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This paper is concerned with model predictive control (MPC) problem for continuous-time Markov Jump Systems (MJSs) with
incomplete transition rates and singular character. Sufficient conditions for the existence of a model predictive controller, which
could optimize a quadratic cost function and guarantee that the system is piecewise regular, impulse-free, and mean square stable,
are given in two cases at each sampling time. Since the MPC strategy is aggregated into continuous-time singular MJSs, a discrete-
time controller is employed to deal with a continuous-time plant and the cost function not only refers to the singularity but also
considers the sampling period. Moreover, the feasibility of the MPC scheme and the mean square admissibility of the closed-loop
system are deeply discussed by using the invariant ellipsoid. Finally, a numerical example is given to illustrate the main results.

1. Introduction

As a class of stochastic hybrid systems, Markov Jump Sys-
tems (MJSs) are suitable to describe many practical systems
whose structures and parameters suffer from random abrupt
changes [1–5]. Furthermore, MJSs, which contain a non-full
rank system matrix, are usually referred to as singular MJSs,
and they have obtained much attention from mathematical
and control community. It should be mentioned that a
singular MJS can better describe some physical systems than
standard MJS model and has extensive applications, such as
microelectronic circuits and economics [6–9].

In recent years, an ever increasing number of scholars
have paid much attention in the study of singular MJSs
[6, 10–12]. In [13], Boukas investigated the state feedback
control for singular MJSs with norm-bounded uncertainties.
By considering the full and partial knowledge of transition
rates, sufficient conditions which guarantee that the closed-
loop system is piecewise regular, impulse-free, and mean
square stable are given in [14]. Due to the regularity and
pulse phenomenon, the stability and stabilizability of singular
MJSs are intensively studied [10]. In [11], the authors aimed
to study the mean square stability of singular MJSs and

extended themain criterion to frequency domain.The robust
mean square stability problem for uncertain singular MJSs
with actuator saturation is further considered [15], in which
sufficient conditions for such systems to be regular, causal,
and mean square stable are derived in LMI form.

On another research frontline, model predictive control
(MPC), which is also named as receding horizon control, has
received tremendous attention in practical applications [16–
19]. At each time instant, MPC requires the online solution of
an optimization problem and then gets the optimized control
inputs. We calculate a control sequence, but only the first ele-
ment is implemented. At the next sampling time, we resolve
the optimization problem again.Therefore, the control gain is
updated at each sampling time and can naturally compensate
the model uncertainties and exogenous disturbance to some
extent.MPChas been successfully employed in industry since
it can cope with hard constraints, control moves, system
states, and outputs. As MJS is considered, MPC strategy has
also received considerable research efforts on its analysis and
synthesis from a theoretical point of view [20–23].

Almost all of the above-mentioned studies are based on
the assumption that the transition probabilities are com-
pletely known. However, in practice, obtaining the complete
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knowledge of transition probabilities is difficult and costly.
Until very recently, some efforts start to focus on MJSs with
incomplete transition probabilities. Zhang and Boukas firstly
proposed an analysis and designmethod forMJSs with partly
unknown transition probability, which does not require
the information of unknown elements [24]. Subsequently,
necessary and sufficient conditions for the stability analysis
of MJSs with incomplete transition descriptions are further
given in [25]. Based on the results of [24, 25], Zheng and
Yang [26] investigated the robust stabilization problem with
a sliding mode control approach. Shen et al. proposed a
new method for the 𝐻

∞
state feedback control [27] and

established sufficient conditions for the existence of the 𝐻
∞

static output feedback controller [28].
It is worth noting that MPC for MJSs are usually based

on discrete-time version. However, in the real world, we take
the controlled objects as continuous-time models. To the
best of our knowledge, few results about continuous-time
singular MJSs are addressed due to the difficulty in stability
analysis and controller design, especially further considering
incomplete transition rates. In this paper, a new MPC
method is developed for continuous-time singular MJSs with
incomplete transitions rates. Our main contributions include
the following three aspects. (1) A sampled-period MPC law
is introduced to deal with the continuous-time plant. (2) A
modified Lyapunov function approach is employed to deal
with analysis and design problems for the underlying system
concerning incomplete information. The approach not only
refers to the knowledge of system state but also considers
the sampling period and the singularity. (3)The feasibility of
the MPC scheme for the continuous-time singular MJS and
the mean square admissibility of the closed-loop system are
discussed by using invariant ellipsoid.

2. Problem Statement

Consider a continuous-time singular MJS with uncertainties
described as follows:

𝐸𝑥̇ (𝑡) = (𝐴 (𝑟 (𝑡)) + Δ𝐴 (𝑟 (𝑡))) 𝑥 (𝑡)

+ (𝐵 (𝑟 (𝑡)) + Δ𝐵 (𝑟 (𝑡))) 𝑢 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the system state, 𝑢(𝑡) ∈ R𝑚 is the control
input, 𝐸 is a real constant matrix with rank(𝐸) = 𝑟(𝑟 <
𝑛), 𝐴(𝑟(𝑡)) and 𝐵(𝑟(𝑡)) are known mode-dependent constant
matrices with appropriate dimensions, and Δ𝐴(𝑟(𝑡)) and
Δ𝐵(𝑟(𝑡)) are matrices with unknown uncertainties satisfying

Δ𝐴 (𝑟 (𝑡)) = 𝐷𝐹 (𝑟 (𝑡) , 𝑡)𝐻
1
,

Δ𝐵 (𝑟 (𝑡)) = 𝐷𝐹 (𝑟 (𝑡) , 𝑡)𝐻
2
,

(2)

where 𝐷 ∈ R𝑛×𝑝, 𝐻
1
∈ R𝑞×𝑛, and 𝐻

2
∈ R𝑞×𝑚 are known

constant matrices and 𝐹(𝑟(𝑡), 𝑡) ∈ R𝑝×𝑞 is a time-varying
matrix function satisfying 𝐹𝑇(𝑟(𝑡), 𝑡)𝐹(𝑟(𝑡), 𝑡) ≤ 𝐼. {𝑟(𝑡), 𝑡 ≥
0} is a continuous-time Markov process which takes values

in a finite set M = {1, 2, . . . , 𝑁} with the following transition
rate:

