varied from 200 r/s to 1100 
r/s. The experiment was repeated for each rate. The model in (3) was estimated 
offline using least-squares based methods [24] in the Matlab System ID Toolbox [25] 
to fit the input-output data collected from the experiments. The models are evaluated 
using the r2 metric defined in Matlab as a goodness-of-fit measure. In general, the r2 
value indicates the percentage of variation in the output captured by the model. 

Table 1. r2 values (in percentage) of  first-order models  

     (a) under different workloads                                 (b) for different input-output pairs 

200 400 600 700 900 1100
ARX110 -10.2 12.8 2.8 63.1 70.3 78.3
ARX111 -1 6.7 2.7 -5 0.09 6.4

Model Rate (r/s)

       

Range of Entitlement [0.2, 0.5] [0.5, 0.8]
Ent --> 1/MRT 77.6 26
Util --> 1/MRT 84.3 65.5

Ent --> Util 86 31.5    
From the data in Tables 1(a), we can find that a simple linear model does not fit the 

input-output data when the system is significantly underloaded, i.e., with a rate below 
or equal to 600 r/s.  This is consistent with our earlier observation from Figure 2(d). 
In contrast, when the request rate is above 600 r/s, the ARX 110 model fits quite well, 
providing a good basis for controller design. Moreover, ARX111 (first-order model 
with one-step delay) does not explain the system behavior for any request rate, 
showing that no significant delay is observed in the system dynamics for a sampling 



interval of 15 seconds. Other observation can be made on time-varying parameters 
along with change of workload, different model delays when the sampling interval 
was changed significantly. For more detailed analysis, see [26].  

Similar experiments and analysis were repeated for a different server, and the same 
qualitative results were observed. Our main conclusion is that, due to the existence of 
first-order ARX models for the dynamic relation between the CPU entitlement and 
1/MRT when the system is overloaded, the MRT should be controllable using simple 
controllers such as the adaptive PI controller used in [4]. On the other hand, it will be 
quite challenging to regulate the MRT in the underload region because our 
observations from the modeling exercise suggest that the MRT is simply 
uncontrollable using the CPU entitlement as the only input.   

From Figure 2, we know that the MRT is not correlated with the CPU entitlement 
in the underload region. However, the MRT should always be dependent upon the real 
CPU utilization of the Web server process. This was confirmed from the following 
exercise, where offline identification experiments were repeated when the CPU 
entitlement was randomly varied in the two regions, as shown in Table 1(b), under a 
fixed workload of 900r/s. In the underload case where the entitlement range is [0.5, 
0.8], 1/MRT is only weakly correlated with the CPU entitlement with r2=26%. 
However, the r2 value of the models between the CPU utilization and 1/MRT is 
always much higher. Therefore, it should be helpful to introduce the CPU utilization 
into the control loop for the MRT so that more robust performance can be achieved.  

5. Controller Design and Performance Evaluation 

The CPU utilization of a Web server is a common metric that is monitored to 
determine whether more or less CPU resource should be allocated to the server. 
Compared to SLO-based metrics such as response times, the relative utilization of the 
resource partition is easier to measure on the server side, more directly related to the 
CPU entitlement and its control is more intuitive. The downside is that the relation 
between a given relative utilization level and the client-perceived service level varies 
with the resource demand of the workload. No guarantees can be given to metrics 
such as the MRT for an arbitrary workload when only the relative utilization is being 
controlled. This is in contrast to using the MRT as the controlled output that is more 
directly related to the SLO but its relation with the CPU entitlement is rather complex. 
In this section, we present controller designs for dynamic sizing of the Web server 
partition using both output metrics, and discuss possible ways to combine these two 
metrics to provide more effective control across the whole operating region. 

5.1 Control of relative utilization 

We first consider dynamic sizing of the Web server partition using its relative 
utilization, r(k), as the output and the CPU entitlement, u(k), as the input. The goal is 
to maintain dynamically the relative utilization at a reference value, rref. This value 
can be chosen higher for more predictable workloads, and lower for more variable 
workloads. From offline identification experiments, we observed that r(k) responds 



quickly to changes in u(k) with negligible delay and inertia when the sampling 
interval is set at 15 seconds. Therefore, the nonlinear static model (2) can be used to 
represent the input-output relation. 

Define the tracking error at sampling interval k as  

).()( krrke ref −=  (4) 

We can then use the classical integral (I) controller,  

)1()1()( −−−= keKkuku i , (5) 

to dynamically tune the CPU entitlement based on the tracking error. In theory, 
integral control ensures zero steady state error, i.e., the measured relative utilization 
should converge to rref, and the integral gain Ki determines the aggressiveness of the 
tuning. The main challenge here is to choose the right gain parameter such that the 
closed-loop system is stable, and the relative utilization tracks the reference value as 
quickly as possible. Although an optimum Ki value may be chosen carefully for 
certain workload, it may not be applicable to a different workload. Based on the 
analysis in Section 4, we propose an I controller:  

)1()()1()( −−−= kekKkuku i  (6) 

with a time-varying adaptive gain: 
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The intuition behind this adaptive gain is from the bimodal property of the relative 
utilization w.r.t. CPU entitlement. When the system is overloaded, the CPU utilization 
is actually capped by the entitlement. The system needs to react fast to the increase of 
the workload. When underloaded, it is desirable for the system to be conservative to 
avoid going into the overload region, which may lead to unavailability and large 
response times. The controller (6-7) can act as expected with different gains in the 
two regions. It is scalable and adaptive to the workload, and shows good convergence 
performance when 2λ  is in (0, 2). More analysis can be found in [26].  
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Fig. 3.   Performance of controllers from entitlement to relative utilization 



The performance of the adaptive controller (6-7) was tested in an experiment 
where a synthetic workload as shown in Figure 3(a) was applied. For comparison, our 
adaptive controller was used along with an I controller with different fixed gains to 
regulate the relative utilization at around 75%. The target (relative utilization) 
tracking performance for different controllers is shown in Figure 3(b) by the 
cumulative distributions of the resulting relative utilization, where the vertical dashed 
line indicates the ideal distribution. Other performance measures such as average 
CPU entitlement, throughput, and mean and 95th percentile of response times are 
compared in Table 2. It can be observed that the adaptive controller achieves better 
tracking performance upon change of the workload,   lower CPU consumption, higher 
throughput and smaller response times compared to the I controller with fixed gains.       

