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Abstract

We present a new model of insect antennal lobe in the form of integro-differential equation
with short-range inhibition. The learning in the model modifies the odor-dependent input by
adding a term that is proportional to the firing rates of the network in the pre-learning steady
state. We study the modification of odor-induced spatial patterns (steady states) by combination
of odors (binary mixtures) and learning. We show that this type of learning applied to the
inhibitory network “increases the contrast” of the network’s spatial activity patterns. We identify
pattern modifications that could underlie insect behavioral phenomena.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Integration across multiple levels of analysis—genetic, molecular, electrophysiolog-
ical, behavioral—is becoming possible in many biological systems. Because of the
complexity inherent in this integration, modeling approaches are becoming increasingly
important for representing hypotheses about how different levels interact. An example
of how this may be happening is the study of odor interactions in learning of binary
mixtures in mammalian and insect olfactory system. Behavioral phenomena must in
some way be based on the representations of mixtures and in learning-induced changes
to these representations in the antennal lobe of the insect brain (AL; analog of the
mammalian olfactory bulb). This hypothesis can now be tested in electrophysiological
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experiments [3]. However, as a first step, it is necessary to investigate what types of
odor-related patterns and what changes to them would support our conjecture. We use
mathematical modeling to address this question.

Recently, we have developed a minimal spiking model [2] of the antennal lobe that
is coupled with the model for the VUMmx1 cell (an identified neuron in honeybee,
whose activity is correlated with actual or expected reward, see, e.g. [5]). Olfactory
learning is represented in the model by changing the strength of reciprocal connections
between VUMmx1 and antennal lobe output neurons. We have shown how activation
patterns for mixtures can be modified by learning to produce well-studied behavioral
phenomena [2].

In the present paper we consider a different formulation of the model, in which
the cells form a one-dimensional continuum and their behavior at time ¢ is described
by the activation level u(x,?), which satisfies the integro-differential equation with an
inhibitory coupling function. We also introduce a term representing the results of learn-
ing. It is proportional to the firing rates in the network in the pre-learning steady state.
This model is a very reduced version of the real system, however, it captures the
qualitative features of behavioral results and underlies our predictions for physiological
experiments.

2. Presentation of the model

We consider u(x,t), the activation at time ¢ of a cell at point x (x € R, € RT), to
satisfy

o=+ [ ) £ dy 1)+ L) (1)
Models of this kind have been considered in different contexts (e.g. [1,4]) with var-
ious assumptions on firing rate and coupling functions, f(z) and w(x, y). We con-
sider three types of f(z): max(0,z — ay), H(z — ay) (H—Heaviside function), and
1/[14exp(—p(z —zn))]. We have found no qualitative differences between these cases
within the scope of our questions. The coupling w(x, y) is inhibitory (w < 0; for jus-
tification see [2]). In simulations and explicit solutions we use w(|x — y|) = —J/ow -
max(—|x — y| + ®,0). The input /(x) is odor-specific, and in this paper it is linear or
constant on each of several disjoint intervals, and supp/(x) C [ — 1,,,,,]. A mixture of
odors produces the sum of their inputs. Representation of an odor is the steady-state
solution given by the equation

)= [ il = D)y + 100 @)
We have suggested [2] that learning modifies the strength of mutual excitatory con-
nections between each of the network cells and a special “reward-representing” unit
(analogous to VUMmx1 neuron in honeybees [5]),—the higher the cell’s activity dur-
ing learning, the stronger the connection. Therefore, we choose to represent the learning
in the activity model in the following way. Let us say that /;(x) is the input from the
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receptors to the network, produced by odor 1, and ul (x) is the corresponding stationary
activity pattern. Then, after the odor has been learned (the process itself is not repre-
sented in the model), and is presented again in the test trial, each cell in the network
will receive additional excitatory input, proportional to the learning-induced strength of
connection, which, in turn, is assumed to be proportional to the firing rate of that cell
upon the original odor presentation. In other words, for the “naive” network L(x)=0,
but for the network that has learned odor 1

L(x)=Jp - f(uk(x)),

i.e. the learning term changes the odor-specific input to the network for all subsequent
odors. The odor representation after learning is the steady state of the network with
this new input. Here, for simplification of mathematical treatment we assume that each
odor can be learned only once, i.e. the representation corresponding to each particular
I(x) can change only once.

