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Abstract—This paper demonstrates a concept to detect bad
data in state estimation when the leverage measurements are
tampered with gross error. The concept is based on separating
leverage measurements from non-leverage measurements by a
technique called diagnostic robust generalized potential (DRGP),
which also takes care of the masking or swamping effect, if any.
The methodology then detects the erroneous measurements from
the generalized studentized residuals (GSR). The effectiveness of
the method is validated with a small illustrative example, stan-
dard IEEE 14-bus and 123-bus unbalanced network models and
compared with the existing methods. The method is demonstrated
to be potentially very useful to detect attacks in smart power grid
targeting leverage points in the system.

Index Terms—distribution management system (DMS), remote
terminal unit (RTU), state estimation (SE), leverage measure-
ments, bad data detection (BDD), generalized studentized resid-
uals (GSR), diagnostic-robust generalized potentials (DRGP)

I. INTRODUCTION

POWER networks all over the world are witnessing sig-
nificant scale of development. The major drivers are

shift of technology of generation towards renewables (mainly
solar and wind) and new forms of demand such as elec-
tric transportation, district heating, etc. The uncertain nature
of generation and new type of demand need to be dealt
with by more active energy management strategy [1]. There
is an increasing adoption of smart instrumentation such as
phasor measurement units (PMUs), intelligent metering, etc.
in transmission networks and smart meters in distribution
networks with information and communication technology
(ICT) infrastructure. As a result, the integrity of data and
information is exposed to risk and the power system is more
prone to malicious attacks from adversaries. Tampered data
will obviously affect the outcome of network control and
computing functions such as state estimation, security analysis,
volt var control (VVC), etc.

To enable the effective control of the power network, the
states of the system need to be observed properly. The en-
ergy/distribution management systems (EMS/DMS) will play
a crucial role in control and operation of the smart power sys-
tems. Central to every EMS/DMS are two functional blocks:
the state estimator and the control scheduling block. The state
estimation provides a real-time estimate of system states, based
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on the measurements obtained from meters and sensors in the
remote terminal units (RTUs).

Over the years, the state estimation has been developed
to deal with gross error in data because of inaccuracy of
the measurements. Any tampering with data and maliciously
operating switch will also result in gross errors in data. So
in principle, the effect of malicious attack can be detected
through bad data detection. Depending on the state estimation
methodology the bad data detection can be part of state
estimation process or a post estimation computation as shown
in Fig.1. As long as these errors are part of overly measured
systems (more measurements than the number of states to be
estimated) and do not belong to the critical measurement and
leverage points (measurements that significantly influence the
state estimation solution), eliminating them to get a clear and
accurate estimate is not difficult. However, if these bad data
belong to the meters in the leverage set-they need to be handled
carefully. The leverage measurements help in improving the
state variables of the system by providing enough redundancy.
The critical measurements are those, whose removal affects
the system observability. Reference [2] and [3] have talked
about protection of some or all of basic measurements or
critical k-tuples in the system. However, the leverage mea-
surements are not protected. The leverages can occur both
in transmission and distribution networks [4]. This requires
to develop a methodology to deal with the situation. The
primary motivation of this research is driven by such possible
scenarios when the hacking of the data in meters is related to
the measurements of the leverage points.

A schematic of a typical energy/distribution management
system is shown in Fig.1. The state estimation block in Fig.1
provides the estimate of power system states on the basis of
measurements obtained from the supervisory control and data
acquisition (SCADA) system. Usually, the measurement errors
are assumed to be random and independently and identically
distributed and obey normal distribution. As a result, weighted
least-squares (WLS) estimator is used to find the best estimates
of the states [5].

It has been discussed in [6] that an adversary can inject
malicious data into the system without being detected by clas-
sical bad data detection techniques. In the case the adversary
performs an unobservable attack, it is important to know how
vulnerable the power system operation is to these attacks.

In recent years, there have been growing interests in the
false data injection to power system and dealing with those
attacks and the vulnerabilities [7]–[11]. The basic idea of false
data injection attack is to add a non-zero attack vector into the
measurements [7]. It has been reported in the literature [7]–
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Fig. 1. A typical energy/distribution management system architecture

[11] that how an adversary can synthesize an attack vector just
to bypass the normalized residual test in the dc state estimator.
Reference [7] further explains different types of attack that
can be synthesized. Reference [8] illustrates the strategies
for malicious attacks to be incorporated and henceforth, uses
the concept of generalized likelihood ratio test (GLRT) to
detect the gross error. Reference [9] reports how to optimize
the number of measurements to be tampered in order to
compromise a given number of state variables. Bi and Zhang
[10] have proposed a greedy algorithm for the sequential
protection of state estimation against the malicious tampering.
Hug and Giampapa [11] show how an attack can be hidden by
tampering with a number of measurement data and they assess
the vulnerability associated with this threat. Kim and Poor
in [12] proposed placing secure PMUs on strategic buses to
identify data injection attacks and Giani et al [13] used known-
secure PMUs as a countermeasure to unobservable attacks.
However, none of [7]–[13] have addressed the situation when
a particular influential or leverage measurement is compro-
mised. Hence, this provides the basis to have an identification
procedure against such an unobservable attack.

Traditionally, the detection of bad data has been carried
out by largest normalized residuals (LNR), which performs
pretty well when there is a single bad measurement or multiple
non-interacting bad measurements in the system [14]. How-
ever, it fails in case of influential or leverage measurements
[15]. Reference [5] and [16] have proposed a χ2 test for
the identification of bad measurement. Chen and Abur have
proposed the method of placement of PMUs to enable bad
data detection in state estimation [17]. Reference [18] and [19]
have devised the concepts of robust distances and influence
functions in regression analysis of measurement equations to
identify leverage points in a system. But they did not discuss
about detecting bad data in leverage data points.

