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Abstract—This paper discusses experimental robot identifica-
tion based on a statistical framework. It presents a new approach
toward the design of optimal robot excitation trajectories, and
formulates the maximum-likelihood estimation of dynamic robot
model parameters. The differences between the new design ap-
proach and the existing approaches lie in the parameterization
of the excitation trajectory and in the optimization criterion. The
excitation trajectory for each joint is a finite Fourier series. This
approach guarantees periodic excitation which is advantageous
because it allows: 1) time-domain data averaging; 2) estimation
of the characteristics of the measurement noise, which is valuable
in case of maximum-likelihood parameter estimation. In addition,
the use of finite Fourier series allows calculation of the joint
velocities and accelerations in an analytic way from the measured
position response, and allows specification of the bandwidth
of the excitation trajectories. The optimization criterion is the
uncertainty on the estimated parameters or a lower bound for it,
instead of the often used condition of the parameter estimation
problem. Simulations show that this criterion yields parame-
ter estimates with smaller uncertainty bounds than trajectories
optimized according to the classical criterion. Experiments on
an industrial robot show that the presented trajectory design
and maximum-likelihood parameter estimation approaches com-
plement each other to make a practicable robot identification
technique which yields accurate robot models.

Index Terms—Identification, optimal excitation, robot dynam-
ics.

I. INTRODUCTION

T HE KEY aspects in competitive manufacturing today
are quality, costs, and time. In this respect, off-line

programming supported by simulation, and accurate motion
control have become necessary. Accurate robot control and
realistic robot simulation require an accurate dynamic robot
model. The design of an advanced robot controller, such as
a computed torque or a computed velocity controller is based
on the robot model, and its performance depends directly on
the model accuracy. Robot simulation without dynamic robot
model cannot provide realistic execution time estimates, e.g.,
in the case of spot welding operations, where the time required
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to stop the robot end effector at the different spot welding
places depends on the robot dynamics.

Experimental robot identification is the only efficient way
to obtain accurate robot models as well as indications on
their accuracy, confidence and validity. The dynamic model
parameters provided by robot manufacturers are insufficient,
inaccurate, or often nonexisting, especially those dealing with
friction and compliance characteristics. Direct measurement
of the physical parameters is unrealistic, because of the com-
plexity of most robots.

Experimental robot identification deals with the problem
of estimating the robot model parameters from the response
measured during a robot experiment. It is well recognized that
reliable, accurate, and efficient robot identification requires
specially designed experiments. When designing an identi-
fication experiment for a robot manipulator, it is essential to
consider whether the excitation is sufficient to provide accurate
and fast parameter estimation in the presence of disturbances
such as measurement noise and actuator disturbances. Most
papers related to experimental robot identification measure
the influence of these disturbances on the parameter estimates
by the condition (number) [1] of the set of equations that
generate the parameters [2]–[4], and use this condition number
as the criterion for the optimization of the excitation. This
criterion is appropriate in a deterministic framework. This pa-
per approaches the excitation-trajectory optimization (and the
parameter estimation) within a stochastic (errors-in-variables)
framework.

Consistentparameter estimation requires accounting for
the statistical properties of the measurement noise.Errors-in-
variables estimation methods consider random disturbances
on both input and output measurements [5]. Several of these
methods exist [6]–[8], though only few of them have been ap-
plied to the estimation of dynamic robot parameters: Xi applies
the total least square (TLS)parameter estimation method to
the identification of the robot inertial parameters [9]. The TLS
estimate is consistent if the covariance matrix of the noise (dis-
turbances) on the elements of the regression matrix describing
the equation errors is proportional to the identity matrix [6].
This is not the case in the application of Xi [9] because of the
structure of the regression matrix. Thegeneralized total least
squares (GTLS)method, which allows correlations between the
noise on the elements of the regression matrix, should be used
instead, provided that all errors are random variables and that
the covariance matrix can be calculated. The nonlinear depen-
dency of the regression matrix on the joint angle measurements
makes the calculation of the required covariance matrix very

1042–296X/97$10.00 1997 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357214712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SWEVERSet al.: OPTIMAL ROBOT EXCITATION AND IDENTIFICATION 731

difficult, if not impossible. Themaximum-likelihood estimator
is a consistent estimator even if the models are nonlinear in
the parameters and measurements, which occurs for example
if complicated nonlinear friction models are included in the
robot model. This method is therefore preferred to the TLS or
the GTLS method.