Notice that, in contrast to much of the recent work on related models, the connection
function w(-) is purely negative; we are looking for a steady-state solution of the
inhomogeneous equation (with the input present; as opposed to a solution that persists
after the input is gone); and we are looking to see how a steady-state solution is
modified in the presence of an additional input of the same type (in the mixture), and
in the presence of learning.

3. Results
3.1. Representation and learning of a single odor

Consider Eq. (2), assuming only w(z) <0, f(z) =0, and f(z)=0 for z < ay,. Let
u(x) be a solution of (2). Then for any x, u(x)=1(x)+ [ w(|]x— y])f(u(y))dy < I(x).
In particular, if /(x) <0 then u(x) < 0. Furthermore, if Iy = sup, /(x) < ap, then
u(y) < ap, for all y, and f(u(y)) =0, proving that u(x) = I(x). As a consequence,
because we are interested in f(u(x)) as a manifestation of activity, and when f(z)
is zero for z < ay, we can limit our consideration to x€[ — I/,1)], where I, =
supf[x| : 1(x) > an} < L.

Next, we show that for f* as above, and for a small enough inhibition, the steady
state solution is unique, for any bounded input /(x).

Proposition. Assume w(z) < 0, |I(x)| is bounded, f is Lipschitz with constant ¢, and
f(2)=0 for z < aw. If

x+I),
cW;=c- sup / [w(z)|dz < 1, (3)
X

X Ja=l

then Eq. (2) has a unique solution u(-) € L>°(R).

Proof. Consider the operator K; : L=(R) — L=(R): Kju(x)= [ w(|jx—y|)f(u(y))dy+
I(x). Using properties of f, K,u(x):fiw],y w(jx—y|)f(u(y))dy-+I(x). By the Lipschitz
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Fig. 1. Response to a single odor before (black) and after (gray) learning. Parameters used: (A)
I(X):2.5U[_]‘|], w=15,J=2,J=2,an=1; (B) I(X)= l.lﬂ[_0_5,0_5] + 1-4(['[—1.6‘—0.6] + H[()_(,‘l_(,]), w=1,
J=2,J,=2, ayp = 1.

assumption one has
I/

i) = Ko < [ s = )1 ) = o) dy < ey - = o

Since c¢W; < 1, K; is a contraction on L°°(R). The Banach fixed point theorem con-
cludes the proof. [

Condition (3) above can be replaced by the weaker one: 2¢ - I/ sup|w| < 1. In the
case w(|x — y|) = —(J/w) - max(—|x — y| + ®,0), condition (3) becomes cJ(wl,<; +
(21}, — (I},)*/w)ly>p) < 1, where 4 is the indicator function.

Even though the above analytical result is only valid under certain assumptions on
w(-), I and f, our numerical experiments show that the solution is unique and stable
for larger values of W; and for other types of f. Fig. 1 show examples of response to
one odor with 1 and 3 input intervals.

The learning mechanism “increases the contrast” in the firing pattern (Fig. 1A).
Namely, it rewards the cells that have already been more active than their neighbors,
and they, in turn, inhibit the cells that have been less active. As a result, some of
the cells will increase or decrease their firing rate, and spots of firing can appear or
disappear with learning (Fig. 1B).

