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This paper investigates the input-to-state stable in the mean (ISSiM) property of the switched stochastic nonlinear (SSN) systems
with an improved average dwell time (ADT) method in two cases: (i) all of the constituent subsystems are ISSiM and (ii) parts of
the constituent subsystems are ISSiM. First, an improved ADT method for stability of SSN systems is introduced. Then, based on
that not only a new ISSiM result for SSN systems whose subsystems are ISSiM is presented, but also a new ISSiM result for such
systems in which parts of subsystems are ISSiM is established. In comparison with the existing ones, the main results obtained in
this paper have some advantages. Finally, an illustrative example with numerical simulation is verified the correctness and validity
of the proposed results.

1. Introduction

Switched systems, which provide a unified framework for
mathematical modeling of many physical or man-made
systems, display switching features such as communica-
tion networks, manufacturing, computer synchronization,
auto pilot control design, automotive engine control, traffic
control, and chemical processes. The systems consist of a
collection of indexed differential or difference equations and
a switching signal governing the switching among them. In
the past two decades, increasing attention has been paid
to the analysis and synthesis of switched systems because
of their significance in both theory and applications, and
many significant results have been established for the stability
analysis and control design of such switched systems; see [1–
12] and references therein. Regarding the stability analysis
problem, there are two famous analysis methods, that is,
common Lyapunov function (CLF) method [4, 5], and
multiple Lyapunov functions (MLF) method [9]. Although
the CLFmethod is very useful in stability analysis and control
design, it is difficult to be applied in practice because of the
following reason: for a given switched nonlinear system, there

is no general method to determine whether all subsystems
share a CLF or not, even for the switched linear systems.
About the MLF method, it has been proved in [9] that the
switched linear systems with stable subsystems are globally
asymptotically stable (GAS) if the dwell time (DT) 𝜏𝑑 is
sufficiently large. Therefore, a DT method [9] is established
to analyze the stability analysis and control design of the
switched systems; that is, given a constant 𝜏𝑑 > 0, let 𝑆𝑑[𝜏𝑑]
denote the set of all switching signals with interval between
consecutive switchings being no smaller than 𝜏𝑑, 𝜏𝑑 is called
the “dwell time”. Recently, Ni et al. think it is necessary to
find a minimum dwell time (MDT) 𝜏∗

𝑑
, which ensures that

the switched system stays on each mode for period greater
than or equal to 𝜏∗

𝑑
; the system is GAS and have obtained a

new method called MDT method [13]. However, the above
MDT method is only for the switched linear systems, and it
is impossible to be extended to switched nonlinear systems
concluding from the proofs of the results in [13]. It is well
known that the ADT scheme characterizes a large class of
stable switching signals than dwell time scheme. Thus, the
ADT method is very important not only in practice but also
in theory. Considerable attention has been paid, and many
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efforts have been done to take advantage of the ADTmethod
to investigate the stability analysis and control design both in
switched linear and nonlinear systems. In [14], we obtain an
improved ADT method for the switched nonlinear systems,
which have two advantages over the existing ADT methods
[15–18]: one is that the conditions of the improved ADT
method are less than those; the other one is that the obtained
lower bound of ADT (i.e., 𝜏∗

𝑎
) is also smaller than those

obtained by the above ADT methods.
When a control system is affected by an external input,

it is important to analyze how the external input affects
the system’s behavior. Input-to-state stable (ISS) property
[19] characterizes the continuity of state trajectories on the
initial states and the external inputs, and integral input-to-
state stable (iISS) property is a weaker concept introduced in
[20], and the iISS property has been shown to be a natural
generalization of ISS. Both ISS and iISS have been proven
to be useful in the stability analysis and control design of
nonlinear systems; see [21–25] and the references therein.
Various extensions of the ISS property have been made for
different types of dynamical systems, such as discrete time
systems [21], time-delay systems [22], impulsive system [23],
and switched systems [24–26]. Many works about the ISSiM
of SSN systems have been done, but this problemhas not been
solved completely so far. Thus, investigating the ISSiM of the
SSN systems is not only very important in theory but is also
reasonable in practice.

In this paper, we present several new sufficient conditions
under which a SSN system with an improved ADT switching
signal is ISSiM, also examine the case where parts of the
constituent subsystems are not ISSiM. First, we introduce
an improved ADT method, and by which we present a new
sufficient condition for the SSN system whose subsystems
are ISSiM. Then, we obtain some new ISSiM results for such
switched systems that parts of the constituent subsystems
are ISSiM. Finally, an illustrative example with numerical
simulation is studied using the above obtained results. The
study of example shows that our analysis methods work very
well in analyzing the ISSiM of SSN systems.

The rest of the paper is organized as follows. Section 2
introduces some notations and preliminary results which are
used in this paper. Section 3 presents the main results of this
paper. In Section 4, an illustrative example with numerical
simulation is given to support our new results, which is
followed by the conclusion in Section 5.

2. Notations and Preliminary Results

Throughout this paper, R+ denotes the set of all nonnegative
real numbers; R𝑛 and R𝑛×𝑚 denote 𝑛-dimensional real space
and 𝑛 × 𝑚 dimensional real matrix space, respectively. For
vector 𝑥 ∈ R𝑛, |𝑥| denotes the Euclidean norm; that is,
|𝑥| = (∑

𝑛

𝑖=1
𝑥
2

𝑖
)
1/2. All the vectors are column vectors unless

otherwise specified; the transpose of vectors andmatrices are
denoted by superscript 𝑇; C𝑖 denotes all the 𝑖th continuous
differential functions. A function 𝜑(𝑢) is said to belong to
the class K if 𝜑 ∈ C(R+,R+), 𝜑(0) = 0 and 𝜑(𝑢) is strictly

increasing in 𝑢. K∞ is the subset of K functions that are
unbounded.