This paper (1) formulates the maximum-likelihood esti-
mation (MLE) of robot model parameters (Section II), (2)
presents a new approach toward the design of optimal robot
excitation trajectories (Section III), and (3) discusses the ap-
plication of the presented techniques for the experimental
identification of the first three axes of a KUKA IR 361
industrial robot (Section V). Section IV shows, by means of
simulations, that the maximum-likelihood parameter estima-
tor, is (asymptotically) efficient and unbiased, and that the
proposed trajectory optimization criterion yields parameter
estimates with smaller uncertainty bounds than robot excitation
optimized through minimization of the condition number.

II. ESTIMATION OF THE ROBOT PARAMETERS

The dynamic model of an-degree-of-freedom rigid robot is
linear in the friction coefficients and the parameters of the mass
distribution if they are combined in the so called barycentric
parameters [10]. After model reduction [11], the dynamic robot
model can be written as a minimal set of linear equations

(1)

is the -vector of the joint angles. is the -vector of
actuator torques. is the regression matrix,
depending on the joint angles, velocities, and accelerations.

is the number of independent robot parameters.is the
-vector containing the unknown barycentric parameters and

friction coefficients.
Robot identification deals with the problem of estimating

the model parameters [(1)] from the data measured during
a robot excitation experiment. In most cases, the data are
sequences of joint angles and motor currents, from which a
sequence of joint velocities, accelerations, and motor torques
are calculated. Actuator torques are assumed to be proportional
to the actuator current.

In system identification based on a statistical framework, it
is common to assume that the measured joint angles
and actuator torques for 1 to are corrupted by
independent zero-mean Gaussian noise , i.e.,

(2)

The noise-free joint angles and actuator torques
satisfy (1).

Remark 1: Considering a linear relation between the motor
current and torque is a first order approximation, which may
result in modeling errors. Extension of the robot model with
a model describing the relation between the motor torque and
the motor current eliminates these modeling errors, and yields

a robot model to which the trajectory design and maximum-
likelihood estimation methods which are presented below, are
still applicable.

Remark 2: Kinematic errors are deterministic and result in
systematic modeling errors and biased parameter estimates
if the joint angle measurements are not corrected using a
kinematic error-model. It is assumed that these errors are not
significant, or are compensated for. Inclusion of these (sys-
tematic) errors in [(2)] is not appropriate, because the
maximum-likelihood parameter estimation method described
below cannot account for systematic measurement errors since
it assumes random disturbances.

A. Maximum-Likelihood Parameter Estimation

This section formulates the maximum-likelihood estima-
tion of dynamical robot parameters, which is similar to the
maximum-likelihood estimation ofgeometrical robot param-
eters used for kinematic robot calibration and presented in
[12]–[14].

The maximum-likelihood estimate of the parameter
vector is given by the value of which maximizes the
likelihood of the measurement and for

to Since the noise on the different measurements is
independent and Gaussian, this corresponds to minimizing the
following quadratic cost function [12], [13], [15]:

(3)

with the noise on the measured joint angle and
the noise on the measured actuator torque .

and are their corresponding variances. It is assumed that
these variances are constant and known.

The minimization of criterion (3), taking into account (1),
is a nonlinear least squares optimization problem. Its practical
implementation requires that and be calculated
for every estimate of given the measured data and

This is not possible with the present formulation, since
the joint angles and actuator torques can not be
calculated based on the knowledge ofonly. The parameter
vector , i.e., the degrees of freedom of the maximum-
likelihood optimization problem, has to be extended with a
trajectory parameterization: and ).
This parameterization is related to the optimization of the
robot excitation, and is discussed in Section III. It allows
reformulation of the maximum-likelihood criterion (3) as
follows:

(4)

with
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and the th element of

and

(5)

This quadratic criterion has to be minimized in for a
given sequence of measured joint angles and actuator
torques This minimization can be performed using the
Gauss–Newton or the Levenberg–Marquardt method.