In other technology areas, the gross measurement errors
have been treated as outliers in factor space of linear regres-
sion analysis [20], [21]. However, sometimes some influential
measurements called leverage points may look like outliers
in factor space as they lie outside the regression line [5],
[22]. Therefore, it is hard to identify errors in leverage
points. As a result, it is necessary to distinguish the leverage
points from the outliers. It has been reported that there are

number of ways one can identify the leverage points from
the diagonal elements of the hat matrix, Mahalanobis distance
(MD) of measurements, projection statistics (PS) [5], [16], etc.
Reference [19] has devised the concept of influence function
as a combination of influence of residuals and influence of
position in factor space. Thus, looking at the influence function
one can identify bad data even for influential measurements.
The concept of finding outliers in multivariate data has been
suggested in [20] and the concept of identifying outliers based
on different residual diagnostics in linear regression model of a
system has been reported in other applications [21]. However,
they have not addressed the masking and swamping effect of
leverage points when there are multiple leverage points.

In the field of applied statistics, there has been research on
identifying the multiple high leverage points in multivariate
analysis. It has been pointed out that due to the presence
of more than one high leverage point, the leverage structure
may change in such a way that the leverage diagnostics
for single leverage point like twice-the-mean rule, thrice-the-
mean rule, Cook’s distance, Welsch and Kuh’s distance, etc.
will not be able to identify the real high leverage points.
Nurunnabi, Hadi and Imon in [23] have used a modified
Cook’s distance and Habshah, Norazan and Imon [24] have
proposed a robust diagnostic potential to address this issue.
Reference [24] have applied the technique on Hawkins, Bradu
and Kass data and Brownlee’s stack loss data to illustrate the
simultaneous identification of outliers or erroneous data and
high leverage points. To the best of the knowledge of the
authors, this methodology has never been applied in power
system bad data detection context. This paper presents a
robust bad data detection technique when the leverage mea-
surements are compromised and shows that it can take care of
masking/swamping phenomenon in sparse systems like power
systems that existing methods cannot. This methodology is
applied, for the first time, to robustly detect bad data in regards
to state estimation of power system.

The power system state estimation measurement equations
in this context are looked at as linearized regression equations
of state variables at each operating point. This paper presents
this concept and proposes a technique to diagnose bad data
and leverage measurements simultaneously from the rest of
the regression data. The paper is organised as follows- Sec-
tion II describes a brief review of distribution system state
estimation, bad data detection and the regression in regards
to state estimation and the attack strategies if an adversary
intends to attack. This section also explains the phenomena
of masking and swamping. Section III explains in detail the
concept of robust generalized potentials and the method to
identify the outliers and leverage data points at the same
time with generalized potentials and studentized residuals.
Section IV presents case studies and analyses the results. The
performances of this method have been tested on a small
illustrative example and on standard IEEE-14 bus test system
and IEEE-123 bus unbalanced distribution system. Section V
summarizes the contributions and conclusions of the work.
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II. REGRESSION ANALYSIS IN RELATION TO STATE
ESTIMATION

A. State Estimation

The unbalanced power distribution system state estimation
(SE) is a process which estimates real-time states based on the
measurements. The transmission system is, however, a special
case of unbalanced system where, the system is balanced
and hence, the number of state variables and equations are
reduced. The problem is usually solved by Weighted Least
Squares (WLS) estimation algorithm. This WLS algorithm
is formulated as a minimization of the following objective
function.

J = [z − h(x)]TR−1[z − h(x)] (1)

Subject to:

c (x) = 0 (2)

Where,
x State variables such as voltage magnitudes and angles.
m Number of measurements per phase.
R Measurement error covariance matrix,

z =
[
za1 z

b
1 z

c
1 . . . zai z

b
i z

c
i . . . zam zbm zcm

]
.

zi Measured value of ith measurement.
h(x) vector of measurement as a function of state x
c(x) vector of zero injection measurements.

In three phase system x =
[
δki V

k
i

]>
, where

V ki =
[
V ai V bi V ci

]>
is the vector of three-phase

voltage magnitude at bus i, δki =
[
δai δ

b
i δ

c
i

]>
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the phase angles of bus i except the reference bus and
R=Cov(e)=E(eeT)=diag(σ2

1 , . . . σ
2
i , . . . , σ

2
m), where

σi =
[
σai σ

b
i σ

c
i

]>
. Eq. (1) and (2) can be solved by

Newton’s method, which translates into solving the following
equation at each iteration

[G(xk)]∆xk+1 = HTR−1[z − h(xk)] (3)

where, n is the total number of state variables in the system.
∆xk+1 = xk+1 − xk and H(xk) = [∂h∂x ] is the Ja-

cobian matrix of dimension 3m × (n − 3) and G(xk) =
HT (xk)R−1H(xk) is the Gain matrix in the kth iteration.

Usually, in the distribution system there are not enough
available measurements. But to have an estimate of the states,
the number of measurements should be more than the number
of state variables. Hence, to facilitate this the unmeasured
loads of the distribution system are predicted from the load
history of the load bus. Moreover, there can be some buses
in the system where there are no injections or measurements
available. These buses are known as zero-injection buses.

B. Leverage Points and Bad Data

The state estimation problem is linearized around an operat-
ing point and is expressed as the following regression model.

∆z = H∆x+ e (4)

where z is considered the output of the regression model and x
vector is the regressor, predictor or the factor in the regression
model and e is the random error vector, which are random

and assumed to be independently and identically distributed
(i.i.d.), in the regression model. The matrix H is known as
the coefficient or regressor matrix. The detection, assessment
and understanding of influential points are the main areas of
study in the regression model building. The factor variables or
the explanatory variables in the regression model are solved
by least squares estimation as in equations (1) and (2). From
Eq. (3), the estimated measurement vector is derived as

∆ẑ = H(HTR−1H)−1HTR−1∆z = K∆z (5)

where, K is called the hat or high-leverage matrix. A large
diagonal entry of the hat matrix implies that the particular
measurement has more leverage or influence on the estimated
states than others and they can be called as leverage points. If
the influence is high enough the corresponding diagonal entry
may be close to 1. In other words, according to equation (4),
each observation (∆zi,Hi) is a point in the factor space of
regression, where Hi is a row of the H matrix. When there
is an outlier in the X-space or Hi-space or the regressor
variable space, it is said to have an undue influence on the
state estimates and is called a leverage measurement.