Consider the following SSN systems:

𝑑𝑥 = 𝑓𝜎 (𝑥, 𝑢) 𝑑𝑡 + 𝑔𝜎 (𝑥, 𝑢) 𝑑𝑤, 𝑡 ≥ 0, (1)

where 𝑥 ∈ R𝑛 and 𝑢 ∈ L𝑚

∞
are the system state and input,

respectively; L𝑚

∞
denotes the set of all the measurable and

locally essentially bounded input 𝑢 ∈ R𝑚 on [0,∞) with
norm

‖𝑢 (𝑡)‖ = inf
A⊂Ω,𝑃(A)=0

sup {|𝑢 (𝑡, 𝜔)| : 𝜔 ∈ Ω \A} . (2)

𝑤 is an 𝑟-dimensional independent standard Wiener process
(or Brownian motion); 𝜎(⋅) : [0,∞) → I (I is the index
set, maybe infinite) is the switching path (or law, signal) and
is right-hand continuous and piecewise constant on 𝑡. More
specifically, we impose restrictions on the set of admissible
switching signals by defining the set

𝐷𝑇 = {𝜎 (𝑡) : 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝑇} , (3)

where 𝑡𝑘 are the commutation instants and 𝑇 ≥ 0. For
every 𝑖 ∈ I, 𝑓𝑖 : R𝑛

× R𝑚
→ R𝑛, 𝑔𝑖 : R𝑛

× R𝑚
→

R𝑛×𝑟 is continuous, uniformly locally Lipschitz, and satisfies
𝑓𝑖(0, 0) = 𝑔𝑖(0, 0) = 0; initial data 𝑥0 ∈ R𝑛. For an arbitrary
matrix𝐷, we define |𝐷| = [𝜆𝑀(𝐷

𝑇
𝐷)]

1/2, where 𝜆𝑀 denotes
the largest eigenvalue of𝐷𝑇

𝐷.
For any given 𝑉(𝑥) ∈ 𝐶

2
(R𝑛

;R+), associated with the
SSN system (1), we define the differential operatorL to every
𝑖 ∈ I as follows:

L𝑉 =
𝜕𝑉

𝜕𝑥

𝑓𝑖 (𝑥, 𝑢) +

1

2

Tr{𝑔𝑇
𝑖
(𝑥, 𝑢)

𝜕
2
𝑉

𝜕𝑥
2
𝑔𝑖 (𝑥, 𝑢)} . (4)

With the development of this paper, we first present some
definitions.

Definition 1 (see [15]). For any switching signal 𝜎(𝑡) and any
𝑡 ≥ 𝜏, let𝑁𝜎(𝜏, 𝑡) denote the number of switching of 𝜎(𝑡) over
the interval [𝜏, 𝑡) satisfying

𝑁𝜎 (𝜏, 𝑡) ≤ 𝑁0 +

𝑡 − 𝜏

𝜏𝑎

, (5)

where 𝜏𝑎 is called average dwell time and 𝑁0 denotes the
chatter bound.

Definition 2 (see [27]). The SSN system (1) is ISSiM if there
exist 𝛽 ∈ KL and 𝛼, 𝛾 ∈ K∞, such that for any 𝑢 ∈ R𝑚,
𝑥0 ∈ R𝑛, we have

𝐸 [𝛼 (|𝑥 (𝑡)|)] ≤ 𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
, 𝑡) + 𝛾 (‖𝑢‖[0,𝑡)) , ∀𝑡 ≥ 0. (6)

The SSN system (1) is 𝑒𝜆𝑡-weighted ISSiM for some 𝜆 > 0;
if there exist 𝛼1, 𝛼2, 𝛾 ∈ K∞ such that for any 𝑢 ∈ R𝑚, 𝑥0 ∈
R𝑛, we have

𝑒
𝜆𝑡
𝐸 [𝛼1 (|𝑥 (𝑡)|)]

≤ 𝛼2 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) + sup

𝑠∈[0,𝑡)

{𝑒
𝜆𝑠
𝛾 (‖𝑢 (𝑠)‖)} , ∀𝑡 ≥ 0.

(7)
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The SSN system (1) is 𝑒𝜆𝑡-weighted integral ISSiM for
some 𝜆 > 0; if there exist 𝛼1, 𝛼2, 𝛾 ∈ K∞ such that for any
𝑢 ∈ R𝑚, 𝑥0 ∈ R𝑛, we have

𝑒
𝜆𝑡
𝐸 [𝛼1 (|𝑥 (𝑡)|)]

≤ 𝛼2 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) + ∫

𝑡

0

𝑒
𝜆𝜏
𝛾 (‖𝑢 (𝜏)‖) 𝑑𝜏, ∀𝑡 ≥ 0.

(8)

In [28], we have obtained an improved ADT method to
investigate the stability of the SSN system (1) with 𝑢 ≡ 0 in
two cases: one is that all constituent subsystems are globally
exponentially stable in the mean (GASiM) and the other is
that some constituent subsystems are GASiM, while some
of them are not GASiM. We introduce those results in the
following.

