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ABSTRACT 

Many-core processors can now be used as an alternative hardware platform for 

implementing embedded media devices. However, a lack of generic tools for 

application development may hamper their rate of adoption by industry. This work 

has contributed towards the solution by providing an abstraction from the many 

design constraints facing application developers. An energy model has been 

developed, making it possible to optimize energy usage within a target budget, while 
still meeting the set latency constraints. A means of returning feedback has also been 

presented. Subsequent work will concentrate on determining how the resultant tool 

can be employed in DSP application modeling and analysis. 

Keywords: Many-core, Energy, Latency, Generic, Hardware, Ranking. 

INTRODUCTION 

Many-cores architectures are very important because they offer a useful alternative to the 
traditional hardware for implementing Digital Signal Processing (DSP) applications based on 

several tradeoffs. The tradeoffs include system flexibility, shorter time to market constraints, 
length of device life cycles, hardware capacity, design productivity, energy consumption and 

cost of implementation. Traditional hardware solutions like ASICS and FPGAs score very 
well in terms of capacity and energy consumption. However, they lag far behind 

programmable many-core solutions in terms of system flexibility, time to market, longer 
device life cycles and cost of implementation. These advantages are in part due to the nature 

of the hardware. However, improvements can be made in developer productivity.  Improving 

the productivity of developers will result in a reduction in the time it takes to get the products 

to the market. This is a very important quality in today’s fast moving consumer devices 

market. 

For Many-core architectures, however, the increase in the number of cores has resulted in an 
increase in the complexity of developing applications. It is estimated that by the year 2022, 

the average chip will have 80 times the number of cores in a 2007 chip [1]. This necessitates 
an improvement in developer tools in order to have a more productive environment. A lot of 

effort has already been done in this area. However, the tools that are available are mostly 
proprietary in nature. This makes it difficult for product developers to carry out cross 

platform comparisons at the earliest stage of product development. Without such 

comparisons, there is difficulty in determining which commercially available hardware will 

best meet the required Quality of Service (QOS). 

 Previous work has concentrated on the functionality of the application with far less attention 

being paid to the non-functional requirements.  Nevertheless, where possible, performance is 
the target. In this work, we are not only interested in the performance properties of an 
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application, but argue that energy, another non – functional property, should be targeted by 

the system. The reason for this is not farfetched. Energy has always been a mainstream issue 

when discussing embedded systems. However, domains well outside the embedded systems 

industry now regard energy efficiency as a main stream quality issue. Almost all the recent 
hardware developments incorporate extensive energy saving features that can only be 

maximally utilized when targeted by the compiler. 

This research work has focused on developing models and methods for energy estimation on 

generic tiled many-core processors. Generic in the sense that once a processor meets certain 

pre-specified conditions, its machine parameters can be extracted and used to generate 

estimates for DSP tasks that execute on it. A rank based method can then be used to rank the 

distinct mappings of an application to the processor on a scale based on their ability to meet 

with pre-specified timing constraints, and their relative estimated energy consumption levels.  

We focus on using synchronous data flow (SDF) [2] models to describe the DSP application, 

given the fact that SDFs are very suitable for modeling signal flows. The fact that the 

schedule is determined in advance of the run time environment, limits the cost of run-time 

supervision. This work aims to model the dynamic nature of the processing that is involved, 

providing a means of studying the run time behavior of the application. 

In this paper, we discuss the set of models that allow the tool to carry out a dynamic energy 

analysis of the application. Also included is a graph based intermediate representation (IR), 

which maps the modeled application to the target machine, and an abstract interpreter, that is 

used to provide feedback to the application developer (could also provide a feedback to an 

auto tuner). It is important to note that the tool does not aim at providing a cycle accurate 

simulation of the processing; rather its function is to guide the programmer on how to 
optimize the mapping in order to minimize resource use and still meet up with the end-to-end 

latency requirement of the application.  

Sheduling techniques for dataflow graphs on parallel processing platforms has been 

extensively researched in the last 30 years. Effort has either concentrated on mapping task 

graphs to recourses or maximizing throughput by iteratively adjusting the schedule or both.  