The concept of bad data and outliers go hand in hand in
the context of regression analysis. Bad data usually refers
to an erroneous measurement due to various reasons. Due
to the integration of PMUs, intelligent and smart metering
with ICT infrastructure, bad data or gross errors can occur
during the data transfer over the telecommunication medium.
Telecommunication system failures or noise caused by unex-
pected interference also lead to large deviations in recorded
measurements. Random errors usually exist in measurements
due to the finite accuracy of meters when the meters have
biases, drifts or wrong connections. So, these bad data or gross
errors can be looked as outliers in the measurement space.
However, a measurement, which may or may not contain
errors, such as leverage points, may also appear as an outlier
due to the structure of the corresponding regression equation.
As a result, it is essential to differentiate the leverage points
from bad data and identify the error, if any, in leverage points.

In the modern power system, more and more advanced
communication and cyber technologies are getting incor-
porated [15]. Therefore, the possibility of an adversary to
tamper with the measurements to drive the state estimator
to wrong estimates is also high. Theoretically, the bad data
detection (BDD) technique using normalized residual is a post-
estimation process. Essentially, the largest normalized residual
(LNR) method is used to detect, identify and eliminate bad
measurement data. The largest normalized residual refers to
the test where the largest normalized residual corresponds
to the bad measurement data. Normalized residual based
approaches for identification of bad data have been reported
in [5] and [16]. In the case of one erroneous measurement
data, the largest normalized residual works perfectly fine. Even
it has been reported in the literature [5], [16] that LNR also
works on both non-interacting and interacting non-conforming
multiple bad measurement data. However, it fails to detect the
bad data if there are multiple interacting and conforming bad
data [14],where the errors are in agreement, and if they are
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part of the leverage set. Moreover, the residuals are given as

r = ∆z −∆ẑ (6)

Eq.(6) can be rewritten as:

r = (I−K)∆z (7)

Therefore, the measurement residuals with large diagonal en-
tries of the hat matrix are small even if they are contaminated
with gross error.

C. Attack Strategies

In power systems, the state estimator as mentioned in Fig. 1
takes three kinds of inputs-the meter measurement data (power
injection and power flow), the network topology information
data (on/off status of switches) and the parameter data (branch
impedance and variances of measurement errors). Typically,
these inputs are either sent from meters to control center or
stored in the databases. It is assumed that the adversary can
access and manipulate all the three kinds of inputs.

The leverage measurements occur when there are injection
measurements on a bus, which has more number of branches
connected to it compared to others, injection measurements
on a bus incident to branches with very different impedance,
and the line power flow measurements on relatively short
lines. In large meshed distribution systems these leverages can
occur due to the presence of line power flow measurements
on short lines [4] and also due to the lower redundancy of
measurements.

An adversary can take advantage of this situation and attack
the high leverage points to influence the estimates of the state
variables of the system and hence, can hide the attack from
being detected. The leverage points affected by gross errors
are called bad leverage points. Though bad leverage points
are harmful to many estimators, good leverage points are
particularly useful in improving the variance of the estimates.

1) Attacking power flow measurements: Power flow mea-
surements are normally placed between buses to monitor the
flow of the branches. Leverage power flow measurements are
formed when the measurements are placed on relatively short
or long lines. An attacker, if he/she intends to make the attack
invisible, makes changes to the value of the corresponding
diagonal element of the hat matrix by applying Theorem 2
and rule 1 and rule 2 as given in [25].

2) Attacking power injection measurements: Power injec-
tion measurements are placed at bus to monitor the active
and reactive power injections from a load or generations
at a particular bus. A node/bus is particularly vulnerable to
leverage attack if that has more connecting branches connected
to it or in other words there are more non-zero elements
in that row of the H as in (3) matrix compared to other
rows. If an adversary wishes to attack an injection leverage
measurements he/she should increase the particular diagonal
element of the hat matrix to make the attack undetectable by
applying Theorem 2 and rule 1 and rule 2 as given in [25].

The sample high and low leverage points are shown by
arrow marks in Fig.2. In the figure, the line flow measurement
flow 5-4 is a high leverage measurement. To make a successful

45
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leverage
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1

2
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Leverage
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Leverage

Fig. 2. The sample high and low leverage points in IEEE-14 bus system

attack, the attacker makes changes to the value of the diagonal
element of the hat matrix Kii corresponding to the flow
measurement 5-4 by applying Theorem 2 and rule 1 and rule 2.
The theorems 1,2 and 3 are stated in Appendix A. Theorem 1
states how a successful attack can be made on a measurement
by changing Kii. While Theorem 2 shows how much Kii has
to be increased to make an attack on a single measurement zi.
To make an attack on multiple measurements, the attacker will
perturb the measurements one at a time and apply Theorem
2 repeatedly. Finally, Theorem 3 suggests how to increase the
value of Kii.

D. Masking and Swamping

The leverage points in regression studies carry with them an
inherent difficulty. When there are more than one influential
point, some of them may remain undetected. This phenomenon
is known as masking. On the other hand, some of the non-
influential points may be wrongly detected as influential
points, which is known as swamping. The masking/swamping
can be explained by the following equation.

The residual for the ith measurement with two high lever-
ages at zi and zk is expressed as

ri = (1−Kii)∆zi −Kik∆zk −
m∑
j=1

j 6=i,j 6=k

Kij∆zj (8)

So, if the first two terms in equation (8) are opposite in sign a
bad leverage may appear like a good leverage. This is known
as masking. On the other hand, if the second and the third
terms in the same equation are added up the good leverage
may become a bad leverage. This is known as swamping.