Lemma3 (see [28]). For the SSN system (1)with 𝑢 ≡ 0, if there
exist C1 functions 𝑉𝑖 : R𝑛

→ [0,∞), 𝑖 ∈ I, and functions
𝛼, 𝛽 ∈K∞ such that

𝛼 (|𝑥|) ≤ 𝑉𝑖 (𝑥) ≤ 𝛽 (|𝑥|) , ∀𝑖 ∈ I, (9)

L𝑉𝑖 (𝑥)
󵄨
󵄨
󵄨
󵄨(𝑖)
≤ −𝜆𝑖𝑉𝑖 (𝑥) , (10)

where 𝜆𝑖 > 0, 𝑖 ∈ I, then the SSN system (1) with 𝑢 ≡ 0 is
GASiM under any switching signal with ADT:

𝜏𝑎 > 𝜏
∗

𝑎
=

𝑎

𝜆min
, (11)

where

𝑎 = ln 𝜇, 𝜇 = sup
𝑥 ̸= 0

𝛽 (|𝑥 (𝑡)|)

𝛼 (|𝑥 (𝑡)|)

, 𝜆min = min
𝑖∈I

𝜆𝑖. (12)

Remark 4. If 𝜇 = 1, which implies that 𝑉𝑖(𝑥) ≡ 𝑉(𝑥),
𝑖 ∈ I, 𝑉(𝑥) is a CLF for the SSN system (1) with 𝑢 ≡ 0,
and thus this system is GASiM under arbitrary switching.
It is also noted that the ADT method proposed in [15–18]
needs the conditions (9)-(10) and an additional condition as
“𝑉𝑖(𝑥) ≤ 𝜇𝑉𝑗(𝑥), 𝜇 ≥ 1, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I”. Comparing Lemma 3
with the corresponding results in [15, 16], Lemma 3 needs
fewer conditions and thus can be applied to a wider range of
systems.

Moreover, it is noted that the above 𝛼 and 𝛽 in (9) should
have the same order, and which can ensure that 𝜇 exists.
Furthermore, if 𝑉𝑖(𝑥) = 𝑥

𝑇
𝑃𝑖𝑥, 𝑃𝑖 > 0, then inequality (9)

becomes

𝛼𝑖|𝑥|
2
≤ 𝑉𝑖 (𝑥) ≤ 𝛽𝑖|𝑥|

2 (13)

and 𝜇 is given as

𝜇 = max
𝑖∈I

𝛽𝑖

𝛼𝑖

. (14)

For this case, if we use the ADTmethod in [15–18], we can
get

𝜇
󸀠
= max

𝑖,𝑗∈I

𝛽𝑖

𝛼𝑗

. (15)

Obviously, 𝜇 ≤ 𝜇󸀠.

In particular, for the switched linear systems, the lower
bound ADT 𝜏

∗

𝑎
obtained by Lemma 3 is smaller than the

lower bound ADT 𝜏󸀠
𝑎
obtained in [15]; that is,

𝜏
∗

𝑎
= max

𝑖∈I
{

𝜆max (𝑃𝑖)

𝜆min (𝑃𝑖) 𝜆min
} ≤ max

𝑖,𝑗∈I
{

𝜆max (𝑃𝑗)

𝜆min (𝑃𝑖) 𝜆min
} = 𝜏

󸀠

𝑎
,

(16)

where𝑉𝑖(𝑥) = 𝑥
𝑇
𝑃𝑖𝑥with 𝑃𝑖 > 0 is the Lyapunov function for

the 𝑖th subsystem, 𝑖 ∈ I.
This improved ADT method can also be extended to

analyze the stability of the SSN system (1) with 𝑢 ≡ 0

in which both stable and unstable subsystems coexist. For
the switching signal 𝜎(𝑡) and any 𝑡 > 𝜏, we let 𝑇𝑢

(𝜏, 𝑡)

(resp.,𝑇𝑠
(𝜏, 𝑡)) denote the total activation time of the unstable

subsystems (resp., the stable subsystems) on interval [𝜏, 𝑡).
Then, we let I = I𝑠 ∪ I𝑢 such that I𝑠 ∩ I𝑢 = 0 and
introduce a switching law form [16].

(S1) Determine the 𝜎(𝑡) satisfying 𝑇𝑠
(𝑡0, 𝑡)/𝑇

𝑢
(𝑡0, 𝑡) ≥

(𝜆𝑢 + 𝜆
∗
)/(𝜆𝑠 − 𝜆

∗
) holds for any 𝑡 > 𝑡0, where

𝜆
∗
∈ (0, 𝜆𝑠); 𝜆𝑢 and 𝜆𝑠 are given as (19).

Next, we introduce the result in the following.

Lemma 5 (see [28]). Consider the SSN system (1) with 𝑢 ≡ 0;
if there exist C1 functions 𝑉𝑖(𝑥): R𝑛

→ [0,∞), 𝑖 ∈ I, and
functions 𝛼, 𝛽 ∈K∞ such that (9), and

L𝑉𝑖 (𝑥)
󵄨
󵄨
󵄨
󵄨(𝑖)
≤ 𝜆𝑖𝑉𝑖 (𝑥) , 𝑖 ∈ I𝑢,

L𝑉𝑖 (𝑥)
󵄨
󵄨
󵄨
󵄨(𝑖)
≤ −𝜆𝑖𝑉𝑖 (𝑥) , 𝑖 ∈ I𝑠,

(17)

where 𝜆𝑖 > 0, 𝑖 ∈ I, then under the switching law S1, the
switched system (1) with 𝑢 ≡ 0 is GASiM for any switching
signal with ADT:

𝜏𝑎 > 𝜏
∗

𝑎
=

𝑎

𝜆
∗
, (18)

where 𝑎 is given as (12), and𝜆∗ ∈ (0, 𝜆𝑠) is an arbitrarily chosen
number,

𝜆𝑠 = max
𝑖∈I
𝑠

𝜆𝑖, 𝜆𝑢 = max
𝑖∈I
𝑢

𝜆𝑖. (19)

Remark 6. Similar to Remark 4, comparing Lemma 5 with
the corresponding existing results in [15, 16], Lemma 5 needs
fewer conditions, and thus Lemma 5 is really an improvement
of the existing results.