The MLE is invariant with respect to parameter vector
scaling and consequently data scaling, consistent, asymptot-
ically unbiased, and asymptotically efficient [7], [15], i.e., the
covariance matrix of the MLE converges asymptotically to

with

(6)

where and represent the measured and exact data,
respectively, represents the MLE of This bound for the
covariance matrix is called theCramér–Rao lower bound.
is called theFisher information matrix. It is a measure of
the amount of information present in the measurements in
relation to the parameters. This means that the uncertainty on
the parameter estimates decreases if there is more information
available from the measurements.

This suggests an appropriate design criterion for robot
excitation trajectories: design a robot excitation trajectory
which “maximizes” the Fisher information matrix. This min-
imizes the theoretical lower bound on the uncertainty of the
parameter estimates, which can be reached asymptotically if
the parameters are estimated with the maximum-likelihood
estimator.

B. Linear Least Squares Parameter Estimation

The maximum-likelihood parameter estimation simplifies
significantly if the measured joint angles are free of noise.
This assumption can be justified by the fact that the noise
level on the joint angle measurements is much smaller than
the noise level on the actuator torque measurements. Under
this assumption, the trajectory parameter vectordisappears
from the minimization criterion (3) and the MLE reduces to the
weighted linear least squares estimatefor which the weighting
function is the reciprocal of the standard deviation of the noise
on the measured actuator torque values [7], [14], [15]:

(7)

with

...

and

... (8)

and is the diagonal covariance matrix of the measured
actuator torques. The covariance matrix of the MLE is
equal to

(9)

If noise on all actuator torque measurements has the same
standard deviation, the maximum-likelihood estimation re-
duces to thestandard linear least squares estimation

(10)

Application of the standard linear least squares method if
the above-mentioned assumption of equal standard deviation is
not satisfied, corresponds to ignoring the statistical properties
of the disturbances, i.e., approaching the parameter estimation
within a deterministic framework rather than the statistical
(errors-in-variables) framework within which the maximum-
likelihood estimation approach is formulated. The condition
number of matrix is a measure for the sensitivity of the
least squares solution (10) to perturbations on the elements
of and provided that the matrix is well equilibrated [1],
[3]. The normalization of matrix , i.e., the division of the
columns of by their norm, takes care of the equilibration and
in addition improves the condition number. Consequently it is
better to estimate the model parameters using the normalized
matrix and rescale the estimated model parameters afterwards.
The condition number of the normalizedmatrix is therefore
an appropriate trajectory design criterion in the deterministic
framework.

III. GENERATION OF OPTIMAL ROBOT

EXCITATION TRAJECTORIES

The generation of an optimal robot excitation trajectory
involves nonlinear optimization with motion constraints (i.e.,
constraints on joint angles, velocities, and accelerations, and
on the robot end effector position in the cartesian space
in order to avoid collision with the environment and with
itself). Several approaches have been presented. They all
use a different trajectory parameterization. These parameters
are the degrees of freedom of the optimization problem.
Armstrong [16] describes an approach in which the degrees
of freedom are the points of a sequence of joint accelerations.
This approach is the most general one, but it results in a
large number of degrees of freedom, such that optimization
is cumbersome. The optimization is done by maximizing the
minimum singular value of the matrix [(8)]. Gautier [2],
[3] optimizes a linear combination of the condition number
and the equilibrium of the set of equations that generate the
parameters, i.e., of matrix The degrees of freedom are a
finite set of joint angles and velocities separated in time. The
actual trajectory is continuous and smooth, and is calculated by
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interpolating a fifth-order polynomial between the optimized
points, assuming zero initial and final acceleration. Only a very
small part, namely the finite set of joint angles and velocities,
of the final trajectory is optimized. As a result, the total smooth
trajectory cannot be guaranteed to satisfy all motion constraints
nor to be optimal with respect to the condition number or
the covariance matrix criterion. Adjusting the trajectory to fit
the motion constraints involves trial-and-error and is hardly
discussed in [2] and [3]. The practicability of this trajectory
design approach is therefore questionable. Otani [4] uses
trajectories which are a combination of a cosine and a ramp,
such that the joint velocities change sinusoidally between zero
and their maximum value. The degrees of freedom are the
frequency and amplitude of the sinusoidal movements for
each joint, together with the initial robot configuration. The
optimization criterion is the minimization of the condition
number of matrix

All existing design approaches are (implicitly) based on a
deterministic framework, since the excitation trajectory design
does not consider uncertainties on the measurements or the
parameter estimates. This section presents a new approach
toward the design of robot excitation trajectories which is
based on a statistical framework. It differs from the existing
methods in two aspects: the parameterization of the trajectory
and the optimization criterion.