Bokhari [3] developed an algorithm for mapping dataflow task graphs onto a linear array of 
processors while Sih and Lee [4] proposed an algorithm which is a single step heuristic that 

takes inter – processor communication overhead into account during clustering. This 

algorithm aimed at producing a feedback for iteratively tuning the schedule.  

On the other hand, Banerjee et al. [5] developed a throughput maximizing scheme using a 
two step method in which the first step used an iterative scheduling algorithm to determine 

the tradeoffs between clustering and parallelism. In the next step, the granularity was 
determined through an iterative refinement technique.  

Others have approached the problem by attempting to find a schedule that satisfies a timing 

or throughput constraint. Examples can be seen in the work of Choudhry et al. [6] and Aiken 

and Nicolau [7]. Both have decomposed the graph into serial and parallel sections and found 

optimal assignment of processors to these sections so that the response time is minimal for a 

given throughput constraint. 

Similar to this work, Bengtsson and Svensson [8] [9] have used a two step strategy, which are 

independent of each other. The first step consists of clustering and the second step consists of 

scheduling the clusters on the processor. However, while they clearly target performance as a 

means of tuning the schedule, we have increased the scope of their work by focusing on 

energy as the basis for iteratively improving the schedule once a set timing constraint has 
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been met. 

In this paper, we present the models for mapping an application to a target processor, and the 

models for carrying out the analysis of this application. These models are presented in section 

2. Section 3 presents the functions that compute the cost of implementing tasks on a target 

processor based on the parameters of the machine. In section 4, the graph based intermediate 

representation, and the feedback mechanism is presented. Section 5 concludes the paper. 

IMPLEMENTATION 

In this section we present the model set which consists of an application model which 

describes the processing requirements of the application, an energy model which computes 

the energy consumed in carrying out the task based on the particular many-core machine and 

a machine model that describes the memory and computational resources of the many-core 

processor. However, we first give brief notes on the target processor. 

The Target Processor 

The target processor will be an array – structured multiple instruction, multiple data (MIMD) 

type machine with homogeneous tightly coupled cores. We assume that it is implemented on 

a Complementary Metal Oxide Semiconductor (CMOS) circuit. We also assume that this 

processor is capable of performing dynamic speed and voltage scaling (DVS) on a per – core 

basis. This means that the cores will be modeled with a local clock that is timed with 

reference to the global system clock. Also, we only consider a distributed memory 

architecture where all the cores are in control of their own local memory space. This allows 
them to take advantage of the locality of data that is typical with the data flow domain. 

The network of cores is implemented on a mesh structure which provides a decentralized but 

transparent communication scheme. The structure should implement message passing and 

should be warm hole routed. This makes it easier to predict communication timing and notice 

its effects on end to end latency constraints.  

The Model Set 

The resources of an abstract cored architecture can be described using two models; a Machine 

model and an Energy model. The Machine model describes the attributes of the machine in 

terms of what the machine can offer an application. On the other hand, the energy model 

describes the power resources of the machine. Both models make use of a distinct set of 
functions when calculating the cost of carrying out atomic tasks. While the machine model 

makes use of performance functions represented by M, the energy model makes use of a set 
of energy functions represented by E. Therefore, a many-core processor is modeled by giving 

values to the parameters of M and by defining the functions F(M) and E (M). 

An application model completes the model set by providing a means of capturing the 

resource requirements of the application.  

Application Model 

The synchronous data flow (SDF) model of computation is used to model the application. It 

is made up of a network of actors (which are blocks of computation) and communication 

channels (which are the only means of communicating between actors). Actors fire as soon as 
there is enough data or tokens consumed from the communication channel, therefore, the 

whole process is data synchronized. For a more detailed description of SDFs and their firing 
properties, see [3]. 

Each actor is represented by a tuple < rp, rm ,Rs ,Rr  > 
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Where  

• rp is the worst case execution time for the block of code in the actor. 

• rm is the requirement on local memory in words. 

• Rs = [Rs1, Rs2, Rs3,……., Rsn] 

       It is a sequence where Rsi is the number of words produced on channel i each 

firing. 

• Rr  = [Rr1, Rr2, Rr3,……., Rrn] 

It is a sequence where Rrn is the number of words received from channel j each firing. 

Because we are not interested in making a cycle accurate simulation of the processing, we 

make use of worst case estimates on time and memory requirements.  