3. Main Results

3.1. All Subsystems Are ISSiM. In this section, we first inves-
tigate the ISSiM stability of the SSN system (1) in which all
constituent subsystems are ISSiM. According to Lemma 3, we
obtain the following result.
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Theorem 7. Considering the SSN system (1), if there exist C1

functions𝑉𝑖 : R𝑛
→ [0,∞), 𝑖 ∈ I, functions 𝛼̄1, 𝛼̄2, ̄𝛾 ∈K∞

and number 𝜆0 > 0 such that 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜉 ∈ R𝑛, 𝜂 ∈ RL,

𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
) ≤ 𝑉𝑖 (𝜉) ≤ 𝛼̄2 (

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
) , (20)

L𝑉𝑖 (𝜉)
󵄨
󵄨
󵄨
󵄨(𝑖)
≤ −𝜆0𝑉𝑖 (𝜉) +

̄𝛾 (
󵄨
󵄨
󵄨
󵄨
𝜂
󵄨
󵄨
󵄨
󵄨
) , 𝑖 ∈ I, (21)

then

(I) if 𝜏𝑎 > 𝜏∗𝑎 = 𝑎/𝜆0, then the SSN system (1) is ISSiM;

(II) if 𝜏𝑎 > 𝜏∗𝑎 = 𝑎/(𝜆0 − 𝜆 − 𝛿), for some 𝜆 ∈ (0, 𝜆0 − 𝛿),
where 𝛿 > 0, then the SSN system (1) is 𝑒𝜆𝑡-weighted
ISSiM;

(III) if 𝜏𝑎 > 𝜏∗𝑎 = 𝑎/(𝜆0 − 𝜆), for some 𝜆 ∈ (0, 𝜆0), then the
SSN system (1) is 𝑒𝜆𝑡-weighted integral ISSiM,

where 𝑎 is given as (12).

Proof. For notational brevity, define 𝐺
𝑏

𝑎
(𝜆) =

∫

𝑏

𝑎
𝑒
𝜆𝑠
̄𝛾(‖𝑢(𝑠)‖)𝑑𝑠. Let 𝑇 > 0 be an arbitrary time. Denote by

𝑡1, . . . , 𝑡𝑁
𝜎
(0,𝑇) the switching times on the interval (0, 𝑇) (by

convention, 𝑡0 := 0, 𝑡𝑁
𝜎
(0,𝑇) := 𝑇). Consider the piecewise

continuously differentiable function

𝑊(𝑠) := 𝑒
𝜆
0
𝑠
𝑉𝜎(𝑠) (𝑥 (𝑠)) .

(22)

On each interval [𝑡𝑖, 𝑡𝑖+1), the switching signal is constant.
Consider

𝑊(𝑡) = 𝑊(𝑡𝑖) + ∫

𝑡

𝑡
𝑖

𝑒
𝜆
0
𝑠
𝜕𝑉𝜎(𝑡

𝑖
)

𝜕𝑥

𝑔𝜎(𝑠) (𝑠, 𝑥 (𝑠)) 𝑑𝑤 (𝑠)

+ ∫

𝑡

𝑡
𝑖

𝑒
𝜆
0
𝑠
(L𝑉𝜎(𝑠) (𝑥 (𝑠)) + 𝜆0𝑉𝜎(𝑠) (𝑥 (𝑠))) 𝑑𝑠.

(23)

If 𝑡 is replaced by 𝑡𝑟 = min{𝑡, 𝜏𝑟} in the above, where
𝜏𝑟 = inf{𝑠 ≥ 0 : |𝑥(𝑠)| ≥ 𝑟}, then the stochastic integral
(first integral) in (23) defines a martingale (with 𝑟 fixed
and 𝑡 varying), not just a local martingale. Thus, on taking
expectations in (23) with 𝑡𝑟 in place of 𝑡 and then using (21)
on the right, we get

𝐸𝑊(𝑡𝑟) ≤ 𝐸𝑊(𝑡𝑖) + 𝐸 [∫

𝑡
𝑟

𝑡
𝑖

𝑒
𝜆
0
𝑠
̄𝛾 (‖𝑢 (𝑠)‖) 𝑑𝑠] . (24)

On letting 𝑟 → ∞ and using Fatou’s Lemma on the left and
monotone convergence on the right, we conclude

𝐸𝑊(𝑡) ≤ 𝐸𝑊(𝑡𝑖) + ∫

𝑡

𝑡
𝑖

𝑒
𝜆
0
𝑠
̄𝛾 (‖𝑢 (𝑠)‖) 𝑑𝑠. (25)

According to inequality (20), we obtain

𝐸 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
)