𝑃
𝑟
{𝑟 (𝑡 + ℎ) = 𝑗 | 𝑟 (𝑡) = 𝑖}

=

{

{

{

𝜆
𝑖𝑗
ℎ + 𝑜 (ℎ) , 𝑖 ̸= 𝑗

1 + 𝜆
𝑖𝑗
ℎ + 𝑜 (ℎ) , 𝑖 = 𝑗,

𝜆
𝑖𝑖
= − ∑

𝑗∈M,𝑖 ̸=𝑗

𝜆
𝑖𝑗
, 𝜆
𝑖𝑗
≥ 0,

(3)

where ℎ > 0 and lim
ℎ→ 0𝑜(ℎ)/ℎ → 0 and 𝜆

𝑖𝑗
is the switching

rate from mode 𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + ℎ.
For the sake of convenience, 𝐴(𝑟(𝑡)), 𝐵(𝑟(𝑡)), Δ𝐴(𝑟(𝑡)),

and Δ𝐵(𝑟(𝑡)) could be denoted by 𝐴
𝑖
, 𝐵
𝑖
, Δ𝐴
𝑖
, and Δ𝐵

𝑖
,

respectively, where 𝑟(𝑡) = 𝑖 ∈ M.
Moreover, in this paper, the transition rates are consid-

ered to be partly available; namely, some elements in matrix
Λ are unknown. Taking singular MJS (1) with four operation
modes as an example, the transition rate matrix could be
expressed as

󵱰Λ =

[
[
[
[
[
[

[

𝜆
11
𝜆
12
𝜆̂
13
𝜆̂
14

𝜆̂
21
𝜆̂
22
𝜆
23
𝜆
24

𝜆
31
𝜆̂
32
𝜆
33
𝜆̂
34

𝜆̂
41
𝜆
42
𝜆̂
43
𝜆
44

]
]
]
]
]
]

]

, (4)

where the elements with “̂” represent the unknown transi-
tion rate.

In this paper, we denoteM = M𝑖
𝑘
+M𝑖
𝑢𝑘
, ∀𝑖 ∈ M, with

M
𝑖

𝑘
≜ {𝑗 : 𝜆

𝑖𝑗
is known} ,

M
𝑖

𝑢𝑘
≜ {𝑗 : 𝜆

𝑖𝑗
is unknown} .

(5)

In addition, ifM𝑖
𝑘
̸= 𝜙, it can be written as

M
𝑖

𝑘
= {𝐾
𝑖

1
, . . . , 𝐾

𝑖

𝑚
} , ∀1 ≤ 𝑚 ≤ 𝑁, (6)

where 𝐾𝑖
𝑚
∈ N+ represent the 𝑚th known element in the 𝑖th

row of matrix Λ. Also, we denote 𝜆𝑖
𝑘
≜ ∑
𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
.

In the case that 𝜆̂
𝑖𝑖
is unknown, providing a lower bound

𝜆
𝑖

𝑑
with 𝜆𝑖

𝑑
≤ −𝜆
𝑖

𝑘
is necessary.

MPC for (1) is studied over an infinite horizon. At each
sampling time 𝑘𝑇 for 𝑘 = 0, 1, . . ., we could obtain control
gains by making use of the LMI techniques and we will only
implement the first calculated control input 𝑢(𝑘𝑇) = 𝐹

𝑖
𝑥(𝑘𝑇),

where 𝑇 represents the fixed sampling interval. At the next
sampling time, we will calculate the state 𝑥((𝑘 + 1)𝑇) and
then compute the feedback control gain 𝐹

𝑖
once again. Let

𝑥(𝑘𝑇, 𝑘𝑇) denote the state measured at sampling time 𝑘𝑇; the
predicted state at time 𝑘𝑇 + 𝜏 is denoted by 𝑥(𝑘𝑇 + 𝜏, 𝑘𝑇);
𝑢(𝑘𝑇 + 𝜏, 𝑘𝑇) is the control action at time 𝑘𝑇 + 𝜏. 𝑥(𝑘𝑇, 𝑘𝑇)
can be noted as 𝑥(𝑘𝑇) for simplicity.

About the singular MJS (1), we give the following defini-
tions.
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Definition 1 (see [10]). The continuous-time singularMJSs (1)
are said to be

(1) regular if det(𝑠𝐸 − 𝐴
𝑖
) is not identically zero for each

𝑖 ∈ M;
(2) impulse-free if deg(det(𝑠𝐸 − 𝐴

𝑖
)) = rank(𝐸) for each

𝑖 ∈ M;
(3) mean square stable if there exists a scalar𝑀(𝑥

0
, 𝑟
0
) >

0, for any 𝑥
0
∈ R𝑛, 𝑟

0
∈ M, such that

E{∫
∞

0
‖𝑥 (𝑡)‖

2

𝑑𝑡 | 𝑥
0
, 𝑟
0
} ≤ 𝑀(𝑥

0
, 𝑟
0
) ; (7)

(4) mean square admissible if it is regular, impulse-free,
and mean square stable.

Definition 2 (see [29] (invariant ellipsoid)). Given a
continuous-time dynamical system 𝑥̇(𝑡) = 𝑓(𝑥(𝑡)), a subset
E = {𝑥 ∈ 𝑅𝑛 | 𝑥𝑇𝑄−1𝑥 ≤ 1} of the state space R𝑛 is said to
be an invariant ellipsoid, if it has the property that whenever
𝑥(𝑘𝑇) ∈ E, then 𝑥(𝑁𝑇) ∈ E for all times𝑁𝑇 > 𝑘𝑇.

Before giving the main results of the singular MJS (1),
some useful lemmas are presented below.

Lemma 3 (see [30]). Given matrices 𝐺
1
and 𝐺

2
with appro-

priate dimensions and a symmetric matrixΩ,Ω+𝐺
1
𝐹(𝑡)𝐺

2
+

𝐺
2

𝑇

𝐹(𝑡)
𝑇

𝐺
1

𝑇

< 0, for all 𝐹(𝑡)𝑇𝐹(𝑡) ≤ 𝐼, if and only if there
exists a scalar 𝛿 > 0 such that

Ω+𝛿𝐺
1
𝐺
1

𝑇

+
1

𝛿
𝐺
2

𝑇

𝐺
2
< 0. (8)

Lemma 4 (see [31]). Given symmetric and positive definite
matrices𝑀 and𝑁, if𝑀 ≥ 𝑁 > 0, then𝑁−1 ≥ 𝑀−1 > 0.

Lemma 5 (see [14]). If a mode-dependent symmetric matrix
𝑃
𝑖
and a real constant matrix 𝐸 with rank(𝐸) = 𝑟(𝑟 < 𝑛) are

given a priori, then we will have𝐸𝑇𝑃
𝑖
≤ (1/4)𝜀

−1

𝑖
𝐼+𝜀
𝑖
𝐸
𝑇

𝑃
𝑖
𝑃
𝑇

𝑖
𝐸

for any 𝜀
𝑖
> 0, where 𝐼 presents the identity matrices with

compatible dimensions.