A. Parameterization of the Robot Excitation Trajectory

The excitation trajectory for each joint is a finite sum
of harmonic sine and cosine functions, i.e., a finite Fourier
series. The angular position velocity and acceleration

trajectories for joint of a -degrees-of-freedom robot are
written as

(11)

with the fundamental pulsation of the Fourier series.
This Fourier series specifies a periodic function with period

The fundamental pulsation is common for
all joints, in order to preserve the periodicity of the overall
robot excitation. Each Fourier series contains
parameters, that constitute the degrees of freedom for the
optimization problem: and for to which are
the amplitudes of the cosine and sine functions, andwhich
is the offset on the position trajectory. The offset determines
the robot configuration around which excitation will occur.
The parameters for all joints are grouped into vector

This approach guarantees bandlimited periodic trajectories
and therefore allows:

• time-domain data averaging, which improves the signal-
to-noise ratio of the experimental data. This is extremely

important since motor current (torque) measurements are
very noisy.

• estimation of the characteristics of the measurement noise
[7]. This information is valuable in case of maximum-
likelihood parameter estimation. Section V-A discusses
the estimation of the noise variance in detail.

• specification of the bandwidth of the excitation trajecto-
ries, such that excitation of the robot flexibility can be
either completely avoided or intentionally brought about.

• calculation of joint velocities and accelerations from the
measured response in an analytic way. For this purpose,
the measured encoder readings are first approximated,
in a least squares sense, as a finite sum of sine and
cosine functions. This corresponds to taking the discrete
Fourier transform of the encoder readings and selecting
the main spectral lines. The Fourier transform does not
introduce leakage errors because of the periodicity of
the excitation. This frequency-domain approach toward
the differentiation of time series is simple, efficient, and
accurate.

None of the existing robot excitation methods possesses the
above mentioned features with the result that

• large data records, which are necessary in order to obtain
reliable parameter estimates, cannot be compressed and
result in large overdetermined sets of equations which
require large numbers of calculations to be solved;

• the calculation of joint velocities and accelerations re-
quires complex numerical differentiation techniques or
specially designed IIR filters [17]. This approach is less
accurate than the exact frequency-domain approach which
is only possible if the excitation is periodic;

• estimation of the noise characteristics requires extra ex-
periments;

• special precautions have to be taken, for example filtering
of the excitation trajectory, in order to avoid excitation of
the robot flexibility.

B. Optimization of the Parameterized Robot
Excitation Trajectory

The covariance matrix of the estimated model parameters is
the only correct experiment design criterion if the parameter
estimation is approached within a statistical framework [5].

If the joint angle measurements are free of noise, and if
the model parameters are estimated according to maximum-
likelihood criterion (7), the covariance matrix of the estimated
model parameters equals (9). Expression (9) does not depend
on the measurements or the estimated parameters. It depends
on the exact joint angles, velocities and accelerations which are
assumed to correspond to the designed excitation trajectory. As
a result, the optimization of the model parameter covariance
matrix as a function of the trajectory parametersdoes not
require the knowledge of the exact model parameter vector

The covariance matrix of the parameter estimates can not be
calculated if the actuator torque and joint angle measurements
are both corrupted by noise [7]. However, the covariance
matrix approaches the Cramér–Rao lower bound, i.e., the
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inverse of the Fisher information matrix [(6)], asymptotically
if the parameters are estimated with an efficient estimator,
for example a maximum-likelihood estimator. This suggests
taking the Craḿer–Rao lower bound on the covariance matrix
instead of the covariance matrix itself as the robot excitation
design criterion. The Craḿer–Rao lower bound or the Fisher
information matrix [(6)] depend only on parameter vector
(5), since the exact data, i.e., the exact joint angles, velocities
and accelerations and the exact actuator torques, can be
calculated from using (1) and (11). Hence minimization
of the Craḿer–Rao lower bound in requires the knowl-
edge of the exact model parameter vectorwhich however,
is not available. Nevertheless, a consistent estimate of the
Cramér–Rao lower bound can be calculated from a consistent,
i.e., a maximum-likelihood, estimate of