The masking and swamping phenomena have been reported
in the literature as in Hawkins, Bradu and Kass (HBK) data,
Brownlee’s stack loss data [23], [24], Hadi and Simonoff (HS)
data, Belgian Telephone data, etc. In the HBK data there
are 75 observations, 14 high leverage points and 10 outliers
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with points 11-14 are swamped cases. The Brownlee’s data
shows, however, that there are 21 observations with 4 outliers
(cases 1,3,4,21) and 4 high leverage points (cases 1,2,3,21).
There are two points which are masked and on the other hand
point 17 is swamped. This swamping or masking phenomenon
is, however, not present when there is only one influential
measurement. This phenomenon is similar to the largest nor-
malized residual (LNR) test to identify outliers. Hence, when
there are multiple outliers or bad data or influential points the
largest normalized residual test is deemed unsuitable. To the
best of my knowledge, the masking/swamping phenomenon
has not been investigated in the context of power system state
estimation. This sets up the motivation to devise a method
by which the high leverage points, low leverage points and
outliers or bad data are completely separated and identified.

III. DETECTION OF LEVERAGE AND BAD DATA POINTS

Leverage values are normally denoted as measures of influ-
ential observations in the X-space. The X-space is in regard
to the regressor variables. The hat matrix in (5) gives a
measure of how a particular measurement is influential or
not. The ones which have higher influence are called high
leverages and ones which have lower influence are called low
leverages. The twice-the-mean rule and thrice-the-mean rule
on the diagonal elements of the hat matrix have been reported
in the literature to identify the leverage points. Reference
[23] has mentioned the Cook’s distance and Welsch and
Kuh’s distance to detect and identify the single leverage point.
The Mahalanobis distance based on the projection pursuit
algorithm for minimum volume ellipsoid cannot be applied
to sparse systems. Since the electric power system is a sparse
system, the projection pursuit algorithm has to be modified in
order to be applied to the sparse power system. However, due
to masking or swamping effect it becomes difficult to identify
the group of high leverage points.

A. Diagnostic robust generalized potentials (DRGP)

This technique, an adaptive approach to identify the group
of leverage points, is a unified approach of diagnostic and ro-
bust approaches. The robust approach identifies the suspected
high leverage points and the diagnostic approach confirms the
above suspicion. The robust approach identifies the leverage
points by the corresponding potentials of the data. The poten-
tial of a data is defined by Hadi [26] as the diagonal element
of the hat matrix with the ith data deleted. It is denoted by

potii = hTi (HT
(i)H(i))

−1hi (9)

The points having a potential value more than the robust
cut-off Median(potii) + c.MAD(potii) is said to be a high
leverage point, where, MAD is the median absolute deviation
from the median and c is a constant equal to 2 or 3. However,
this method is not robust against swamping. Habshah et al
[24] have proposed a robust method to identify high leverage
points. The robust Mahalanobis distance (RMDi) is defined
as

RMDi =
√

[hi − H̄]T [C(H)]−1[hi − H̄] (10)

where, H̄ is the mean of the l points for which determinant of
the covariance matrix (MCD) is minimum or H̄ is the centre of
the minimum volume ellipsoid (MVE) covering these points,
and C(H) is the corresponding covariance matrix. The cut-off
value for a normal distributed multivariate data is

√
χ2
n,α, but,

for general non-normal data the cut-off value as suggested in
[24], [27] is given by

Median(RMDi) + 3MAD(RMDi) (11)

The observations are grouped in two sets. Those which have
robust Mahalanobis distance greater than the cut-off as in
Eq.(11) are considered to be in set D and the rest in set R.
The robust potentials for the observations in two sets are given
as

pot∗ii =


K
−(D)
ii

1−K−(D)
ii

∀ i ∈ R

K
−(D)
ii ∀ i ∈ D

(12)

K
−(D)
ii denotes the ith diagonal element of the hat matrix with

data as in set D deleted. There exists no theoretical distribution
for pot∗ii and hence, there is no finite upper bound. However,
[24], [27] suggested a suitable confidence bound type cut-off
like

Median(pot∗ii) + c.MAD(pot∗ii) (13)

The Mahalanobis distances of the multivariate data are first
calculated. The Mahalanobis distance, however, is prone to
the masking effect of multiple leverage data points [28]. Fig.
3 shows the step-by-step procedure for the identification of
leverage points.

1) The robust Mahalanobis distances of the observations
of the multi-variate data are carried out based on min-
imum volume ellipsoid (MVE) or minimum covariance
determinant (MCD). Conceptually, MVE is the ellipsoid
with minimum volume that contains l data points. MCD
is, however, the minimum of the determinant of the
covariance matrix which contains l points. l is typically
equal to [3m/2] + 1 (where 3m is the number of data
points). MVE has been considered here.

2) The multi-variate data are grouped into two separate
subsets R and D. The observations which have a distance
higher than the cut-off as in (11) are deleted from the
main set and kept in a separate set called the deleted set
D. The rest of the data are kept as it is in a set called
R.

3) The generalized robust potentials for both the sets are
computed.

4) If all the observations in the deleted set D have their
generalized potentials higher than the cut-off, then the
leverage points are identified. If not, data are put back
to set R sequentially starting with the one which has the
least generalized robust potential value.

5) The generalized potential values are recalculated with
the new subsets.

6) This process continues till all the data in the set D have
generalized potential values more than the cut-off.
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By this process, the masking and swamping effects, if present,
are completely taken care of and the high leverage and non-
leverages are separated from each other.

B. Identification of gross error and high leverage points
simultaneously

The measurements in a generic power system can be easily
tampered with for nefarious purposes. The physical meters
in the system can be compromised by introducing a large
error by intelligent hackers. As discussed in Section II-B,
the residuals as in (7) for leverage measurements are close
to zero. The important class of M-estimators, including the
LAV estimator, cannot handle bad leverage data points. Hence,
it is very difficult to identify the gross error in case of
leverage measurements. Other estimators like LMS, LTS, RLS,
Iterative RLS, BOFOLS, etc. are computationally intensive.
Table I shows that DRGP has better performance in terms of
computational time and complexity.