In this paper, at each sampling time 𝑘𝑇, we aim to design
a state feedback controller

𝑢 (𝑘𝑇+ 𝜏, 𝑘𝑇) = 𝐹
𝑖
𝑥 (𝑘𝑇+ 𝜏, 𝑘𝑇) 𝜏 ≥ 0, (9)

by solving the following optimization problem:

min
𝐹𝑖

𝐽
𝑘
,

𝐽
𝑘
:= ∫

∝

0

(𝑥
𝑇

(𝑘𝑇+ 𝜏, 𝑘𝑇)𝑄
𝑐
𝑥 (𝑘𝑇+ 𝜏, 𝑘𝑇)

+ 𝑢
𝑇

(𝑘𝑇+ 𝜏, 𝑘𝑇) 𝑅𝑢 (𝑘𝑇+ 𝜏, 𝑘𝑇)) 𝑑𝜏,

(10)

where 𝑄
𝑐
> 0 and 𝑅 > 0 are symmetric weighting matrices,

𝐽
𝑘
is the performance index of system (1) at time 𝑘𝑇, and 𝐹

𝑖
is

the state feedback control gain.

3. Model Predictive Controller Design

In this section, we will designMPC controller for the singular
MJSs with incomplete transition rates by presenting sufficient
conditions, which could be efficiently solved by LMI toolbox.

Theorem 6. Consider the singular MJS (1) with incomplete
transition rates and let 𝑥(𝑘𝑇) be the state of uncertain singular
system (1) at sampling time 𝑘𝑇. One will obtain 𝑄

𝑖
and 𝑌

𝑖
by

solving the following optimization problem:

min
𝛾,𝑄𝑖 ,𝑌𝑖,𝜀𝑖 ,𝛿𝑖

𝛾 (11)

satisfying

[
[
[

[

1 𝑥
𝑇

(𝑘𝑇) 𝑥
𝑇

(𝑘𝑇) 𝐸
𝑇

∗ 4𝜀
𝑖
𝐼 0

∗ ∗ 𝑄
𝑖
+ 𝑄
𝑇

𝑖
− 𝜀
𝑖
𝐼

]
]
]

]

≥ 0 𝑖 ∈ M, (12)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
1
𝑄
𝑇

𝑖
𝑌
𝑇

𝑖
(𝐻
1
𝑄
𝑖
+ 𝐻
2
𝑌
𝑖
)
𝑇

Ω
2
Ω
4
√−𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
√−𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
𝐸
𝑇

∗ −𝛾𝑄
−1

𝑐
0 0 0 0 0 0

∗ ∗ −𝛾𝑅
−1

0 0 0 0 0

∗ ∗ ∗ −𝛿
𝑖

0 0 0 0

∗ ∗ ∗ ∗ −Ω
3
0 0 0

∗ ∗ ∗ ∗ ∗ −Ω
5

0 0

∗ ∗ ∗ ∗ ∗ ∗ −4𝜀
𝑗
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
𝑗
− 𝑄
𝑇

𝑗
+ 𝜀
𝑗
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

≤ 0 ∀𝑗 ∈ M
𝑖

𝑢𝑘
, if 𝑖 ∈ M𝑖

𝑘
, (13)
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
∗

1
𝑄
𝑇

𝑖
𝑌
𝑇

𝑖
(𝐻
1
𝑄
𝑖
+ 𝐻
2
𝑌
𝑖
)
𝑇

Ω
2
Ω
4
√−𝜆
𝑖

𝑑
− 𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
√−𝜆
𝑖

𝑑
− 𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
𝐸
𝑇

∗ −𝛾𝑄
−1

𝑐
0 0 0 0 0 0

∗ ∗ −𝛾𝑅
−1

0 0 0 0 0

∗ ∗ ∗ −𝛿
𝑖

0 0 0 0

∗ ∗ ∗ ∗ −Ω
3
0 0 0

∗ ∗ ∗ ∗ ∗ −Ω
5

0 0

∗ ∗ ∗ ∗ ∗ ∗ −4𝜀
𝑗
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
𝑗
− 𝑄
𝑇

𝑗
+ 𝜀
𝑗
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

≤ 0 ∀𝑗 ∈ M
𝑖

𝑢𝑘
, if 𝑖 ∈ M𝑖

𝑢𝑘
, (14)

where
Ω
1

= 𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+𝜆
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

,

Ω
∗

1

= 𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

−𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
𝐸
𝑇

,

Ω
2
= [√𝜆

𝑖M𝑖
1

𝑄
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖M𝑖
𝑚

𝑄
𝑇

𝑖
] ,

Ω
3
= diag {4𝜀M𝑖

1

𝐼 ⋅ ⋅ ⋅ 4𝜀M𝑖
𝑚

𝐼} ,

Ω
4
= [√𝜆

𝑖M𝑖
1

𝑄
𝑇

𝑖
𝐸
𝑇

⋅ ⋅ ⋅ √𝜆
𝑖M𝑖
𝑚

𝑄
𝑇

𝑖
𝐸
𝑇

] ,

Ω
5

= diag {𝑄M𝑖
1

+ 𝑄
𝑇

M𝑖
1

− 𝜀M𝑖
1

𝐼 ⋅ ⋅ ⋅ 𝑄M𝑖
𝑚

+ 𝑄
𝑇

M𝑖
𝑚

− 𝜀M𝑖
𝑚

𝐼} .

(15)

The mode-dependent state feedback gain 𝐹
𝑖
is given by

𝐹
𝑖
= 𝑌
𝑖
𝑄
𝑖

−1

. (16)

Proof. Define a quadratic function

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃
𝑖
𝑥 (𝑡) ,

𝐸
𝑇

𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸 ≥ 0.

(17)

Here, we use Γ to denote the weak infinitesimal generator of
random process {𝑥(𝑡), 𝑖, 𝑡 ≥ 0} for each mode 𝑖 ∈ M; it is
defined as
Γ (𝑉 (𝑥 (𝑡) , 𝑟 (𝑡) = 𝑖))

= lim
𝛿→0

+

1

𝛿
{E [𝑉 (𝑥 (𝑡 + 𝛿) , 𝑟 (𝑡 + 𝛿)) | 𝑥 (𝑡) , 𝑟 (𝑡)

= 𝑖] −𝑉 (𝑥 (𝑡) , 𝑖)} .

(18)

At each sampling time 𝑘𝑇, suppose that 𝑉 satisfy the
following inequality:

Γ (𝑉 (𝑥 (𝑘𝑇+ 𝜏, 𝑘𝑇) , 𝑖))

≤ − (𝑥
𝑇

(𝑘𝑇+ 𝜏, 𝑘𝑇)𝑄
𝑐
𝑥 (𝑘𝑇+ 𝜏, 𝑘𝑇)

+ 𝑢
𝑇

(𝑘𝑇+ 𝜏, 𝑘𝑇) 𝑅𝑢 (𝑘𝑇+ 𝜏, 𝑘𝑇)) .

(19)

Because the robust cost function will eventually become
𝑥(∝, 𝑘𝑇) = 0, we will get

𝐽
𝑘
≤ 𝑉 (𝑥 (𝑘𝑇) , 𝑖) = 𝑥

𝑇

(𝑘𝑇) 𝐸
𝑇

𝑃
𝑖
𝑥 (𝑘𝑇) , (20)

by integrating both the left and the right sides of inequality
(19) with 𝜏 ∈ [0 ∝).