This suggests an iterative procedure in which the
Craḿer–Rao lower bound is minimized as a function of the
trajectory parameters for successive maximum-likelihood
estimates of model parameter vectorThe iterative process
starts with an initial estimate of It results from initial
experimental data obtained from a robot excitation which has
been optimized according to the condition number of matrix

Based on the initial estimate of the Craḿer–Rao lower
bound is minimized as a function of resulting in a new
excitation trajectory. Hence robot excitation and parameter
estimation can be repeated until convergence occurs.

The covariance matrix or its Cramér–Rao lower bound
cannot be optimized in matrix sense. They have to be re-
placed by a representative scalar measure. Ljung [5] presents
some possible scalar measures. with the
covariance matrix or its Cram´er–Rao lower bound, is called
the d-optimality criterion and is the most appealing of these
measures: 1) its minimum is independent of the scaling
of the parameters and 2) it has a physically interpretation:
the determinant of is related to the volume of highest
probability density region for the parameters [15].

The minimization of the uncertainty on the estimated param-
eters or its lower bound is a complex nonlinear optimization
problem with motion constraints. The motion constraints are
limitations on the joint angles, velocities, and accelerations,
and on the robot end effector position in the cartesian space
in order to avoid collision with the environment and with
itself. This last type of constraint involves forward kinematics
calculations. All constraints are implemented as continuous
functions which are negative if the constraint is satisfied and
positive if it is violated.

IV. NUMERICAL EXAMPLE AND SIMULATION OF EXPERIMENT

This section shows, by means of simulations, that:

1) the proposed maximum-likelihood parameter estimator
is (asymptotically) efficient and unbiased;

2) that the excitation trajectory resulting from optimiza-
tion of the determinant of the covariance matrix yields
parameter estimates with smaller variances than robot
excitation optimized through minimization of the condi-
tion number.

Fig. 1. KUKA 361 IR robot.

The simulation uses a model of a KUKA IR 361 robot.
Only the first three axes are considered. Fig. 1 shows the
robot, its base coordinate system and coordinate
systems for the first three links: 1, 2, 3. The
inertial parameters of the links are related to their coordinate
systems.

• are the moments of inertia of link about
the and axis, respectively, 1, 2, 3.

• are the inertia products of link 1, 2, 3.
• is the position of the center of mass of link

in 1, 2, 3.
• is the position of the joint of link in

0, 1, 2.
• : is the mass of link 1, 2, 3.

The joint friction model includes viscous and Coulomb fric-
tion, represented by constant coefficientsand , respec-
tively.

A. The Robot Model

The robot model has been derived according to the modified
Newton–Euler formalism [11]. Columns 2 and 3 of Table I
present the resulting minimal set of parameters after model
reduction and the values that are used for the simulation
experiments, respectively. The minimal robot model is given
by (1) for which is a 3 1 column vector, a 21

1 column vector, and a 3 21 matrix. The exact
actuator torques are calculated according to (1) using the
model parameters presented in Table I and an optimized
excitation trajectory. Section IV-B discusses the trajectory
optimization. Adding independent zero-mean Gaussian noise
to the exact actuator torques simulates torque measurement
noise. The variance of the noise is 25 26 and 10

for the actuator torques of joint 1, 2, and 3, respectively.
These values correspond to experimentally obtained noise
variance values. The joint angles are assumed to be free of
noise. Consequently, the MLE of the model parameters is
given by (7).
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TABLE I
DATA FOR THE SIMULATION EXPERIMENTS

B. Trajectory Optimization

The robot excitation trajectory is optimized according to
two criteria.

c1) The condition number of the normalized ma-
trix [(7)]. This criterion corresponds to the criterion
used in [2], [3], [4], except that matrix is scaled
with the reciprocal values of the standard deviation of
the noise on the actuator torques, and that the resulting
matrix is normalized. The scaling with the reciprocal
values of the standard deviation can be justified by
the fact that maximum-likelihood estimation, which
corresponds to weighted linear least squares in this
case, is used instead of standard linear least squares
estimation.

c2) is the information
matrix related to the maximum-likelihood estimation
of the parameters. It is equal to the inverse of the
covariance matrix of the parameter estimates [(9)].