Machine Model 

The machine model is made up of a set of parameters that describe the common resources of 
the machine. It is at the core of the tools portability. All a user needs do is set the parameters 

according to the machine that is being modeled. These parameters are used to define abstract 
performance and energy functions that are used to compute the cost of various configurations 

of the application. The model is given by; 

M = < (x, y), p, bg, gw, gr, o, so, sl, c, hl, rl, ro, sf, f, wl, ILeakage >             (1) 

Where 

• x, y are the number of rows and columns of cores. They describe the exact 
location of the core in the processor array. 

• p is the processing power (instruction throughput) of each core, in operations 

per clock cycle. 

• bg is global memory bandwidth, in words per clock cycle. 

• gw is the penalty for global memory write, in words per clock cycle. 

• gr is the penalty for global memory read, in words per clock cycle. 

• o is the software overhead for initiation of a network transfer, in clock 

cycles. 

• so is core send occupancy, in clock cycles, when sending a message. 

• sl is the latency for a sent message to reach the network, in clock cycles. 

• c is the bandwidth of each interconnection link, in words per clock cycle. 

• hl is network hop latency, in clock cycles. 

• rl is the latency from network to receiving core, in clock cycles. 

• ro is core receive occupancy, in clock cycles, when receiving a message.  

• sf stands for scaling factor, and is used to determine the speed of the core 

with reference to the global operating frequency of the machine. sfi ɛ SF 

where i corresponds to the number of the core as can be determined by the 

cores x, y coordinates. 
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• f denotes the maximum operating frequency at which a core can operate. 

• wl is the average wire length between cores. 

• ILeakage is the leakage current per core. 

Energy Model 

In a processor, power is the rate of consumption of electrical energy and energy is the sum 

total of all the electrical energy consumed over the entire period. 

P = W/T                    (2) 

E = P * T                    (3) 

E, P, W and T are the Energy, power, amount of work and time interval respectively. 

In order to model the power consumed in the processor, we choose to approach the problem 

from two angles. First, model the power consumed by the cores and then separately provide a 

model of the power consumed by the interconnection network. A combination of the two will 

provide us with a model for the power consumed in the processor at a given point in time.  

We estimate the power consumed by the entire many-core processor to be the sum of the 

dynamic power produced due to switching activity in the cores and also along the 

interconnection network when it is toggled, the short circuit current power which occurs 

during gate signal transitions, and the power that results from leakage current. Therefore 

Power = Pdyn + Pshort + PLeakage                 (4) 

We can neglect the short circuit power because it is usually insignificant when compared to 

the rest.  

Therefore, 

Power ~  Pdyn +  PLeakage                  (5) 

Core Power Consumption 

CMOS circuits dissipate power by charging the various load capacitances whenever they are 
switched. In one complete cycle, current flows from the source to charge the load capacitance 

and then flows from the charged load capacitance to the ground during discharge. Therefore, 
in one complete charge-discharge cycle, a total charge of: 

Q = CLV                    (6) 

This is the equivalent charge transferred from the source to the ground. Multiply this by the 

switching frequency to get the current used per second. 

Therefore, 

I = CLVf                     (7) 

However, Electric power is given by the equation: 

P = IV                       (8) 

Therefore, multiplying equation 7 by V, gives: 

P = CEffV
2f                      (9) 

Equation 9 gives the effective power dissipated by a CMOS device. Since most gates do not 

switch at every clock cycle, they are often accompanied by a factor, b, called the activity 

factor. Therefore, dynamic power dissipation can be rewritten as 
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Pdyn≈bCEff V
2
f                               (10) 

Where b is an activity factor which relates to the rate of 0/1 transitions that occur within core, 

CEff is the effective cumulative capacitance, V is the base supply voltage and f is the clock 

frequency.  

PLeakage = VILeakage                                         (11) 

Leakage power is also known as idle power or static power. It takes place when the processor 

is both in its idle and active states.  It’s as a result of the constant leakage of current from the 

transistors that make up the circuit even when the transistors are not switching.   

Therefore,  

Power ≈bCEff V
2f + VILeakage                                          (12) 

However, the ability to slow down the core for slack reclaiming has to be included in the 

model. This introduces the sf machine parameter which is used to model the variability in the 

speed of cores vis-à-vis the global processor speed. Therefore, the equation becomes: 

Power ≈ (sf)bCEff V
2
f + VILeakage                                      (13) 

Where sf is the scaling factor and is specific to a particular core. 