Considering Lemma 5, for any 𝜀
𝑖
≥ 0, we will have

𝑉 (𝑥 (𝑘𝑇) , 𝑖) = 𝑥
𝑇

(𝑘𝑇) 𝐸
𝑇

𝑃
𝑖
𝑥 (𝑘𝑇)

≤ 𝑥
𝑇

(𝑘𝑇) (
1

4
𝜀
−1

𝑖
𝐼 + 𝜀
𝑖
𝐸
𝑇

𝑃
𝑖
𝑃
𝑇

𝑖
𝐸)𝑥 (𝑘𝑇) ;

(21)

let

𝑥
𝑇

(𝑘𝑇) (
1

4
𝜀
−1

𝑖
𝐼 + 𝜀
𝑖
𝐸
𝑇

𝑃
𝑖
𝑃
𝑇

𝑖
𝐸)𝑥 (𝑘𝑇) ≤ 𝛾,

𝜀
𝑖
= 𝛾
−1

𝜀
𝑖
,

𝑃
𝑖
= 𝛾𝑄
−1

𝑖
;

(22)

then, we have

1 − 𝑥
𝑇

(𝑘𝑇) (
1

4
𝜀
−1

𝑖
𝐼) 𝑥 (𝑘𝑇)

− 𝑥
𝑇

(𝑘𝑇) (𝜀
𝑖
𝐸
𝑇

𝑄
−1

𝑖
𝑄
−𝑇

𝑖
𝐸) 𝑥 (𝑘𝑇) ≥ 0.

(23)

Using the fact that 𝜀−1
𝑖
𝑄
𝑖
𝑄
𝑇

𝑖
≥ 𝑄
𝑖
+𝑄
𝑇

𝑖
−𝜀
𝑖
𝐼 for any 𝜀

𝑖
> 0 and

Lemma 4, we will obtain

𝜀
𝑖
𝑄
−1

𝑖
𝑄
−𝑇

𝑖
≤ (𝑄
𝑖
+𝑄
𝑇

𝑖
− 𝜀
𝑖
𝐼)
−1

. (24)

Obviously, via the well-known Schur complement, it is easy
to get that conditions (12) and (24) imply (23).

Applying the control law (9) and the definition of weak
infinitesimal generator, inequality (19) becomes

((𝐴
𝑖
+Δ𝐴
𝑖
) + (𝐵

𝑖
+Δ𝐵
𝑖
) 𝐹
𝑖
)
𝑇

𝑃
𝑖

+𝑃
𝑇

𝑖
((𝐴
𝑖
+Δ𝐴
𝑖
) + (𝐵

𝑖
+Δ𝐵
𝑖
) 𝐹
𝑖
)

+ ∑

𝑗∈M

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
+𝑄
𝑐
+𝐹
𝑇

𝑖
𝑅𝐹
𝑖
≤ 0.

(25)
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Pre- and postmultiplying (25) by 𝑃−𝑇
𝑖

and its transpose,
replacing 𝑃

𝑖
and 𝑌

𝑖
, by 𝛾𝑄−1

𝑖
and 𝐹

𝑖
𝑄
𝑖
, respectively, one will

get

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+Δ𝐴
𝑖
𝑄
𝑖
+Δ𝐵
𝑖
𝑌
𝑖

+𝑄
𝑇

𝑖
Δ𝐴
𝑇

𝑖
+𝑌
𝑇

𝑖
Δ𝐵
𝑇

𝑖
+ 𝛾
−1

∑

𝑗∈M

𝑄
𝑇

𝑖
𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝑄
𝑖

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
≤ 0;

(26)

considering the unknown uncertainty (2), (26) becomes

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+𝐷𝐹
𝑖
(𝑡) (𝐻

1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ (𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

𝐹
𝑇

𝑖
(𝑡) 𝐷
𝑇

+ 𝛾
−1

∑

𝑗∈M

𝑄
𝑇

𝑖
𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝑄
𝑖
+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖

+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
≤ 0.

(27)

According to Lemma 3, (27) holds if and only if there exists
𝛿
𝑖
> 0 satisfying

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

∑

𝑗∈M

𝑄
𝑇

𝑖
𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝑄
𝑖
+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖

+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
≤ 0.

(28)

According to Lemma 5, (28) holds if (29) is satisfied for any
𝜀
𝑗
> 0 satisfying

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

∑

𝑗∈M

𝑄
𝑇

𝑖
𝜆
𝑖𝑗
(
1

4
𝜀
−1

𝑗
𝐼 + 𝜀
𝑗
𝐸
𝑇

𝑃
𝑗
𝑃
𝑇

𝑗
𝐸)𝑄
𝑖

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
≤ 0.

(29)

Replacing 𝑃
𝑗
and 𝜀−1
𝑗

by 𝛾𝑄−1
𝑗

and 𝛾𝜀−1
𝑗
, respectively, we will

have

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ ∑

𝑗∈M

1

4
𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖

+ ∑

𝑗∈M

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖
+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖

+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
≤ 0.

(30)

Subsequently, we take transition rate into account and sepa-
rate it into two cases, 𝑖 ∈ M𝑖

𝑘
and 𝑖 ∈ M𝑖

𝑢𝑘
, respectively.

Case 1 (𝑖 ∈ M𝑖
𝑘
). Considering that ∑

𝑗∈M 𝜆𝑖𝑗 = ∑𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
+

∑
𝑗∈M𝑖
𝑢𝑘

𝜆
𝑖𝑗
, the left side of (30) is rewritten as

𝜃
𝑖
≜ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+𝛼
𝑖

𝑘

+
1

4
∑

𝑗∈M𝑖
𝑢𝑘

𝜆̂
𝑖𝑗
𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
+𝛽
𝑖

𝑘

+ ∑

𝑗∈M𝑖
𝑢𝑘

𝜆̂
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖
,

(31)

where the elements 𝜆̂
𝑖𝑗

(∀𝑗 ∈ M𝑖
𝑢𝑘
) are unknown,

𝛼
𝑖

𝑘
≜ (1/4)∑

𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
, and 𝛽𝑖

𝑘
≜ ∑
𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
)𝐸𝑄
𝑖
. Noting that, in this case, 𝜆

𝑖𝑖
is known, 𝜆𝑖

𝑘
=

𝜆
𝑖𝑖
+ ∑
𝑗∈M𝑖
𝑘
,𝑖 ̸=𝑗
< 0, and ∑

𝑗∈M𝑄
𝑇

𝑖
𝜆
𝑖𝑗
𝐸
𝑇

(𝑄
−1

𝑗
)𝑄
𝑖
= 𝜆
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇,

𝑗 = 𝑖, then

𝜃
𝑖
= (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+𝜆
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