Both optimization criteria are comparable with respect to
complexity of implementation and efficiency.

The motion constraints correspond to those of the KUKA
IR 361 in our laboratory environment.

• Joint angle limits (rad):
and 1.2.

• Joint velocity limits (rad/s): 1.45.
• Joint acceleration limits (rad/s): 3.
• Limits on the height of the end effector (mm): 800 .
• The robot touches its base if 700 mm and

1800 mm. is the distance of the end effector from
the first robot axis. is the height of the end effector
above the ground. and are obtained from forward
kinematics calculations.

Fig. 2. Robot excitation trajectory optimized according to the criterion based
on the condition number (criterion 1) (solid line: axis 1, dashed line: axis 2,
dash-dotted line: axis 3).

The excitation trajectories are five-term Fourier series, yield-
ing 11 parameters for each joint. The fundamental frequency of
the trajectories is 0.1 Hz. The sampling rate for the simulation
is 150 Hz. The length of the data sequence is 1500 data
samples, i.e., one period of the trajectory.

The constrained optimizations are performed using the
“CONSTR” function of the Optimization Toolbox of Mat-
lab. This function uses a sequential quadratic programming
method. Reference [18] describes the Matlab implementation
of the constrained optimization in detail.

Fig. 2 shows the optimized excitation trajectories according
to the criterion based on the condition number. The iteration
process was stopped after 10 000 iterations, where it reached
a condition number equal to 4.15. The determinant of the
covariance matrix corresponding to this trajectory is equal to
1.76 10 Fig. 3 shows the optimized excitation trajectories
according to the criterion based on the determinant of the
covariance matrix. The iteration process was also stopped after
10 000 iterations, where it reached a determinant equal to 2.36
10 The condition number of the normalized matrix
corresponding to this trajectory is equal to 5.94. These values
show that both criteria result in small condition numbers.
The values for the determinant are different: the minimization
of the determinant criterion produces an excitation trajectory
which results in parameter estimates with smaller uncertainty
bounds.

Columns 3 and 4 of Table II shows the square root of the
diagonal elements of the covariance matrix [(9)] corresponding
to both trajectories and for criterion c1 and c2,
respectively). These elements are the standard deviations of
the maximum-likelihood model parameter estimates. These
columns show that all standard deviations corresponding to
the second criterion are smaller than the standard deviations
corresponding to the first criterion, except for parameters
2, 9, 16, 17, 20, and 21. The overall uncertainty on the
parameter estimates is measured by the determinant of the



736 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 5, OCTOBER 1997

Fig. 3. Robot excitation trajectory optimized according to the criterion based
on the determinant of the covariance matrix (criterion 2) (solid line: axis 1,
dashed line: axis 2, dash–dotted line: axis 3).

covariance matrix, which is a measure for the volume of
highest probability density region for the parameters [15]. The
determinant of the covariance matrices (1.76 10and 2.36
10 show that the overall uncertainty on the parameter
estimates is smaller for trajectory two than for trajectory one.

In order to check the (asymptotic) unbiasedness and effi-
ciency of the maximum-likelihood estimator, the parameter
estimation is simulated 200 times for the trajectory
shown in Fig. 3 and different sequences of zero-mean Gauss-
ian actuator torque noise. This enables the calculation of the
mean value and the standard deviation of the parameter
estimates (columns 2 and 5 of Table II, respectively):

for to

Subscript denotes theth element of the parameter vector.
Subscript denotes the th estimate of the parameter vector.

The parameter estimates are samples of a normal dis-
tribution with mean and standard deviation (see
Section II). is the th diagonal element of the covariance
matrix of the parameter estimates [(9)]. Their mean value
has a normal distribution, with mean and standard deviation

The 68% confidence interval for the mean value is

Column 6 of Table II shows the values Compari-
son of columns 3 (Table I), 2 and 6 (Table II) shows that 16 of
the 21 mean parameter values, i.e., 76%, lie within their
confidence interval. This shows that the MLE ofis unbiased
for a data record of 1500 data samples. Shorter data records,
for example data records of 500 data samples, result in biased
estimates.