Interconnection Network Power Consumption 

J. Hu et al. [10] proposed a model for evaluating the power consumption of the 
interconnection network based on the concept of the bit energy metric (Ebit) which is defined 

as the average energy consumed when one bit of data is transported through the 
interconnection network, from one point A to another point B. 

EAB
bit  = nhops x ESbit + (nhops - 1) x ELbit                                         (14) 

Where ESbit and ELbit represent the energy consumed by the switch and the links between the 

cores.  

This model was further developed by Wolkotte et al. [11], through their work, in determining 

the exact amount of energy consumed when a bit goes through a router and wires. This is 
given by, 

Eps = 0.98 x Nhops  + (0.39 + 0.12 x wire_length) x (Nhops - 1)      (15) 

for packet switched networks and 

Ecs = 0.37 x Nhops  + (0.39 + 0.12 x wire_length) x (Nhops - 1)      (16) 

for circuit switched networks. 

Where Nhops and wire_length correspond to the number of rounting turns, and the average 

wire length between the routers. 

COST METHODOLOGY 

In order to compute the cost of carrying out tasks, the models make use of two sets of 

functions that perform the actual computation of the costs. The machine model uses a set of 

performance functions, while the energy model uses a set of energy functions. This section 

presents both sets. 
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PERFORMANCE FUNCTIONS 

F is a set of abstract functions describing the performance of computations, global memory 

transactions and local communication: 

F(M) = < tp, ts, tr, tc, tgw, tgr > 

Where  

• tp is a function evaluating the time to compute a list of instructions. 

• ts is a function evaluating the core occupancy when sending a data stream. 

• tr is a function evaluating the core occupancy when receiving a data stream. 

• tc is a function evaluating network propagation delay for a data stream. 

• tgw is a function evaluating the time for writing a stream to global memory. 

• tgr is a function evaluating the time for reading a stream from global memory. 

The value for each of the performance functions can be derived from the machine parameters 

as follows: 

Compute  

The time required to process the computation of a list of instructions is given as: 

tp(rp, p) =  (sf)[rp/p]             (17) 

which is a function of the requested number of operations rp and core processing power p. To 

calculate rp, we count all instructions except those related to network send- and receive 

operations. 

Send 

The time required for a core to issue a network send operation is expressed as 

ts (Rs, o, so) =  (sf)[[Rs/framesize]  × o + Rs × so]   (18) 

Send is a function of the requested amount of words to be sent, Rs, the software overhead o 

when initiating a network transfer, and send occupancy so. The framesize is a machine 
specific parameter. 

Receive 

The time required for a core to issue a network receive operation is expressed as: 

tr(Rr, o, ro) = (sf)[[Rr/framesize] × o + Rr × ro]    (19) 

Network Propagation Time 

This is expressed as 

tc (Rs, d, sl, hl, rl) =  sl + d(xs,ys,xd,yd)  x hl + nturns + rl             (20) 

Where sl and rl represent the injection and extraction latency respectively, while d(xs,ys,xd,yd)  
and hl represent the number of network hops and network hop latency respectively. 

d(xs,ys,xd,yd) is determined from the source and destination coordinates as: 

d =│xs – xd │+ │ys – yd │                     (21) 

Routing turns add an extra cycle which is captured as nturns and is calculated using the source 
and destination coordinates.  
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Streamed Global Memory Read 

This is the propagation time when streaming data from the global memory to a receiving 

core. It is expressed as  

tgr(rl, d, hl) = rl + d(xs,ys,xd,yd)  x hl + nturns        (22) 

It is a function of the receiving core latency, rl, the network hop distance, d, and the network 

hop latency, hl. 

Streamed Global Memory Write 

 This is the propagation time when streaming data to the global memory from a sending core. 

It is expressed as 

tgw(sl, d, hl)  = sl + d(xs,ys,xd,yd)  x hl + nturns       (23) 

It is a function of the send latency, sl, the network hop distance, d, and the network hop 

latency, hl. 

ENERGY FUNCTIONS 

With this in mind we can now start the process of computing the energy cost of events taking 
place in the many-core. 