+𝛼
𝑖∗

𝑘

+
1

4
∑

𝑗∈M𝑖
𝑢𝑘

𝜆̂
𝑖𝑗

−𝜆
𝑖

𝑘

(−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
+𝛽
𝑖∗

𝑘

+ ∑

𝑗∈M𝑖
𝑢𝑘

𝜆̂
𝑖𝑗

−𝜆
𝑖

𝑘

(−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖
,

(32)

where 𝛼𝑖∗
𝑘
= (1/4)∑

𝑗∈M𝑖
𝑘
,𝑗 ̸=𝑖
𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
and 𝛽𝑖∗

𝑘
= ∑
𝑗∈M𝑖
𝑘
,𝑗 ̸=𝑖

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
)𝐸𝑄
𝑖
, because of 0 ≤ 𝜆̂

𝑖𝑗
/ − 𝜆
𝑖

𝑘
≤ 1 and

∑
𝑗∈M𝑖
𝑢𝑘

𝜆̂
𝑖𝑗
/ − 𝜆
𝑖

𝑘
= 1; we will obtain that

𝜃
𝑖
= ∑

𝑗∈M𝑖
𝑢𝑘

𝜆̂
𝑖𝑗

−𝜆
𝑖

𝑘

((𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+𝜆
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

+𝛼
𝑖∗

𝑘

+ (−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖

+
1

4
(−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
+𝛽
𝑖∗

𝑘
) .

(33)
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Since 𝜃
𝑖
< 0, we can have the following inequality:

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+𝛼
𝑖∗

𝑘

+
1

4
(−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
+𝛽
𝑖∗

𝑘

+ (−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖
+𝜆
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

< 0.

(34)

Using (24), we can easily get (34), if

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝜆
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+𝛼
𝑖∗

𝑘

+ ∑

𝑗∈M𝑖
𝑘
,𝑗 ̸=𝑖

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
𝑗
+𝑄
𝑇

𝑗
− 𝜀
𝑗
𝐼)
−1

𝐸𝑄
𝑖

+
1

4
(−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖

+ (−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
𝑗
+𝑄
𝑇

𝑗
− 𝜀
𝑗
𝐼)
−1

𝐸𝑄
𝑖
< 0

(35)

holds. Applying Schur complement to the above inequality,
one can obtain (13).

Case 2 (𝑖 ∈ M𝑖
𝑢𝑘
). Likewise, considering ∑

𝑗∈M 𝜆𝑖𝑗 =

∑
𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
+ ∑
𝑗∈M𝑖
𝑢𝑘

𝜆
𝑖𝑗
, we rewrite the left side of (30) as

𝜃
𝑖
≜ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+ 𝜆̂
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

+
1

4
∑

𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
+
1

4
∑

𝑗∈M𝑖
𝑢𝑘
,𝑗 ̸=𝑖

𝜆̂
𝑖𝑗
𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖

+ ∑

𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖

+ ∑

𝑗∈M𝑖
𝑢𝑘
,𝑗 ̸=𝑖

𝜆̂
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖
.

(36)

Noting that, in this case, 𝜆̂
𝑖𝑖
is unknown, 𝜆𝑖

𝑘
= −𝜆̂

𝑖𝑖
−

∑
𝑗∈M𝑖
𝑢𝑘
,𝑗 ̸=𝑖
𝜆
𝑖𝑗
> 0, then

𝜃
𝑖
= (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+𝛼
𝑖

𝑘
+
1

4
(−𝜆̂
𝑖𝑖
−𝜆
𝑖

𝑘
)

⋅ ∑

𝑗∈M𝑖
𝑢𝑘
,𝑗 ̸=𝑖

𝜆̂
𝑖𝑗

−𝜆̂
𝑖𝑖
− 𝜆
𝑖

𝑘

𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
+ (−𝜆̂

𝑖𝑖
−𝜆
𝑖

𝑘
)

⋅ ∑

𝑗∈M𝑖
𝑢𝑘
,𝑗 ̸=𝑖

𝜆̂
𝑖𝑗

−𝜆̂
𝑖𝑖
− 𝜆
𝑖

𝑘

𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖

+ 𝜆̂
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

+𝛽
𝑖

𝑘
.

(37)

Similarly, since we have 0 ≤ 𝜆̂
𝑖𝑗
/(−𝜆̂
𝑖𝑖
− 𝜆
𝑖

𝑘
) ≤ 1 and

∑
𝑗∈M𝑖
𝑢𝑘
,𝑗 ̸=𝑖
(𝜆̂
𝑖𝑗
/(−𝜆̂
𝑖𝑖
− 𝜆
𝑖

𝑘
)) = 1, we can easily obtain

𝜃
𝑖
= ∑

𝑗∈M𝑖
𝑢𝑘
,𝑗 ̸=𝑖

𝜆̂
𝑖𝑗

−𝜆̂
𝑖𝑖
− 𝜆
𝑖

𝑘

((𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)

+ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+ 𝜆̂
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

+𝛼
𝑖

𝑘
+𝛽
𝑖

𝑘

+ (−𝜆̂
𝑖𝑖
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖

+
1

4
(−𝜆̂
𝑖𝑖
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
) .

(38)

Therefore, 𝜃
𝑖
< 0 is equivalent to ∀𝑗 ∈ M𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖,

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
+ 𝜆̂
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

+𝛼
𝑖

𝑘

+
1

4
(−𝜆̂
𝑖𝑖
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖

+ (−𝜆̂
𝑖𝑖
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖
+𝛽
𝑖

𝑘
< 0.

(39)

As 𝜆̂
𝑖𝑖
is lower bounded by 𝜆𝑖

𝑑
, we know that 𝜆𝑖

𝑑
≤ 𝜆̂
𝑖𝑖
< −𝜆
𝑖

𝑘
.

Thus, (39) holds if the following inequality holds:

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
−𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
𝐸
𝑇

+𝛼
𝑖

𝑘

+
1

4
(−𝜆
𝑖

𝑑
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖

+ (−𝜆
𝑖

𝑑
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
−1

𝑗
𝑄
−𝑇

𝑗
𝜀
𝑗
) 𝐸𝑄
𝑖
+𝛽
𝑖

𝑘
< 0.

(40)

Similarly, (40) is implied by (24) and

(𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
) + (𝐴

𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+
1

𝛿
𝑖

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)
𝑇

(𝐻
1
𝑄
𝑖
+𝐻
2
𝑌
𝑖
)

+ 𝛾
−1

𝑄
𝑇

𝑖
𝑄
𝑐
𝑄
𝑖
+ 𝛾
−1

𝑌
𝑇

𝑖
𝑅𝑌
𝑖
−𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
𝐸
𝑇

+𝛼
𝑖

𝑘

+
1

4
(−𝜆
𝑖

𝑑
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝜀
−1

𝑗
𝐼𝑄
𝑖
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+ (−𝜆
𝑖

𝑑
−𝜆
𝑖

𝑘
)𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
𝑗
+𝑄
𝑇

𝑗
− 𝜀
𝑗
𝐼)
−1

𝐸𝑄
𝑖

+ ∑

𝑗∈M𝑖
𝑘

𝜆
𝑖𝑗
𝑄
𝑇

𝑖
𝐸
𝑇

(𝑄
𝑗
+𝑄
𝑇

𝑗
− 𝜀
𝑗
𝐼)
−1

𝐸𝑄
𝑖
< 0.