Table 2.  Average performance of the utilization controllers 

Controller CPU Ent Throughput (r/s) MRT (sec) 95-p RT (sec)
I (Ki=2) 0.43 359 1.02 4.15
I (Ki=1) 0.38 368 0.51 2.49

I (Ki=0.5) 0.38 363 0.64 2.71
Adaptive 0.37 370 0.31 1.69  

5.2 Control of mean response time  

In this section, we highlight the challenges in controlling the mean response time 
(MRT). Using examples, we show that even the adaptive PI controller presented in [4] 
may not work well when a sudden change in the workload pushes the system into the 
underload region. We then describe a new controller design by introducing the CPU 
utilization measurement into the control loop.  

Based on the analysis in Section 4, we consider an ARX110 model to represent the 
dynamic relation between the CPU entitlement (u) and the inverse of MRT (y), which 
is estimated online as done in [4]. Define the tracking error  

),()( kyyke ref −=  (8) 

where yref(k) is the target value for 1/MRT. Then a PI controller implements the 
following algorithm:  

)2()1()()1()( −−−++−= keKkeKKkuku pip  (9) 

The closed-loop system is of second order and the gain parameters, Kp and Ki, can be 
chosen using the pole placement algorithm according to design specifications such as 
overshoot, rising time and settling time [28].   

The controller (9) with adapted parameters was tested in an experiment where the 
target MRT was fixed at 1.5 seconds, but the rate of the workload was changed from 
900 r/s to 500 r/s at the 30th sampling interval, which pushes the system suddenly into 
the underload region.  Figure 4(a) shows the performance of the closed-loop system, 
where we can see that both the CPU entitlement and the resulting MRT became 
unstable because the loss of controllability of the MRT by the CPU entitlement leads 



to over-provisioning of the CPU resource. This is consistent with our observation 
from Figure 3(b) that the MRT is not a stable metric in the underload region.  
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Fig. 4. Performance of controllers from CPU entitlement to MRT 

Given the suggestion of Figure 3(a) that the CPU utilization is a more stable 
metric, we propose one design that attempts to incorporate the measured CPU 
utilization into the control loop to extend the controllable region, as illustrated in 
Figure 5, where G2 is the mapping from CPU entitlement to CPU utilization, and G1 is 
the mapping from CPU utilization to 1/MRT. 
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Fig. 5. . An adaptive control loop with incorporation of measured CPU utilization 

From Table 1(b) in Section 4.2, we know that the CPU utilization has a tighter 
relation with the MRT than the CPU entitlement does in the underload region. In the 
following design, the ARX110 model was estimated online between the measured 
CPU utilization (v(k), as the input) and 1/MRT (y(k), as the output). Moreover, the 
term u(k-1)  in the PI controller in (9) is replaced by v(k-1) as follows:  

)2()1()()1()( −−−++−= keKkeKKkvku pip  (10) 

The parameters were chosen according to the same specification as in the prior 
designs. The previous experiments with varying workload intensity were repeated 
using the new controller in (10). The closed-loop performance is shown in Figure 
4(b), which shows that the stability of the system is maintained, even with a 
significantly reduced workload. In this control design, introducing the CPU utilization 
into the model estimation leads to a more truthful and stable model. Moreover, over-
tuning of the CPU entitlement can be avoided since it is based on the measured 
utilization. However, one implicit assumption in this solution is that the utilization 



measurement tracks the entitlement immediately, that is, G2=1. This is satisfied in the 
overload region where v(k)=u(k). Offset exists in the underload region between the 
expected value of the utilization and its measurement. That is why, as shown in 
Figure 4(b), the measured MRT is above the target value when the system is 
underloaded. This steady-state error can be estimated approximately and fixed 
partially as suggested in [26]. Therefore, the proposed solution can improve the 
robustness of the controller (9) significantly only in or close to the overload region.  

6. Conclusions 

This paper identifies challenges in applying control theory to dynamic sizing of a 
resource partition using CPU entitlement as the input and the mean response time or 
the relative CPU utilization as the output. We recognize that this input-output relation 
varies significantly as the resource partition moves between the overload and the 
underload regions, which has a noticeable impact on the performance of any 
controller design. We evaluate the closed-loop performance of an adaptive integral 
controller for controlling relative utilization of a resource partition. We also present a 
new adaptive controller design for regulating the mean response time that 
incorporates information on measured CPU utilization and improves the robustness of 
prior adaptive algorithms. 

To make the system work well across all operating regions, we need to respect the 
bimodal behavior of the system and develop a better way to integrate the control of 
relative utilization (using controller (6-7)) and the response time (using controller 
(10)) in possibly different regions. This is one topic of our ongoing work. Another 
interesting direction is to apply the same approach to dynamic sizing of a resource 
partition in terms of its physical memory allocation. The distinct interaction between 
application performance and its memory may make it much more challenging to 
design a sensible controller that works under all operating conditions. 
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