TABLE I
COMPUTATIONAL COMPLEXITY OF ESTIMATORS

Algorithm Computational
time (secs) Complexity

LMS 5.543 O(L)
RLS 10.234 O(L2)

DRGP 2.436 O(L)

The residuals in the measurement data are functionally
related to the leverage values of the data. This method is a

combination of direct and indirect approach of multiple outlier
detection. The low leverages and high leverages are separated
first based on DRGP and then generalized studentized resid-
uals (GSR) is calculated for the entire data set to identify the
outliers. So, an outlier in set R will not be confused with an
outlier in set D. They are defined as

r∗st,i =



r
−(D)
i

σ̂R−i

√
1−K−(D)

ii

∀ i ∈ R

r
−(D)
i

σ̂R

√
1 +K

−(D)
ii

∀ i ∈ D
(14)

where, σ̂2 is the least square estimate of variance. r−(D)
i

represents the residual of ith measurement with D data set
deleted. R is the data set without the high leverages.

The GSR is a form of a Student’s t-statistic with (3m−n−
3 − 1) degrees of freedom and 97.5% detection confidence
probability. One could, therefore, use a t-table to get the
exact cut-off values. But since the degrees of freedom are
usually quite large, the rule of thumb that absolute value
of externally studentized residuals is greater than 3 is used
[29]. The GSR is a type of an externally studentized residual.
This is a way of determining the ith residual except the
ith observation. If the ith observation is a serious outlier it
may influence the least square function and may influence to
move it close to the ith observation. So, if it is removed,
the ith residual on the new model will indicate that this
observation is an extreme value. The mathematical background
for the studentized residuals are given in Appendix B. All
the observations for both the data sets are then plotted in a
DRGP-GSR plot. High leverage points are the points which
have higher DRGP values and bad data are those data which
have higher GSR values. This leverage-residual plot shows
that most of the data will be clustered around the origin
and the masking/swamping effects do not come into picture.
The DRGP-GSR plot clearly separates and identifies the bad
measurement data and high leverages. Even if high leverage
measurements are adulterated with gross errors the graphical
plot clearly identifies the measurement errors. Based on this
concept, the next section shows some case studies both for
power transmission system and power distribution system and
thus justifies the effectiveness of the procedure.

IV. RESULTS AND DISCUSSIONS

A. Case Studies

The problem formulation shown in Section II is a three-
phase formulation suitable for generic distribution systems.
However, the formulation for balanced transmission systems
can be taken as a special case of the above formulation, where,
the number of state variables and the number of equations
as given in Section II-A are reduced due to the balanced
nature of the system. The voltage magnitudes and angles
for a particular bus will be the same for the three different
phases. The proposed approach has been performed on test
systems: a small illustrative example, the IEEE 14-bus system
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Fig. 4. A schematic diagram of the DRGP-GSR plot

and the IEEE 123-bus distribution system. The algorithm was
implemented in MATLAB and run on a system with Intel
Xeon processor @3.33 GHz and 12 GB RAM.

1) Illustrative example: Fig. 5 shows a basic four bus
system with possible power injection and branch power flow
measurements. All branches are assumed to have a reactance
of j0.1 pu. The state variables of the system are considered
as voltage magnitudes and voltage angles of buses. Since,
there are four buses in the system altogether there are eight
state variables. However, the voltage angle for bus #1 is taken
as the reference. Table II presents the measurements for the
given system. The system, currently, has no leverage points.
However, if the line between 1-2 is shortened by decreasing
the reactance to j0.01 pu, the measurements flow 1-2 and inj
1 become isolated leverage points. An attacker can introduce
a leverage point attack on the system by tampering with the
reactance of the line 1-2, should he/she wishes to attack inj 1
and/or flow 1-2. If the line 2-3 is shortened and the injection
measurement is on bus 1 instead of 3, the measurements flow
3-2 and inj 3 will become leverage points.

These two measurements become bad leverage points in the
factor space. The largest normalized residuals (LNR) method
fails to identify these two bad leverage points. It turns out
from Table II that the generalized studentized residuals clearly
detect or identify the bad measurements in case of leverage
points. The value of the studentized residual corresponding
to the bad measurements with respect to other measurements
is much higher compared to that of the normalized residual

1

2

4

3

Fig. 5. A 4-bus system for illustrative example

with respect to other measurements. Table III further shows
the masking/swamping effect of leverage points, if any. It also
compares the leverage diagnostics of diagonal elements of
the hat matrix with the DRGP technique proposed in Section
III-A. It depicts that while the leverage measure (diagonal
element of the hat matrix) fails to identify the leverage
points due to masking/swamping effect the DRGP technique
can easily identify them. Table IV and Table V present the
results for the active power injection and reactive power flow
measurements when the line 2-3 is shortened.