(41)

Applying Schur complement to (41), we can obtain (14).
Certainly, MPC for singular MJSs without incomplete

transition descriptions and the normal MJS with incomplete
transition descriptions can be viewed as two special cases of
singular MJS. Then, we have the following corollaries.

Corollary 7. Consider the singularMJS (1)without incomplete
transition rate and let 𝑥(𝑘𝑇) be the state of singular system (1)
at sampling time 𝑘𝑇. One will obtain 𝑄

𝑖
and 𝑌

𝑖
by solving the

following optimization problem:

min
𝛾,𝑄𝑖,𝑌𝑖,𝜀𝑖 ,𝛿𝑖

𝛾 (42)

satisfying

[
[
[

[

1 𝑥
𝑇

(𝑘𝑇) 𝑥
𝑇

(𝑘𝑇) 𝐸
𝑇

∗ 4𝜀
𝑖
𝐼 0

∗ ∗ 𝑄
𝑖
+ 𝑄
𝑇

𝑖
− 𝜀
𝑖
𝐼

]
]
]

]

≥ 0 𝑖 ∈ M,

[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
1
𝑄
𝑇

𝑖
𝑌
𝑖
(𝐻
1
𝑄
𝑖
+ 𝐻
2
𝑌
𝑖
)
𝑇

Ω
2
Ω
4

∗ −𝛾𝑄
−1

𝑐
0 0 0 0

∗ ∗ −𝛾𝑅
−1

0 0 0

∗ ∗ ∗ −𝛿
𝑖

0 0

∗ ∗ ∗ ∗ −Ω
3
0

∗ ∗ ∗ ∗ ∗ −Ω
5

]
]
]
]
]
]
]
]
]
]
]
]

]

≤ 0 𝑖 ∈ M,

(43)

where

Ω
1
= 𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+𝜆
𝑖𝑖
𝑄
𝑇

𝑖
𝐸
𝑇

,

Ω
2
= [√𝜆

𝑖1
𝑄
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖,𝑖−1
𝑄
𝑇

𝑖
√𝜆
𝑖,𝑖+1
𝑄
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖,𝑁
𝑄
𝑇

𝑖
] ,

Ω
3
= diag {4𝜀

1
𝐼 ⋅ ⋅ ⋅ 4𝜀

𝑖−1
𝐼 4𝜀
𝑖+1
𝐼 ⋅ ⋅ ⋅ 4𝜀

𝑁
𝐼} ,

Ω
4
= [√𝜆

𝑖1
𝑄
𝑇

𝑖
𝐸
𝑇

⋅ ⋅ ⋅ √𝜆
𝑖,𝑖−1
𝑄
𝑇

𝑖
𝐸
𝑇

√𝜆
𝑖,𝑖+1
𝑄
𝑇

𝑖
𝐸
𝑇

⋅ ⋅ ⋅ √𝜆
𝑖,𝑁
𝑄
𝑇

𝑖
𝐸
𝑇

] ,

Ω
5
= diag {𝑄

1
+ 𝑄
𝑇

1
− 𝜀
1
𝐼 ⋅ ⋅ ⋅ 𝑄

𝑖−1
+ 𝑄
𝑇

𝑖−1
− 𝜀
𝑖−1
𝐼 𝑄
𝑖+1
+ 𝑄
𝑇

𝑖+1
− 𝜀
𝑖+1
𝐼 ⋅ ⋅ ⋅ 𝑄

𝑁
+ 𝑄
𝑇

𝑁
− 𝜀
𝑁
𝐼} .

(44)

Then, the mode-dependent state feedback gain 𝐹
𝑖
can be

obtained by (16).

Corollary 8. When 𝐸 is nonsingular and can be simplified as
an identity matrix, system (1) becomes

𝑥̇ (𝑡) = (𝐴 (𝑟 (𝑡)) + Δ𝐴 (𝑟 (𝑡))) 𝑥 (𝑡)

+ (𝐵 (𝑟 (𝑡)) +Δ𝐵 (𝑟 (𝑡))) 𝑢 (𝑡) ;

(45)

let 𝑥(𝑘𝑇) be the state of uncertain MJS (45) at sampling
time 𝑘𝑇. One will obtain 𝑄

𝑖
and 𝑌

𝑖
by solving the following

optimization problem:

min
𝛾,𝑄𝑖,𝑌𝑖,𝛿𝑖

𝛾 (46)

satisfying

[
1 𝑥
𝑇

(𝑘𝑇)

∗ 𝑄
𝑖

] ≥ 0, 𝑖 ∈ M,

[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
1
𝑄
𝑇

𝑖
𝑌
𝑇

𝑖
(𝐻
1
𝑄
𝑖
+ 𝐻
2
𝑌
𝑖
)
𝑇

Ω
2
√−𝜆
𝑖

𝑘
𝑄
𝑇

𝑖

∗ −𝛾𝑄
−1

𝑐
0 0 0 0

∗ ∗ −𝛾𝑅
−1

0 0 0

∗ ∗ ∗ −𝛿
𝑖

0 0

∗ ∗ ∗ ∗ −Ω
3

0

∗ ∗ ∗ ∗ ∗ −𝑄
𝑗

]
]
]
]
]
]
]
]
]
]
]
]

]

≤ 0

∀𝑗 ∈ M
𝑖

𝑢𝑘
, if 𝑖 ∈ M𝑖

𝑘
,

[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
∗

1
𝑄
𝑇

𝑖
𝑌
𝑇

𝑖
(𝐻
1
𝑄
𝑖
+ 𝐻
2
𝑌
𝑖
)
𝑇

Ω
2
√−𝜆
𝑖

𝑑
− 𝜆
𝑖

𝑘
𝑄
𝑇

𝑖

∗ −𝛾𝑄
−1

𝑐
0 0 0 0

∗ ∗ −𝛾𝑅
−1

0 0 0

∗ ∗ ∗ −𝛿
𝑖

0 0

∗ ∗ ∗ ∗ −Ω
3

0

∗ ∗ ∗ ∗ ∗ −𝑄
𝑗

]
]
]
]
]
]
]
]
]
]
]
]

]

≤ 0 ∀𝑗 ∈ M
𝑖

𝑢𝑘
, if 𝑖 ∈ M𝑖

𝑢𝑘
,

(47)
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where

Ω
1
= 𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+𝜆
𝑖𝑖
𝑄
𝑇

𝑖
,

Ω
∗

1
= 𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌
𝑖
+ (𝐴
𝑖
𝑄
𝑖
+𝐵
𝑖
𝑌)
𝑇

+ 𝛿
𝑖
𝐷𝐷
𝑇

+𝜆
𝑖

𝑘
𝑄
𝑇

𝑖
,

Ω
2
= [√𝜆

𝑖M𝑖
1

𝑄
𝑇

𝑖
⋅ ⋅ ⋅ √𝜆

𝑖M𝑖
𝑚

𝑄
𝑇

𝑖
] ,

Ω
3
= diag {𝑄M𝑖

1

⋅ ⋅ ⋅ 𝑄M𝑖
𝑚
} .