TABLE II
RESULTS OF THESIMULATION EXPERIMENTS

The ratios have a distribution with degrees
of freedom. The 90% confidence interval equals

Column 5 of Table II shows the variance estimates
Comparison of columns 4 and 5 shows that 19 of the 21
ratios, i.e., 90%, lie within the confidence interval. This
shows that the MLE of is efficient for a data record of 1500
data samples. Shorter data records, for example data records of
500 data samples, result in parameter estimates for which the
covariance matrix is significantly larger that the Cramér–Rao
bound.

V. EXPERIMENTAL VERIFICATION

This section illustrates the presented robot excitation design
method and the maximum-likelihood estimation method by
means of identification experiments on thefirst three links of
a KUKA IR 361 industrial robot (see Fig. 1). The experimental
identification is based on the minimal model set described in
Section IV. The parameter set is extended with parameters that
measure the offset on the torque measurements and parameters
that model the spring which compensates the gravitation for
the second link [19]. Section V-A describes the experiments
and the data processing. Section V-B describes the estimation
of the parameters and Section V-C describes the validation of
the model.

A. Description of the Experiments and Data Processing

The first three links of the KUKA robot have been identi-
fied for two different excitation trajectories: (1) a trajectory
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Fig. 4. Measured torque, estimated torque, and estimation residue.

which is optimized according to the condition number of
the normalized matrix [(7)], and (2) a trajectory
which is optimized according to [(9)].
Criterion two is based on the assumption that the measured
joint angles are free of noise and that (7) is the MLE. The
experimental results will show that the noise on the joint angle
measurements is not zero but small, and that its influence of
the MLE is negligible. Consequently, the assumption is valid.

Trajectory 1 yields a condition number equal to 47.3 and
a determinant equal to 5.26 10 Trajectory 2 yields a
condition number equal to 111.7 and a determinant equal to
1.85 10 These condition numbers are significantly higher
than the condition numbers obtained in Section IV due to the
parameters modeling the gravity compensation spring.

The models obtained using trajectory 1 and 2 are referred
to as models 1 and 2, respectively.

The motion constraints, the sampling frequency, and the
number of parameters and the fundamental frequency of the
excitation trajectory are the same as for the simulation experi-
ments (see Section IV-B). Data are collected after the transient
response of the robot has died out. The joint angle is measured
by means of an encoder mounted on the motor shaft, and the
actuator torque is measured indirectly by means of the motor
current. Analog eighth-order low-pass Butterworth filters1 with
a bandwidth of 40 Hz protect the sampling of the motor current
signal from aliasing errors. This filtering introduces amplitude
and phase distortions, which are corrected byprewhitening
the sampled motor current sequences [5]. Prewhitening also
removes the coloring and correlation of the measurement noise

1The used filters are manufactured by: GEPA gmbH, 80 707 M¨unich,
Germany

introduced by the analog anti-aliasing filters. The formulated
maximum-likelihood parameter estimation method assumes
uncorrelated measurement noise. The prewhitening filters are
the inverse of the digital equivalents of the analog filters.
The digital equivalents are obtained by means of maximum-
likelihood frequency-domain identification based on measured
frequency response functions of the analog filters [7]. The
inversion of the digital equivalents is based on theextended
bandwidth zero phase error tracking method[18], [20].

Following the data prewhitening, the data sequences are
averaged over 16 periods in order to improve the signal-to-
noise ratio of the measurements. Fig. 4 shows the averaged
motor torque measurements. The variance of the noise on
the averaged joint angle and actuator torque measurements
is estimated by calculating the sample variance and dividing
it by 16

is equal to number of samples per period, i.e., 1500.
Subscript indicates the excitation period ( 1, 2, ,
16. and represent the averaged encoder and
motor torque measurements. Remark that the estimation of
the variance according to the above-mentioned equations and
the improvement of the signal to noise ratio through data
averaging are only possible because of the periodicity of the
excitation. The estimated variances are 1.1223 10rad ,
8.2822 10 rad , 2.9061 10 rad for the position of,
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Fig. 5. Position, measured torque and estimation residue for the validation trajectory.

respectively, axes 1, 2, and 3 and 25.1086 Nm , 25.9428
N m , and 9.8947 Nm for the torque of, respectively, axes
1, 2, and 3.