TABLE II
REAL POWER MEASUREMENTS AND RESIDUALS FOR THE 4-BUS SYSTEM

WHEN THE LINE 1-2 IS SHORTENED

Measurement
type

Measurement
with no bad

data

Measurement
with bad

data

Normalized/
Internally

studentized
residuals

|GSR|
(2.228)

flow 1-2 1.50882 1.00892 0.550 2.578
flow 1-4 0.49119 0.49119 0.4793 0.4328
flow 2-4 0.33966 0.33966 0.2987 0.578
flow 3-2 -0.56915 -0.56915 1.2921 1.374
flow 3-4 -0.23084 -0.23084 0.2373 0.4328
flow 4-1 -0.49119 -0.49119 0.7821 0.8921

inj 1 2.00011 1.50011 0.3034 2.781
inj 3 -0.800 -0.800 0.5082 0.7811
inj 4 -0.600 -0.600 0.6821 0.852

TABLE III
LEVERAGE POINTS AND MASKING/SWAMPING EFFECT FOR REAL POWER

MEASUREMENTS WHEN LINE 1-2 IS SHORTENED

Measurement
type

Masking or
Swamping

effect

Leverage
(0.726)

DRGP
(0.823)

Bad
Data

flow 1-2 Yes 0.3172 0.8763 Yes
flow 1-4 No 0.2988 0.3126 No
flow 2-4 No 0.6309 0.4312 No
flow 3-2 No 0.3180 0.2182 No
flow 3-4 No 0.3257 0.5278 No
flow 4-1 No 0.5587 0.6721 No

inj 1 Yes 0.3272 0.8450 Yes
inj 3 No 0.2238 0.2994 No
inj 4 No 0.4592 0.2994 No

2) IEEE 14-bus system: Fig.6 shows a typical IEEE 14-
bus system. It is a typical meshed transmission network. The
network parameters and load data are given in [30]. There are
five generation buses in the system. The loads are modelled
as a combination of constant impedance (Z), constant current
(I) and constant power (P) loads, which is known as the ZIP
model. The measured variables are power injection and branch
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TABLE IV
REAL POWER MEASUREMENTS AND RESIDUALS FOR THE 4-BUS SYSTEM

WHEN THE LINE 2-3 IS SHORTENED

Measurement
type

Measurement
with no bad

data

Measurement
with bad

data

Normalized/
Internally

studentized
residuals

|GSR|
(2.228)

flow 1-2 1.50882 1.50882 0.5813 0.1243
flow 1-4 0.49119 0.49119 0.5343 0.7923
flow 2-4 0.33966 0.33966 0.2453 1.265
flow 3-2 -0.56915 -0.17119 0.497 2.567
flow 3-4 -0.23084 -0.23084 1.2643 1.8809
flow 4-1 -0.49119 -0.49119 0.8702 0.811

inj 1 2.00011 2.00011 0.7982 0.1284
inj 3 -0.800 -0.400 0.530 2.879
inj 4 -0.600 -0.600 0.7033 0.4252

TABLE V
LEVERAGE POINTS AND MASKING/SWAMPING EFFECT FOR REAL POWER

MEASUREMENTS WHEN LINE 2-3 IS SHORTENED

Measurement
type

Masking or
Swamping

effect

Leverage
(0.726)

DRGP
(0.823)

Bad
Data

flow 1-2 No 0.3810 0.4491 No
flow 1-4 No 0.3279 0.4318 No
flow 2-4 No 0.3692 0.3268 No
flow 3-2 Yes 0.6523 0.856 Yes
flow 3-4 No 0.5781 0.7284 No
flow 4-1 No 0.5432 0.3067 No

inj 1 No 0.4789 0.3104 No
inj 3 Yes 0.4872 0.894 Yes
inj 4 No 0.5890 0.4321 No

power flows. The measurements are shown in Table VI. The
measurements are generated by adding random Gaussian noise
to the single-phase load flow results. The gross errors are
generated by changing the value of the corresponding diagonal
element of the hat matrix Kii. The change in the Kii value
reflects a change in the corresponding measurement zi. The
details are given in Appendix A.

The cut-off values for all the potential values and the
studentized residuals are shown in Table VIII. It shows that
DRGP correctly identifies the leverage data points while the
potential and the leverage values (i.e. diagonal entries of the
hat matrix) fails to identify the leverage measurements cor-
rectly and instead swamps some non-leverage measurements
as leverage and masks some leverage measurements as non-
leverage for 14-bus system. Table VII justifies the fact, with
some key measurements shown with text arrows in Fig. 8,
9, that DRGP technique with GSR properly identifies the
bad data for leverage measurements, however, the normalized
residuals fail to do so. Table VIII further shows the GSR of
the measurements and thus, validates the effectiveness of the
strategy. Table IX justifies the fact that DRGP is robust against
swamping or masking effect. While the robust Mahalanobis
distance masks some high leverage points as low leverages,
the DRGP identifies all the high leverages correctly. The above
strategy is robust against the size of the system and can be
applied to larger standard systems such as IEEE-30 and IEEE-
118 bus system. The next subsection provides the results for
a standard large but meshed distribution 123-bus system.

3) Distribution system: The IEEE 123-bus test distribution
system has also been considered for this study. The network

TABLE VI
COMPARISON OF STUDENTIZED RESIDUALS WITH OTHER RESIDUALS FOR

14-BUS SYSTEM

Measurement

Semi-
studentized
residuals

(2.3)

Internally
studen-
tized

residuals
(3.0)

Externally
studen-
tized

residuals
(3.0)

DFFITS
(1.782)

Cook’s
dis-

tance
(1.00)

flow 2-1 0.8864 0.8208 0.9445 0.4176 0.4279
flow 3-2 2.2952 1.4276 2.1169 0.6811 0.7892
flow 2-4 0.8099 0.9821 0.349 0.9031 0.1404
flow 1-5 0.4656 0.5793 1.5759 1.2042 0.4107
flow 5-2 2.9818 3.7311 2.0244 1.4321 0.1201
flow 5-4 2.7264 3.1437 5.4399 0.6478 0.4197
flow 5-6 1.7476 1.3681 0.3057 1.1573 0.1691
flow 4-7 0.8080 0.6435 1.9444 0.7921 0.3198
flow 8-7 0.6419 0.8092 1.2097 0.7695 0.4180
flow 9-7 1.0385 1.4952 0.4564 1.4502 0.3179
flow 9-10 0.1676 0.1280 0.4745 1.2998 0.0981
flow 6-11 0.7222 0.8211 1.1889 0.8931 .4193
flow 13-6 0.4754 0.1704 0.5142 1.672 0.1801