≤ 𝐸𝑉𝜎(𝑡
𝑘
) (𝑥𝑇) ≤ 𝑒

−𝜆
0
(𝑇−𝑡
𝑘
)
𝐸𝑉𝜎(𝑡

𝑘
) (𝑥𝑘)

+ 𝑒
−𝜆
0
𝑇
𝐺
𝑇

𝑡
𝑘

(𝜆0)

≤ 𝑒
−𝜆
0
(𝑇−𝑡
𝑘
)
𝐸 𝛼̄2 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑘

󵄨
󵄨
󵄨
󵄨
) + 𝑒

−𝜆
0
𝑇
𝐺
𝑇

𝑡
𝑘

(𝜆0)

= 𝑒
−𝜆
0
(𝑇−𝑡
𝑘
)𝐸 𝛼̄2 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑘

󵄨
󵄨
󵄨
󵄨
)

𝐸 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑘

󵄨
󵄨
󵄨
󵄨
)

𝐸𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑘

󵄨
󵄨
󵄨
󵄨
) + 𝑒

−𝜆
0
𝑇
𝐺
𝑇

𝑡
𝑘

(𝜆0)

≤ 𝜇𝑒
−𝜆
0
(𝑇−𝑡
𝑘
)
𝐸 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑘

󵄨
󵄨
󵄨
󵄨
) + 𝑒

−𝜆
0
𝑇
𝐺
𝑇

𝑡
𝑘

(𝜆0)

≤ 𝜇
2
𝑒
−𝜆
0
(𝑇−𝑡
𝑘−1

)
𝐸 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑘−1

󵄨
󵄨
󵄨
󵄨
) + 𝜇𝑒

−𝜆
0
𝑇
𝐺
𝑡
𝑘

𝑡
𝑘−1

(𝜆0)

+ 𝑒
−𝜆
0
𝑇
𝐺
𝑇

𝑡
𝑘

(𝜆0)

...

≤ 𝜇
𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)+1

𝑒
−𝜆
0
(𝑇−𝑡
0
)
𝐸 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
)

+ 𝑒
−𝜆
0
𝑇

𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)

∑

𝑗=0

𝜇
𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)−𝑗

𝐺

𝑡
𝑗+1

𝑡
𝑗

(𝜆0)

= 𝜇𝑒
𝑎𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)−𝜆

0
(𝑇−𝑡
0
)
𝐸 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
)

+

𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)

∑

𝑗=0

𝜇
𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)−𝑗

𝐺

𝑡
𝑗+1

𝑡
𝑗

(𝜆0)

≤ 𝜇
1+𝑁
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
)(𝑇−𝑡

0
)
𝐸 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
)

+

𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)

∑

𝑗=0

𝜇
𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)−𝑗

𝐺

𝑡
𝑗+1

𝑡
𝑗

(𝜆0) .

(26)

For every 𝛿 ∈ [0, 𝜆0−𝜆−𝑎/𝜏
∗

𝑎
], that is, 𝜏∗

𝑎
≥ 𝑎/(𝜆0−𝜆−𝛿),

where 𝜆 > 0,

𝐺

𝑡
𝑗+1

𝑡
𝑗

(𝜆0) ≤ 𝑒
(𝜆
0
−𝜆−𝛿)𝑡

𝑘+1

𝐺

𝑡
𝑗+1

𝑡
𝑗

(𝜆 + 𝛿) ,

𝜇
𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)−𝑗

≤ 𝜇
1+𝑁
0

𝑒
(𝜆
0
−𝜆−𝛿)(𝑇−𝑡

𝑗+1
)
.

(27)

Therefore,

𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)

∑

𝑗=0

𝜇
𝑁
𝜎(𝑡)

(𝑡
0
,𝑇)−𝑗

𝐺

𝑡
𝑗+1

𝑡
𝑗

(𝜆0)

≤ 𝜇
1+𝑁
0

𝑒
(𝜆
0
−𝜆−𝛿)𝑇

𝐺
𝑇

𝑡
0

(𝜆 + 𝛿) .

(28)

Substituting inequality (28) to inequality (26), we get

𝐸 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) ≤ 𝜇

1+𝑁
0

[𝑒
(𝑎/𝜏
𝑎
−𝜆
0
)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
)

+ 𝑒
−(𝜆+𝛿)𝑇

𝐺
𝑇

𝑡
0

(𝜆 + 𝛿)] ,

(29)



Mathematical Problems in Engineering 5

that is,

𝑒
(𝜆+𝛿)𝑇

𝐸 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) ≤ 𝜇

1+𝑁
0

[𝑒
𝜆+𝛿𝑡
0

𝑒
((𝑎/𝜏
𝑎
)−𝜆
0
+𝜆+𝛿)(𝑇−𝑡

0
)

× 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) + 𝐺

𝑇

𝑡
0

(𝜆 + 𝛿)]

= 𝐶 [𝑒
(𝜆+𝛿)𝑡

0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
+𝜆+𝛿)(𝑇−𝑡

0
)

× 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) + 𝐺

𝑇

𝑡
0

(𝜆 + 𝛿)] ,

(30)

where 𝐶 = 𝜇1+𝑁0 .
For inequality (30), if 𝛿 = 0, then

𝑒
𝜆𝑇
𝐸 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
)

≤ 𝐶𝑒
𝜆𝑡
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
+𝜆)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) + 𝐶𝐺

𝑇

𝑡
0

(𝜆)

= 𝐶𝑒
𝜆𝑡
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
+𝜆)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
)

+ 𝐶∫

𝑇

𝑡
0

𝑒
𝜆𝑠
̄𝛾 (|𝑢 (𝑠)|) 𝑑𝑠.