(48)

The mode-dependent state feedback gain 𝐹
𝑖
is obtained by

(16).

4. Mean Square Admissibility Analysis

Previous section gives sufficient conditions, which could
guarantee the existence of model predictive controller. In this
section, we mainly study the mean square stability of the
closed-loop singular MJS (1).

Lemma 9 (feasibility). The solution of the optimization prob-
lem in Theorem 6 is feasible over any time interval [𝑁𝑇, (𝑁 +
1)𝑇) with 𝑁 > 𝑘, if it has the property that the solution is
feasible over the time interval [𝑘𝑇, (𝑘 + 1)𝑇).

Proof. At sampling time 𝑘𝑇, from inequality (12), we limit the
measured state 𝑥(𝑘𝑇) in the ellipsoid region 𝑥𝑇[(1/4)𝜀−1

𝑖
𝐼 +

𝐸
𝑇

(𝑄
𝑖
+ 𝑄
𝑇

𝑖
− 𝜀
𝑖
𝐼)
−1

𝐸]𝑥 ≤ 1. According to the proof of
Theorem 6, we can get

Γ (𝑉 (𝑥 (𝑡) , 𝑟 (𝑡) = 𝑖)) < 0. (49)

Then, for any sampling time𝑁𝑇 with𝑁 > 𝑘, the future state
𝑥(𝑁𝑇) remains in the ellipsoid set. Therefore, by referring to
Definition 2, 𝑥𝑇[(1/4)𝜀−1

𝑖
𝐼 +𝐸
𝑇

(𝑄
𝑖
+𝑄
𝑇

𝑖
− 𝜀
𝑖
𝐼)
−1

𝐸]𝑥 ≤ 1 is an
invariant ellipsoid.

The solution of the optimization problem in Theorem 6
is feasible over the time interval [𝑘𝑇, (𝑘 + 1)𝑇). By observing
(12), (13), and (14), it could be concluded that the feasibility
of the MPC strategy only depends on (12). Thus, to prove
Lemma 3, we only need to prove that the LMI (12) is feasible
for all future states𝑥(𝑁𝑇),𝑁 > 𝑘. Considering the invariance
of the ellipsoid, we obtain

𝑥
𝑇

((𝑘 + 1) 𝑇) [
1

4
𝜀
−1

𝑖
𝐼 +𝐸
𝑇

(𝑄
𝑖
+𝑄
𝑇

𝑖
− 𝜀
𝑖
𝐼)
−1

𝐸]

⋅ 𝑥 ((𝑘 + 1) 𝑇) ≤ 1,

(50)

which means LMI (12) is feasible with state 𝑥((𝑘 + 1)𝑇) and
then the feasibility of optimization problem (11) could be
achieved over the time interval [(𝑘 + 1)𝑇, (𝑘 + 2)𝑇). Similarly,
we can complete the proof on the time intervals [(𝑘+2)𝑇, (𝑘+
3)𝑇), [(𝑘 + 3)𝑇, (𝑘 + 4)𝑇),. . ..

Theorem 10. The feedback predictive control gain computed
from Theorem 6 guarantees that the closed-loop singular MJS
(1) is mean square admissible.

Proof. Firstly, we show that the singular MJS (1) is regular
and impulse-free. There exist two orthogonal matrices 𝑈 =
[𝑈
1
𝑈
2
] and 𝑉 = [𝑉

1
𝑉
2
] such that

𝐸 = [

𝐼 0

0 0
] = 𝑈

𝑇

𝐸𝑉
−𝑇

. (51)

Based on singular value decomposition, system (1) can be
written as the following differential and algebraic form:

𝑥̇
1
(𝑡) = 𝐴

∗

𝑖𝑐1
𝑥
1
(𝑡) +𝐴

∗

𝑖𝑐2
𝑥
2
(𝑡) ,

0 = 𝐴
∗

𝑖𝑐3
𝑥
1
(𝑡) +𝐴

∗

𝑖𝑐4
𝑥
2
(𝑡) ,

(52)

where 𝐴
𝑖𝑐
= (𝐴

𝑖
+ Δ𝐴

𝑖
) + (𝐵

𝑖
+ Δ𝐵

𝑖
)𝐹
𝑖
, and it can be

decomposed as 𝐴
𝑖𝑐
= [
𝐴𝑖𝑐1 𝐴𝑖𝑐2

𝐴𝑖𝑐3 𝐴𝑖𝑐4

].
Assuming the optimal solution of optimization problem

(11) at sampling time 𝑘𝑇 can be denoted as 𝑃∗
𝑖
(𝑘𝑇) and

𝐹
∗

𝑖
(𝑘𝑇), from the proof of Theorem 6, we can obtain that

there exists 𝑃∗
𝑖
(𝑘𝑇) satisfying (25) and

𝐸
𝑇

𝑃
∗

𝑖
(𝑘𝑇) = 𝑃

𝑇∗

𝑖
(𝑘𝑇) 𝐸 ≥ 0. (53)

Let

𝐴
𝑖
= [

𝐴
∗

𝑖𝑐1
𝐴
∗

𝑖𝑐2

𝐴
∗

𝑖𝑐3
𝐴
∗

𝑖𝑐4

] = 𝑈
𝑇

𝐴
∗

𝑖𝑐
𝑉
−𝑇

,

𝑃
∗

𝑖
(𝑘𝑇) = [

𝑃
∗

𝑖1
(𝑘𝑇) 𝑃

∗

𝑖2
(𝑘𝑇)

𝑃
∗

𝑖3
(𝑘𝑇) 𝑃

∗

𝑖4
(𝑘𝑇)
] = 𝑈

𝑇

𝑃
∗

𝑖
(𝑘𝑇)𝑉

−𝑇

,

𝑄
𝑐
= [

𝑄
𝑐1
𝑄
𝑐2

𝑄
𝑇

𝑐2
𝑄
𝑐3

] = 𝑉
−1

𝑄
𝑐
𝑉
−𝑇

,

𝐹
∗

𝑖
(𝑘𝑇) = [𝐹

∗

𝑖1
(𝑘𝑇) 𝐹

∗

𝑖2
(𝑘𝑇)] = 𝐹

∗

𝑖
(𝑘𝑇)𝑉

−𝑇

.