flow 10-11 0.7417 0.7411 1.0561 0.8701 0.3153
flow 13-14 1.5130 1.3711 1.3913 0.7982 0.3172

inj 1 1.6799 3.4143 6.0186 0.7921 0.8793
inj 4 0.3914 0.3719 4.3473 1.2983 0.9168
inj 8 0.6934 0.5489 0.9061 1.4042 0.9082
inj 10 0.5051 0.4301 0.3792 1.2763 0.4193
inj 12 0.0713 0.1032 0.0393 0.6822 .3812
inj 14 1.8547 1.432 2.0724 1.4731 0.8932

flow 1-2 2.0240 2.4191 2.0664 0.7291 0.8911
flow 5-1 1.6224 1.4522 1.5051 0.4321 0.7821
flow 4-3 1.8094 1.2480 2.3539 0.4126 0.1794
flow 7-8 1.6933 1.3421 2.1443 1.3279 0.7891
flow 9-4 0.3187 0.2819 1.1517 1.2792 0.6871
flow 10-9 0.1167 0.3179 0.057 0.9110 0.7981
flow 14-9 0.9419 0.3183 0.3926 0.2479 0.4729

flow 13-12 0.2060 0.1261 1.3136 1.593 0.7911
inj 2 2.6871 0.4271 1.9129 0.495 0.4792
inj 6 0.2100 0.2721 2.3154 1.110 0.6871
inj 7 1.4043 1.3211 0.234 0.4729 0.8862
inj 11 0.4903 0.4302 0.1057 0.4380 0.6621
inj 13 0.7720 0.8711 1.342 0.1793 0.6911

TABLE VII
THE GSR-DRGP APPROACH AND LNR APPROACH

Measurement Normalized
Residuals

Leverages
identi-
fied by
DRGP

GSR-
DRGP

ap-
proach

Bad
Data

flow 5-4 2.7264 Yes 5.4399 Yes
inj 4 0.3914 Yes 4.3473 Yes

flow 1-2 2.0240 Yes 2.0664 No
inj 2 2.6871 No 1.9129 No
inj 1 1.6799 No 6.0186 Yes

parameters and load data are obtained from [31], [32]. The
topologies of the test systems are shown in Fig. 7. The
voltage level of the system is 4.16 kV. There are both three-
phase and single-phase loads. Thus, the system is inherently
unbalanced. The three-phase loads are either star or delta
connected. The loads are either constant current or constant
impedance or constant power. The loads in the system have
been modelled as ZIP-model. The test system consists of both
overhead lines and underground cables. The overhead lines
and underground cables have been modelled with modified
Carson’s equations [33]. The distribution feeder is either three-
phase or three-phase with a grounded neutral or single or
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two-phase laterals. Therefore, the impedance of each overhead
line or underground cable is represented as either a 3x3 or
a 4x4 matrix compared to a single element in single phase
representation. However, the 4x4 matrix for three-phase lines
with grounded neutral is converted to 3x3 matrix by Kron’s
reduction [33]. A three-phase transformer is modelled as three
individual single-phase transformers. The tap changers are
considered to have fixed taps. The switches between buses 14
and 117, 61 and 118, 19 and 116, 98 and 119 are considered
closed. The closed switches between buses 55 and 95 and 123
and 121 makes the system meshed in nature.

The IEEE-123 test system has been modified to incorporate
some leverage data points in the measurement data set. Injec-
tion measurements are added on buses 14, 19 and 55 and the
lines 9-14 and 19-22 are made short.

The measurements are generated by adding random Gaus-
sian noise to the three-phase load flow results. The percent-
age error in real measurements is 3-5% and that in pseudo
measurements is 20%. It should be noted that the number of
pseudo measurements is larger than real measurements (about
60% of the total). With the increase in percentage error of
measurements the estimation error will be high. So, for 30%
and 40% error in pseudo measurements the estimation error
will be much higher than for 20% error in pseudo measure-
ments. The accuracy of the estimates of voltage magnitudes
have been shown in Fig. 13-15. Table XI further shows the
sum of squares of error for 20% and 30% error in pseudo
measurements. The gross errors are generated by changing
the value of Kii as explained in Section II-C. Appendix A
states the details.

The main advantage of this method is that it can separate
and simultaneously identify the bad data points (outliers) and
the leverages and, therefore, can be easily applied to the
measurement set even if the high leverages are affected by

TABLE VIII
GENERALIZED POTENTIALS AND STUDENTIZED RESIDUALS FOR 14 BUS

SYSTEM

Measurement
No. Measurement Leverage

(0.758)
DRGP
(0.927) GSR(3.0)

1 flow 2-1 0.5907 0.0297 -0.9445
2 flow 3-2 0.1943 0.05 2.1169
3 flow 2-4 0.6339 0.3652 -0.349
4 flow 1-5 0.8152 0.0677 -1.5759
5 flow 5-2 0.6124 0.5727 2.0244

6
flow 5-4

(bad, high
leverage)

0.2519 1.6442 5.4399

7 flow 5-6 0.23 0.5057 -0.3057
8 flow 4-7 0.0729 0.1049 -1.9444
9 flow 8-7 0.461 0.4617 -1.2097

10 flow 9-7 0.5467 0.363 -0.4564
11 flow 9-10 0.4373 0.6811 -0.4745
12 flow 6-11 0.3406 0.4543 -1.1889
13 flow 13-6 0.5156 0.5602 0.5142
14 flow 10-11 0.5181 0.3177 1.0561
15 flow 13-14 0.5432 0.3027 -1.3913

16
inj 1 (bad,

low
leverage)

0.7782 0.0777 6.0186

17 inj 4 (bad) 0.9065 0.9884 -4.3473
18 inj 8 0.1671 0.0932 -0.9061
19 inj 10 0.5674 0.1214 -0.3792
20 inj 12 0.189 0.2737 0.0393
21 inj 14 0.0955 0.582 -2.0724

22
flow 1-2

(good, high
leverage)