(31)

For inequality (31), if 𝜏𝑎 > 𝑎/(𝜆0 − 𝜆), we have property
(8) with

𝛼1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) := 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) ,

𝛼2 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) := 𝐶𝑒

𝜆𝑡
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
+𝜆)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) .

(32)

Note that

𝐺
𝑇

𝑡
0

(𝜆 + 𝛿) ≤

1

𝜆 + 𝛿 −
̄
𝜆

𝑒
(𝜆+𝛿−𝜆̄)𝑇 sup

𝜏∈[0,𝑇)

{𝑒
𝜆̄𝜏
̄𝛾 (|𝑢 (𝜏)|)} .

(33)

Substituting inequality (33) to inequality (30), we obtain

𝑒
(𝜆+𝛿)𝑇

𝐸 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
)

≤ 𝐶𝑒
(𝜆+𝛿)𝑡

0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
+𝜆+𝛿)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
)

+ 𝐶

1

𝜆 + 𝛿 −
̄
𝜆

𝑒
(𝜆+𝛿−𝜆̄)𝑇 sup

𝜏∈[0,𝑇)

{𝑒
𝜆̄𝜏
̄𝛾 (|𝑢 (𝜏)|)} .

(34)

For inequality (34), if 𝛿 ̸= 0, ̄𝜆 = 𝜆, we get

𝑒
𝜆𝑇
𝐸 𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
)

≤ 𝐶𝑒
𝜆𝑡
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
+𝜆+𝛿)(𝑇−𝑡

0
)

× 𝐸 𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) + 𝐶

1

𝛿

𝑒
𝛿𝑇 sup

𝜏∈[0,𝑇)

{𝑒
𝜆̄𝜏
̄𝛾 (|𝑢 (𝜏)|)} .

(35)

For inequality (35), if 𝜏𝑎 > 𝑎/(𝜆0−𝜆−𝛿), we have property
(7) with

𝛼1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) := 𝑒

−𝛿𝑇 𝛿

𝐶

𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) ,

𝛼2 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) := 𝑒

−𝛿𝑇
𝛿𝑒

𝜆𝑡
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
+𝜆+𝛿)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
) .

(36)

For inequality (34), if ̄
𝜆 = 𝛿 = 0, we obtain that

𝛼̄1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) ≤ 𝐶𝑒

𝜆𝑡
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
)

+ 𝐶

1

𝜆

sup
𝜏∈[0,𝑇)

{ ̄𝛾 (|𝑢 (𝜏)|)} .

(37)

For inequality (37), if 𝜏𝑎 > 𝑎/(𝜆0 − 𝜆), we have property
(6) with

𝛼1 (
󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) := 𝐶𝑒

𝜆𝑡
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
0
)(𝑇−𝑡

0
)
𝛼̄1 (

󵄨
󵄨
󵄨
󵄨
𝑥𝑇

󵄨
󵄨
󵄨
󵄨
) , 𝛾 := 𝐶

1

𝜆

̄𝛾.

(38)

Remark 8. It should be pointed out that the result proposed in
[25] needs conditions (20)-(21) and an additional condition
as “𝑉𝑖(𝑥) ≤ 𝜇𝑉𝑗(𝑥), 𝜇 ≥ 1, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I”. Comparing
Theorem 7 with the existing result in [25], Theorem 7 needs
fewer conditions and thus is an improvement of the existing
result.

3.2. Some Subsystems Are Not ISSiM. In the next, we consider
the SSN system (1) in which both ISSiM and not ISSiM
subsystems coexist. Similarly, for the switching signal 𝜎(𝑡)
and any 𝑡 > 𝜏, we let 𝑇𝑢

(𝜏, 𝑡) (resp., 𝑇𝑠
(𝜏, 𝑡)) denote the total

activation time of the not ISSiM subsystems (resp., the ISSiM
subsystems) on interval [𝜏, 𝑡).

According to Lemma 5, we give the following result.

Theorem 9. Considering the SSN system (1), if there exist C1

functions 𝑉𝑖 : R𝑛
→ [0,∞), 𝑖 ∈ I, and functions 𝛼1, 𝛼2,

𝜑1 ∈ K∞, constants 𝜆𝑠, 𝜆𝑢 > 0 such that (20) for all 𝑥 ∈ R𝑛,
and furthermore, the following inequalities hold:

|𝑥| ≥ 𝜑1 (𝑢)

󳨐⇒ {

L𝑉𝑖 (𝑥)
󵄨
󵄨
󵄨
󵄨(𝑖)
≤ 𝜆𝑢𝑉𝑖 (𝑥) , 𝑖 ∈ I𝑢,

L𝑉𝑖 (𝑥)
󵄨
󵄨
󵄨
󵄨(𝑖)
≤ −𝜆𝑠𝑉𝑖 (𝑥) , 𝑖 ∈ I𝑠.

(39)

Then, under the switching law S1, the SSN system (1) is ISSiM
for any switching signal with ADT:

𝜏𝑎 > 𝜏
∗

𝑎
=

𝑎

𝜆
∗
, (40)

where 𝑎 is given as (12), and𝜆∗ ∈ (0, 𝜆𝑠) is an arbitrarily chosen
number; 𝜆𝑠 and 𝜆𝑢 are given as (19).