B. Maximum-Likelihood Parameter Estimation

The optimization of criterion (4) is an iterative procedure
which starts with linear least squares estimates of the trajectory
and model parameters. The weighted least squares estimate of
the trajectory parameters is based on the averaged joint angle
measurements and (11). The linear least squares estimate of
the model parameters is based on the averaged actuator torque
measurements and (10) in which is calculated using the
estimated trajectory parameters instead of the averaged joint
angle measurements. Comparison of the maximum-likelihood
estimate and the initial weighted least squares estimate of
the model and trajectory parameters showed that there is no
difference between both and therefore the influence of the joint
angle noise on the MLE is negligible, which could be expected
from its small mean variance values.

Fig. 4 shows the measured and estimated actuator torques,
and the estimation residue for model 2. The estimation residues
for model 1 are comparable. However, we must bear in
mind that this comparison is not completely justified since
the two trajectories are not the same. The peaks in the
estimation residu occur at low joint angular velocity, which
indicates that the assumed friction model, which includes
viscous and Coulomb friction, is too simple. It can be expected
that including more advanced friction and gear models, as
described, e.g., in [21] and [22], results in smaller estimation
residus. Due to these modeling errors, the mean values of the
squared estimation residue (81.1050 Nm , 88.8175 Nm ,

and 23.1119 Nm for, respectively, axes 1, 2 and 3) are
larger than the noise variances of the measured torques.
Despite modeling errors (stiction, backlash and flexibility in
the transmissions, kinematic errors) the estimated models are
accurate but biased.

As a result of this bias, the diagonal elements of matrix
[(9)], which is the covariance matrix of the

parameter estimates in the assumption that the estimation is
efficient and unbiased, are no longer valid estimates of the
parameter uncertainty. As a result the identified parameters do
not lie within the 3 uncertainty ranges.

C. Model Validation

The accuracy of the obtained parameter estimates can be
verified for a different validation trajectory by comparing the
measured torques and an estimate of these torques based on
the model and the measured position data.

The validation trajectory goes through 20 points randomly
chosen in the workspace of the robot. The robot moves with
maximum acceleration and deceleration between these points,
and comes to full stop in each point. The velocities and
accelerations are calculated by means of specially designed
filters [17].

Fig. 5 shows the position, the measured torque, and the
estimation residu for model 2. The torques are filtered with
a low pass filter with cutoff frequency of 10 Hz. This reduces
the noise on

• the measured torques, which is high due to the inverse
filtering to compensate the analog filter (cf. Section V-A)
and because data averaging is not possible here;
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• the estimated torque due to noise on the calculated
acceleration and velocity data

The mean squared torque estimation residu for the validation
trajectory is 45.0424 Nm , 53.5891 Nm , and 12.0303 Nm
for the axes 1, 2, and 3. Model 1 yields mean squared torque
estimation residus which are approximately 20% larger than
the mentioned values, indicating that model 2 is more accurate
than model 1 with respect to its ability to predict the motor
torques based on joint angular position measurements. The
biasedness of the parameter estimates prevents formulating
statements with respect to the uncertainty on the parameter
of both models.

VI. CONCLUSION

The presented robot excitation design method generates
trajectories which aim at estimating the robot model parame-
ters with minimal uncertainty. In addition, the trajectories are
periodic and have a band-limited frequency contents. These at-
tractive properties simplify the analysis and conditioning of the
measurements, for example the estimation and improvement
of the signal-to-noise ratio.

The formulated maximum-likelihood estimation method
takes into account actuator torque and joint angle measurement
noise, i.e., combines the estimation of exact joint angles,
angular velocities and accelerations, with the estimation of
the robot parameters. Simulations show that the maximum-
likelihood estimation method is asymptotically unbiased and
efficient.

Experiments on an industrial robot show the practicability of
the presented trajectory design and parameter estimation meth-
ods: the obtained robot model is more accurate than the model
obtained using excitation trajectories designed according to the
more traditional condition number criterion.
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