The complete set of E are described as follows: 

E(M) = <ep,es,er,ec,egwegr>           (24) 

• ep is a function that evaluates the energy consumed when a sequence of 

instructions is computed at a core. 

• es is a function that evaluates the energy consumed by the core when it 

prepares to send a stream of data. 

• er  is a function that evaluates the energy consumed by a core as it receives a 
stream of data. 

• ec is a function that evaluates the energy consumed due to network 

propagation delays. 

• egw is a function that evaluates the energy cost of writing a data stream to the 
global memory. 

• egr is a function that evaluates the energy cost of reading a data stream from 

the global memory. 

The value for each of the energy functions can be derived from the machine parameters as 
follows: 

Compute 

The energy required to process the computation of a list of instructions is sum of the total 

power consumed during the duration of the entire computation and this includes the leakage 
power. It is represented by the equation: 

ep(rp,p,sf,b,CEff,V,f) = [b x CEff((sf)
-1V2)] x  tp+ VILeakage(tp/f) (25) 

tp represents the number of clock cycles used to process the computation, sf is the speed 

scaling factor, V represents the operating voltage, f represents the operating frequency, p ɛ M 

represents the core processing power in operations, and b represents the activity factor which 
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is always 1 when the system is active and 0 when it is not switching. ILeakage ɛ M is a measure 

of the average leakage current per core. 

Send 

The energy required for a core to issue a network send operation is expressed as: 

es(sf,V,f,ts) = [bCEff ((sf)
-1

V
2
f) x (ts)]+ [VILeakage] x (ts/f)    (26) 

ts represents the number of clock cycles used to issue a network send operation.  

Receive  

The energy required for a core to perform a network receive operation is expressed as: 

er(sf,V,f,tr)  = [bCEff ((sf)
-1

 V
2
f)]x tr+ [VILeakage] x [tr/f]  (27) 

tr represents the number of clock cycles used to receive a network message.  

Network Propagation Energy 

This is the energy required to move a message on the interconnection network, from one core 

to another. Equation 22 must be taken into account since the model is restricted to packet 

switched networks. Therefore, 

ec =  (Total number of bits)(Bit Energy consumed at the switch +  Bit Energy consumed on 

the wire link )+ energy leaked due to various latencies  

(sl + rl + nturns)                                                                       (28) 

 Equation 25 will eventually take the form: 

ec(d, wl, sl, rl) = {Rs}{0.98 x d(xs,ys,xd,yd) + [( 0.39 + 0.12 x wl ) x [d(xs,ys,xd,yd) – 1]]} + (sl + 

rl + nturns)VI          (29) 

where wl, sl and rl are, the average wire length between cores, the send latency and the receive 

latency accordingly. d is arrived at from equation 6. Rs represents the size of the 

communication. 

Streamed Global Memory Read 

 This is similar to ec. It is the energy expended when streaming a message on the 

interconnection network, from the global memory to the core that is making the read request. 

The only difference comes in the fact that we neglect sl because the data is streamed from the 

global memory and not from a core. Therefore, equation 29 will be reduced to: 

egr(d, wl, rl) = {Rr}{0.98 x d(xs,ys,xd,yd) + [( 0.39 + 0.12 x wl ) x [d(xs,ys,xd,yd) – 1]]} + (rl + 

nturns) VI              (30) 

Streamed Global Memory writes 

 This is similar to ec and egr. It is the energy expended when streaming a message on the 

interconnection network, from the core that is requesting a write operation to the global 

memory location where the streams are going to. The only difference comes in the fact that 

we neglect rl because the data is streamed to the global memory and not to a core. Therefore, 

equation 29 will be reduced to: 

egw(d, wl, sl) = {Rs}{0.98 x d(xs,ys,xd,yd) + [( 0.39 + 0.12 x wl ) x [d(xs,ys,xd,yd) – 1]]} + (sl + 

nturns)VI              (31) 

Next, the IR is discussed 
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INTERMEDIATE REPRESENTATION (IR) AND ABSTRACT INTERPRETATION 

The IR is a graph data structure representing an SDF application, after it has been partitioned 

and mapped to a specific many-core target. We use the IR as input to an abstract interpreter 

for evaluating the dynamic behavior of the application when executed on the machine. 