Proof. Let 𝑡0 ≥ 0 be arbitrary. For 𝑡 ≥ 𝑡0, define ](𝑡) :=
𝜑1(‖𝑢‖[𝑡

0
,𝑡]) and 𝜉(𝑡) := 𝛼

−1

1
(𝜇

𝑁
0
𝛼1(](𝑡))), where 𝑁0 comes

from (5). Furthermore, define the balls around the origin
𝐵](𝑡) := {𝑥 : |𝑥| ≤ ](𝑡)}, 𝐵𝜉(𝑡) := {𝑥 : |𝑥| ≤ 𝜉(𝑡)}. Note
that ] and thus also 𝜉 are nondecreasing functions of time,
and thus the balls 𝐵] and 𝐵𝜉 have nondecreasing volume.

If |𝑥(𝑡)| ≥ ](𝑡) ≥ 𝜑1(‖𝑢(𝑡)‖) during some time interval
𝑡 ∈ [𝑡

󸀠
, 𝑡

󸀠󸀠
], then 𝑥(𝑡) can be bounded above by

𝐸 |𝑥 (𝑡)| ≤ 𝐸𝛼
−1

1
(𝜇

𝑁
0

𝑒
−𝜆
∗

(𝑡−𝑡
󸀠

)
𝛼1 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
))

:= 𝛽 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
, 𝑡 − 𝑡

󸀠
)

(41)

for some 𝜆∗ ∈ (0, 𝜆𝑠).
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In fact, on any interval [𝜏𝑖, 𝜏𝑖+1) ∩ [𝑡
󸀠
, 𝑡

󸀠󸀠
], according to

(39), we arrive at

𝐸𝛼1 (|𝑥 (𝑡)|) ≤ 𝑒
𝑎𝑁
𝜎
(𝑡
󸀠

,𝑡)+𝜆
𝑢
𝑇
𝑢

(𝑡
󸀠

,𝑡)−𝜆
𝑠
𝑇
𝑠

(𝑡
󸀠

,𝑡)
𝐸𝛼1 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
) .

(42)

Then, according to (5) and the switching law S1, we
conclude from (42) that

𝐸𝛼1 (|𝑥 (𝑡)|) ≤ 𝑒
𝑎𝑁
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
∗

)(𝑡−𝑡
󸀠

)
𝐸𝛼1 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

= 𝜇
𝑁
0

𝑒
(𝑎/𝜏
𝑎
−𝜆
∗

)(𝑡−𝑡
󸀠

)
𝐸𝛼1 (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
) .

(43)

Thus, if 𝜏𝑎 > 𝜏
∗

𝑎
= 𝑎/𝜆

∗, we can get (41).
Denote the first time when 𝑥(𝑡) ∈ 𝐵](𝑡) by ̆𝑡1; that is, ̆𝑡1 :=

inf{𝑡 ≥ 𝑡0 : |𝑥(𝑡)| ≤ ](𝑡)}. For 𝑡0 ≤ 𝑡 ≤ ̆𝑡1, according to (41),
we obtain

𝐸 |𝑥 (𝑡)| ≤ 𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
, 𝑡 − 𝑡0) . (44)

If ̆𝑡1 = ∞, which only can happen if ](𝑡) ≡ 0, that is, the
input 𝑢 ≡ 0 for all times, then the SSN system (1) is ISSiM.
Hence in the following we assume that ̆𝑡1 < ∞.

For 𝑡 > ̆𝑡1, 𝑥(𝑡) can be bounded above in terms of ](𝑡).
Namely, let 𝑡̂1 := inf{𝑡 > ̆𝑡1 : |𝑥(𝑡)| > ](𝑡)}. If this is an empty
set, let 𝑡̂1 := ∞. Clearly, for all 𝑡 ∈ [ ̆𝑡1, ̆𝑡2), it holds that |𝑥(𝑡)| ≤
](𝑡) ≤ 𝜉(𝑡). For the case that 𝑡̂1 < ∞, due to continuity of
𝑥(⋅) and monotonicity for ](𝑡), it holds that |𝑥(𝑡̂1)| = ](𝑡̂1).
Furthermore, for all 𝜏 > 𝑡̂1, if |𝑥(𝜏)| > ](𝜏), define

𝑡̂ := sup {𝑡 < 𝜏 : |𝑥 (𝑡)| ≤ ] (𝑡)} (45)

which can be interpreted as the previous exit time of the
trajectory 𝑥(𝑡) from the ball 𝐵]. Again, due to the same
argument as above, one obtains that 𝐸|𝑥(𝑡̂1)| = ](𝑡̂1). But
then, according to (41), it holds that

𝐸 |𝑥 (𝜏)| ≤ 𝛽 (] (𝑡̂) , 𝜏 − 𝑡̂) = 𝐸𝛼−1
1
(𝜇

𝑁
0

𝑒
−𝜆
∗

(𝜏−𝑡̂)
𝛼1 (] (𝑡̂)))

≤ 𝐸𝛼
−1

1
𝜇
𝑁
0

𝐸𝛼1 (] (𝑡̂)) = 𝜉 (𝑡̂) ≤ 𝜉 (𝜏) .
(46)

Summarizing the above, for all 𝑡 ≥ ̆𝑡1, it holds that

𝐸 |𝑥 (𝑡)| ≤ 𝜉 (𝑡) = 𝐸𝛼
−1

1
(𝜇

𝑁
0

𝛼1 (𝜑1 (‖𝑢‖[𝑡
0
,𝑡])))

≤ 𝐸𝛼
−1

1
𝜇
𝑁
0

𝛼1 (2𝜑1 (‖𝑢‖[𝑡
0
,𝑡])) := 𝛾1 (‖𝑢‖[𝑡

0
,𝑡]) .