3.2. Representation of a binary mixture

Let us consider odors with inputs /;(x) and /5(x) and their mixture with 7(x)=1,(x)+
I(x). If the intervals where inputs are non-zero are further away from each other than
the extent of the inhibition then the odors do not interact, and the response to the
mixture is the union of the component responses. However, if the inputs are closer,
the mixture representation can have parts that are specific for each of the components,
as well as parts that are specific for the mixture. An example of this is shown in
Fig. 2A: firing rate representations of odors 1 and 2 (insets) do not overlap, but
the mixture evokes activity in intermediate region, which was silent for either of the
components. Sometimes the mixture-specific part of the response can be dominant.
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We have proposed in [2] that this effect underlies the behavioral phenomenon of transs-
witching—when the animal learns to respond to the mixture as a unit, distinct from
its components.

Our simulations show that two odors produce a distinct mixture if: each of the odor
representations has silent units—neurons that get the receptor input, but are inhibited
by their neighbors; the silent units for each odor overlap; the combined input to over-
lapping silent units is large enough. If these conditions are met, then the silent units
do not participate in representation of the components, but, in the mixture, they will be
getting the combined input from the components, and can become active and suppress
their component-specific neighbors.

3.3. Learning binary mixtures

As we mentioned in the previous section, if the mixture-specific part is dominant
in response to the mixture, it will be emphasized during learning, and the resulting
representation can serve as a substrate for transswitching. In contrast, if the pattern,
specific to one of the components is dominant (odor 2 in Fig. 2B), then, during learning,
this dominance is reaffirmed (gray curve in Fig. 2B), and this provides the basis for
another behavioral phenomenon—overshadowing. Overshadowing means that after the
mixture is learned, the response to one of the components in the test trial is reduced
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Fig. 2. Responses to mixtures. (A) Mixture with component-specific and mixture-specific parts. Insets:
f(u(x)) for the components. /; = 1.1 + 0.2x - ﬂ[,0.75,0.75], L=11-02(x+ 1)“[,1.75’,0.25], owo=1,J=2.
(B-D) A mixture with odor 2 dominant. /; = 1.4”[_0_5_0_5], L= I.S(H[_l_s,_o_s] + U[o,5y1_5]), w=1J=2,
Jr =2, dotted lines are u = ay,. (B) Mixture response before (black) and after (gray) learning. Insets: u(x)
for the components, dotted line is u = ay,. (C) Same as B, but odor 2 is pre-trained. (D) Response to odor
I (f(u(x))) in the test trial with different training histories: odor 1 trained (1); mixture trained (2); odor 2
pre-learned and then mixture trained (3). Inset: total network activity in each of the cases.
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(difference between cases 1 and 2 in Fig. 2D). It follows from our simulations that
for two odors to produce overshadowing it is sufficient that: regions of inputs for the
components have little overlap, but they are within the range of inhibitory connection
from each other, and the input for one of the components is stronger.

The next situation we consider is when, in a configuration similar to the case of
overshadowing, odor 2 is first learned alone. In this case the system becomes biased to
odor 2 response pattern. Consequently, in the response pattern for the mixture (black
curve in Fig. 2C) the component specific to odor 2 is even more dominant, i.e. the
mixture response is closer to the response to odor 2 alone. This is further emphasized
by the subsequent learning of the mixture (gray curve in Fig. 2C). We suggest that this
is the basis for the behavioral phenomenon of blocking (the response to odor 1 after
learning the mixture is further reduced by pre-learning of odor 2—difference between
cases 2 and 3 in Fig. 2D).

4. Conclusions

We have introduced a reduced model of the insect antennal lobe with a learning
term that is proportional to the firing rates of the network in the pre-learning steady
state. We show that this type of learning applied to the inhibitory network “increases
the contrast” of the network’s spatial activity pattern by accentuating the differences
in firing rates between neighboring groups of cells. We also show that the response
pattern for a binary mixture can consist of several parts: regions that are specific to
each component, regions that represent both components (overlap) and regions that are
unique to the mixture (mixture-specific). Depending on which of these parts is domi-
nant, it can provide neuronal basis for different behavioral phenomena—transswitching
(mixture-specific part is dominant), overshadowing and blocking (part, specific to one
of the components, is dominant).
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