The IR GM
A
(V, C) is a description of the application A that has been mapped to the virtual 

machine, M. V is the set of Vertices (cores or memory) and C represents the set of 
communication channels or edges. During scheduling, the each SDF sub-graph is assigned a 

core in M. After constructing the IR, each v ɛ V and each c ɛ C is assigned costs in terms time 
and also in terms of energy consumed. The costs are calculated from the parameters of M and 

the functions of F and E. 

A sequence of abstract operations (receive, compute and send) are used to represent the 

actions of a core at the time it is fired. For each core that has a part of the application mapped 

to it, the set of activities that have taken place in them from the time the program was 

instantiated, is preserved in the vertex for that core in terms of a sequence of costs that relate 
to each activity. Such as: 

St = tr1, tr2, tr3 …………….trn, tp, ts1, ts2, ts3 ………..tsn        (32) 

For timing.  

And in terms of energy: 

Se = er1, er2, er3 …………….ern, ep,es1,es2,es3 ………..esn         (33) 

Memory vertices are also assigned costs in terms of gr and gw to account for the cost of 

reading and writing to the global memory, respectively. 

Let the source vertex of channel e be source (e). Then for each incoming edge of a vertex p, a 

receive operation is added with a cost given as: 

tr Ɛ F(M)                (34) 

and 

er Ɛ F(E)               (35) 

Likewise, tp and ep are used for a compute operation to calculate the cost of the computation 
that takes place when an actor fires. 

tp Ɛ F(M)                (36) 

and 

ep Ɛ F(E)                 (37) 

A send operation is added for each outgoing edge of a vertex. Let the sink vertex of channel e 

be sink (e).  The cost of sending tokens on that channel is given as 

ts Ɛ F(M)                 (38) 

and 

es Ɛ F(E)                 (39) 

The functions tc Ɛ F(M) and ec Ɛ F(E) signify the weight of the edge. They are both given as: 

tc Ɛ F(M)                (40) 

and 
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ec Ɛ F(E)                 (41) 

The weight of an edge is the same as the communication delay when sending a token between 

two cores that it connects, and the cost in energy terms of carrying out the communication 

task. The weight corresponds to the value of tc. 

Eventually, the IR will be a single data structure that links up all the vertices via edges, with 

the vertices storing the set of all the activities that have taken place in the core that it 
represents from time 0. Also, the edges that link the vertices represent the communication 

channels which connect the core and storing information relating to the bandwidth of the 

channel in form of the weight of the edge. The IR now serves as input to the abstract 

interpreter. 

An abstract interpreter, implemented on the Ptolemy II modeling framework, is used to draw 

meaningful conclusions from the IR. It takes in the IR as its input, and imposes the rules of 
the architecture on it. Since all the nodes are virtual cores in the IR that store timing 

information inside them based on local timing, what the interpreter does is to look at them 
from a global perspective. Starting from global time 0, it determines which core is processing 

and which core is waiting for input from other cores. It builds up a chronological history of 
all events that have taken place from time 0. This way, it is able to present the global timing 

and energy view to the programmer, making it possible for the programmer to receive 

feedback from the interpreter. 

CONCLUSION 

In the last decade, emerging parallel processors have come within the performance reach of 

ASICs. Effort should now be concentrated on developing adequate abstractions from the 
hardware that will improve on software design productivity. This is needed in order to take 

full advantage of the performance and energy reduction that such systems can achieve. Useful 
abstractions can come from a better programmer environment through the provision of 

domain specific languages, tools and simulation environments. This will reduce the time it 
takes to design new products and improve on quality by taking into account certain non – 

functional properties of a system.  

This work has implemented models for DSP application development on tiled many-core 

processors. Three sets of models have been presented; an application model, a many – core 
machine model and an energy model. An Intermediate representation has been used to 

concretize the actions of these models. The abstract interpreter that interprets the IR has been 
designed to run on top of the Ptolemy II environment. It should be able to provide a 

developer with the ability to analyze successive mappings on a tiled processor array, ranking 
them according to specified end – to – end latency and energy constraints. 

Future work will be carried out; using case studies to show how these models can be used to 

analyze DSP applications. Also, a ranking system will be developed for ranking the various 

ways of mapping of the application to the processor. 
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