(54)

By (53), we have 𝑃∗
𝑖1
(𝑘𝑇) > 0 (because 𝑃∗

𝑖
(𝑘𝑇) is nonsingular)

and 𝑃∗
𝑖2
(𝑘𝑇) = 0. Pre- and postmultiplying the left and right

sides of (25) by 𝑉−1 and 𝑉−𝑇, we obtain

𝐴
𝑇∗

𝑖𝑐4
𝑃
∗

𝑖4
(𝑘𝑇) +𝑃

𝑇∗

𝑖4
(𝑘𝑇)𝐴

∗

𝑖𝑐4
+𝑄
𝑐3

+𝐹
𝑇∗

𝑖2
(𝑘𝑇) 𝑅𝐹

∗

𝑖2
(𝑘𝑇) < 0.

(55)

From (55), we can easily get that𝐴𝑇∗
𝑖𝑐4

is invertible. Hence,
for any 𝑡 ≥ 0,

det (𝑠𝐸 −𝐴∗
𝑖𝑐
) = det𝑈−𝑇 det𝑉𝑇 det (𝐴∗

𝑖𝑐4
)

⋅ det (𝑠𝐼 −𝐴∗
𝑖𝑐1
−𝐴
∗

𝑖𝑐2
𝐴
(−1)∗

𝑖𝑐4
𝐴
∗

𝑖𝑐3
) ,

deg (det (𝑠𝐸 −𝐴∗
𝑖𝑐
)) = rank (𝐸) ,

(56)

from which we can see that det(𝑠𝐸 − 𝐴∗
𝑖𝑐
) is not identically

zero; by Definition 1, the closed-loop system is regular and
impulse-free.

What is more, we consider the mean square stability of
the singular MJS (1). Here, the piecewise Lyapunov function
is described as
𝑉
∗

(𝑥 (𝑡) , 𝑖) = 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃
∗

𝑖
(𝑘𝑇) 𝑥 (𝑡) ,

𝑡 ∈ [𝑘𝑇, (𝑘 + 1) 𝑇) .

(57)
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Figure 1: Jump mode.

From (25), we have

((𝐴
𝑖
+Δ𝐴
𝑖
) + (𝐵

𝑖
+Δ𝐵
𝑖
) 𝐹
𝑖
)
𝑇

𝑃
∗

𝑖

+𝑃
𝑇∗

𝑖
((𝐴
𝑖
+Δ𝐴
𝑖
) + (𝐵

𝑖
+Δ𝐵
𝑖
) 𝐹
𝑖
)

+ ∑

𝑗∈M

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
∗

𝑗
≤ 0

(58)

which yields

Γ (𝑉
∗

(𝑥 (𝑡) , 𝑖)) < 0, 𝑡 ∈ [𝑘𝑇, (𝑘 + 1) 𝑇) . (59)

Therefore, 𝑉(𝑥(𝑡), 𝑖) is strictly decreasing over each time
interval [𝑘𝑇, (𝑘 + 1)𝑇).

Note that𝑃∗
𝑖
(𝑘𝑇) represents a feasible solution at time (𝑘+

1)𝑇while 𝑃∗
𝑖
((𝑘+1)𝑇) is an optimal solution at time (𝑘+1)𝑇.

Since 𝑉∗(𝑥(𝑡), 𝑖) is a piecewise function, we further consider

lim
𝑡→ (𝑘+1)𝑇

−

𝑉
∗

(𝑥 (𝑡) , 𝑖)

= 𝑥
𝑇

((𝑘 + 1) 𝑇) 𝐸𝑃
∗

𝑖
(𝑘𝑇) 𝑥 ((𝑘 + 1) 𝑇)

≥ 𝑥
𝑇

((𝑘 + 1) 𝑇) 𝐸𝑃
∗

𝑖
((𝑘 + 1) 𝑇) 𝑥 ((𝑘 + 1) 𝑇)

= 𝑉
∗

(𝑥 ((𝑘 + 1) 𝑇)) ,

(60)

for all 𝑘 ≥ 0. Inequalities (59) and (60) guarantee that
𝑉(𝑥(𝑡), 𝑖) is strictly decreasing when 𝑡 ∈ [0,∝); system (1)
is mean square stable.

Therefore, according to the property of being regular and
impulse-free, the closed-loop singular MJS is mean square
admissible.

5. Numerical Example

To illustrate the efficiency of the proposed MPC scheme for
continuous-time MJSs, a numerical example is presented in
the following.

Consider a system with the form of (1), where 𝑟(𝑡) =
1, 2, 3, 4. The system matrices are 𝐴

1
= [

0.75 −0.75
0 −1.5 ], 𝐴2 =

[
0.15 −0.49
0 −2.1 ], 𝐴3 = [ 0.3 −0.150 −1.8 ], 𝐴4 = [ 0.9 −0.340 −1.65 ], 𝐵1 = [ 5

−1 ],
𝐵
2
= [

2
−1 ], 𝐵3 = [ 1

−1 ], 𝐵4 = [ 3
−1 ], 𝐷 = [ 0.10 ], 𝐸 = [ 1 0

0 0 ],
𝐻
1
= [0.1 0], and 𝐻

2
= 0.1. The weighting matrices are

𝑄
𝑐
= [

1 0
0 1 ] and 𝑅 = 1.
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Figure 2: State responses under MPC.
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Figure 3: State responses under normal state feedback control.

The TRM is given as follows:

Λ =

[
[
[
[
[
[

[

−1.3 0.2 𝜆̂13 𝜆̂14

𝜆̂21 𝜆̂22 0.3 0.3

0.1 𝜆̂32 −2.5 𝜆̂34
𝜆̂41 0.2 𝜆̂43 −1.2

]
]
]
]
]
]

]

, (61)

where the diagonal element 𝜆̂
22

is unknown and its lower
bound 𝜆2

𝑑
= −5 is a priori given value. The initial value of

the state is 𝑥
0
= [−1.2 0.6]𝑇 and the initial mode is 𝑟

0
= 1.

The simulation step is taken as 150 time units and each
unit length is taken as 0.01. We get the jump mode (Figure 1)
and apply the designed MPC algorithm and normal state
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Figure 5: Control input under normal state feedback control.

feedback control to system (1), separately. Then, we get the
simulation results in Figures 2–5.

Obviously, the unstable system (1) becomes more easily
stable by using MPC strategy.

6. Conclusions

In this paper, MPC strategy is presented for continuous-time
singularMJSswith incomplete transition rates.The controller
design problem is formulated as LMI optimization algorithm.
Thepredictive control strategy is proved to be feasible at every
sampling time and it also can guarantee the mean square
admissibility of the closed-loop system.
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