(47)

Combining (44) and (47), we obtain that

𝐸 |𝑥 (𝑡)| ≤ 𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑥0

󵄨
󵄨
󵄨
󵄨
, 𝑡 − 𝑡0) + 𝛾1 (‖𝑢‖[𝑡

0
,𝑡]) (48)

for all 𝑡 ≥ 𝑡0, which means the SSN system (1) is ISSiM and
also completes the proof.

4. An Illustrative Example

In this section, we give an illustrative example to show how to
use the obtained results to analyze the ISSiM stability of SSN
systems.

Example 1. Consider the following SSN system:

𝑑𝑥 = 𝑓𝑖 (𝑥, 𝑢) 𝑑𝑡 + 𝑔𝑖 (𝑥) 𝑑𝑤 (𝑡) , (49)

where 𝑖 ∈ I = {1, 2}, 𝑤 is an 𝑟-dimensional standard
Brownian motion, and

𝑓1 (𝑥, 𝑢) = (
−𝑥1 − 𝑥1𝑥

2

2
− 𝑥1sin

2
𝑡

𝑥
2

1
𝑥2 − 3𝑥2 − 𝑥2cos

2
𝑡

) ,

𝑓2 (𝑥, 𝑢) = (
2𝑥1 + 2𝑥2

𝑥1 + 3𝑥2

) ,

𝑔1 (𝑥) = (

1

2

𝑥1 −

1

2

𝑥2

−

1

2

𝑥1 +

1

2

𝑥2

),

𝑔2 (𝑥) = (

−

1

2

𝑥1

√3

2

𝑥2

).

(50)

It is easy to know that 𝑉(𝑥) = 𝑥
𝑇
𝑥 is a CLF for the system

(49), and

L𝑉1 (𝑥)
󵄨
󵄨
󵄨
󵄨(1)

=

𝜕𝑉

𝜕𝑥

𝑓𝑖 (𝑥) +

1

2

Tr{𝑔𝑇
𝑖
(𝑥)

𝜕
2
𝑉

𝜕𝑥
2
𝑔𝑖 (𝑥)}

= −2𝑥
2

1
− 6𝑥

2

2
≤ −2𝑉1 (𝑥) ,

L𝑉2 (𝑥)
󵄨
󵄨
󵄨
󵄨(2)

=

𝜕𝑉

𝜕𝑥

𝑓𝑖 (𝑥) +

1

2

Tr{𝑔𝑇
𝑖
(𝑥)

𝜕
2
𝑉

𝜕𝑥
2
𝑔𝑖 (𝑥)}

= 2𝑥
2

1
+ 4𝑥1𝑥2 + 3𝑥

2

2
≤ 5𝑉2 (𝑥) .

(51)

According to the above results, we obtain that 𝜆𝑢 = 5, 𝜆𝑠 = 2

and 𝑎 = 0. Therefore, the lower bound ADT 𝜏∗
𝑎
= 0; that is,

the ADT can be arbitrary. Next, we choose 𝜆∗ = 0.1; then the
switching law S1 will require

𝑇
𝑠
(𝑡0, 𝑡)

𝑇
𝑢
(𝑡0, 𝑡)

≥

𝜆𝑢 + 𝜆
∗

𝜆𝑠 − 𝜆
∗
=

5.1

1.9

≈ 2.68. (52)

According to Theorem 9, the switched system (49) is ISSiM
under the above switching law S1.

To illustrate the correctness of the above conclusion, we
carry out some simulation results with the following choices.
Initial condition [𝑥1(0), 𝑥2(0)] = [−2.5, 3], and switching
path

𝜎 (𝑡)

= {

2, 𝑡 ∈ [𝑡2𝑚, 𝑡2𝑚+1) , 𝑡2𝑚+1 − 𝑡2𝑚 = 0.2 ∗ rand,
1, 𝑡 ∈ [𝑡2𝑚+1, 𝑡2𝑚+2) , 𝑡2𝑚+2 − 𝑡2𝑚+1 = 0.6 + 0.1 ∗ rand,

(53)
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Figure 1: The state’s response.

where 𝑚 = 0, 1, 2, . . . , rand ∈ (0, 1) is a stochastic number.
The simulation result is given in Figure 1, which is the
response of the state under the above path 𝜎(𝑡).

It can be observed from Figure 1 that the trajectory
𝑥(𝑡) converges to origin quickly. The simulation shows that
Theorem 9 is very effective in analyzing the stability for the
SSN systems with both unstable and ISSiM subsystems.

5. Conclusions

In this paper, we have investigated the ISSiM property of a
class of SSN systems under ADT switching signals in two
cases: (i) all of the constituent subsystems are ISSiM and (ii)
parts of constituent subsystems are ISSiM and then proposed
several new results about ISSiM of such systems. Firstly, a
new ISSiM result for the SSN systems whose constituent
subsystems are ISSiM has been obtained by applying an
improved ADT method. Secondly, a new ISSiM result for
the SSN system in which parts of subsystems are ISSiM has
been given. In comparison with the existing results, the main
results obtained in this paper have some advantages in some
cases. Finally, an illustrative example with simulation has
verified the validity and correctness of our results.
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