0.8927 2.5896 2.0664

23 flow 5-1 0.3601 0.0423 1.5051
24 flow 4-3 0.367 0.2795 -2.3539
25 flow 7-8 0.5296 0.3688 2.1443
26 flow 9-4 0.6162 0.2918 1.1517
27 flow 10-9 0.2802 0.4598 -0.057
28 flow 14-9 0.5296 0.4396 0.3926
29 flow 13-12 0.3329 0.2044 -1.3136
30 inj 2 0.9115 0.9173 -1.9129
31 inj 6 0.6663 0.0108 2.3154
32 inj 7 0.2052 0.6888 0.234
33 inj 11 0.4908 0.117 0.1057
34 inj 13 0.4658 0.0744 -1.342
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Fig. 7. IEEE 123-bus distribution system

gross error. These are reported here.
The proposed methodology is carried out for other scenarios
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TABLE IX
MASKING OR SWAMPING EFFECT FOR 14-BUS SYSTEM

Measurement
Identified

by
RMD

Identified
by

DRGP

Actual
lever-
ages

Bad
Data

flow 5-4 No Yes Yes Yes
inj 4 Yes Yes Yes Yes

flow 1-2 Yes Yes Yes No
inj 2 No No No No
inj 1 Yes No No Yes
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Fig. 10. Leverage vs Residual plot for 123 bus system

TABLE X
DRGP AND GSR FOR 123 BUS SYSTEM

Measurement Leverage
(0.736)

DRGP
(0.853) GSR(3.0) Bad

Data
inj 55 0.854 1.7924 4.586 Yes

flow 54-55 0.756 1.8595 3.673 Yes
inj 14 0.675 0.9595 -4.457 Yes

flow 9-14 0.812 1.2595 2.0670 No
inj 67 0.478 0.5595 5.5465 Yes
inj 36 0.798 0.657 1.967 No
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Fig. 11. DRGP vs GSR plot for 123 bus system

in a Monte Carlo simulation for both IEEE 14 bus system and
IEEE 123 bus system. The boxplot for two scenarios for IEEE
14 bus system is presented in Fig.16. It shows that the outliers
in both scenarios are correctly identified.

B. Discussions

The DRGP vs GSR graphs for 14 bus and 123 bus are
shown in Fig.9 and Fig.11 respectively. The positions of high
leverage points, low leverage points, outliers on high leverage
points and outliers on low leverage points are shown clearly.
The high leverages and the bad data points are shown in red in
the figures. As the bulk of the data are low leverages with low
residuals, most of the data points lie around the origin. The
points with high leverages are located in the upper area of the
plot and the data points with large residuals lie either in the
left or right of the plot. This is explained in the schematic in
Fig.4. The measurements marked in red are highlighted in bold
in Table VIII. Table X shows the measurements marked in red
for 123-bus system. The high leverage measurement (flow 5-4
in 14-bus system and inj 55 and flow 54-55 in 123-bus system)
which contains gross error are located at the top right corner of
the graph. The low leverage (inj 1 in 14-bus system and inj 67
in 123-bus system) with gross error is located at the extreme
right end of the x − axis of the graph. The high leverages
(flow 1-2 in 14-bus system and flow 9-14 in 123-bus system)
which are not contaminated with gross errors are located at
the top of the graph. Fig.8 and Fig.10 show the plot of the
leverage values (i.e. diagonal entries of the hat matrix) against
the square of the normalized residuals. The same cases shown
in red in Fig.9 and Fig.11 are shown in red here. However,
here, the cases (inj 1, inj 2 and flow 1-5 in 14-bus system and
inj 14 in 123-bus system) are swamped and the case (flow
4-3 in 14-bus system and inj 67 in 123-bus system) shows a
large normalized residual. It is evident from the figure that it
is difficult to differentiate the outliers from the high leverage
points. Due to masking/swamping effect some measurements
are misrepresented as high leverages and vice versa. The key
measurement points are shown with red data points and text
arrows in the Fig. 8-11.

The above method has been applied to small 4-bus ex-
ample, balanced 14-bus system and unbalanced IEEE 123-
bus systems. The generalized studentized residual has been
used instead of the normalized residuals to identify the bad
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Fig. 15. True and estimated voltages of phase c for IEEE 123 bus system

TABLE XI
COMPARISON OF ACCURACY FOR ESTIMATED VOLTAGES

Results

20% error
in pseudo
measure-

ments

30% error
in pseudo
measure-

ments
SSE of bus voltages

at phase a 0.00277 0.00315

SSE of bus voltages
at phase b 0.00545 0.00587

SSE of bus voltages
at phase c 0.00596 0.00645
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Fig. 16. Boxplot of scenarios in a Monte Carlo simulation

data. Even if the normalized/internally studentized residuals
are low the GSR, for the false data, is significant. However, the
above method has been compared with the normalized residual
test to identify bad data. Fig. 9,11 and Fig. 8,10 justify the
effectiveness of the above algorithm. Table VI compares the
normalized/internally studentized residuals and other measures
with externally studentized residuals for the 14-bus case, while
Fig. 12 shows the comparison of normalized residuals and
GSR for key measurements in case of 123-bus distribution
system. From both cases it can be inferred that while the
largest normalized residual test fails to separate the outliers
from the high leverages and thus fails to identify the bad data
when there are multiple influential data points, the simultane-
ous technique of DRGP and GSR clearly separates the high
leverages, low leverages and measurement outliers from one
other and also prevents the masking or swamping effect in the
presence of multiple influential data points. Thus the method
has the capability to deal with deliberate man-made attack.

V. CONCLUSION

It is always necessary to detect erroneous measurements
in active power network operation. Due to growing deploy-
ment of ICT and automation technologies to operate modern
power systems the measurements can be tampered for mala
fide intentions. The attacker will always try to influence the
states of the system by hiding the attack from the detection
algorithm, which is possible if the high leverage measurements
are especially targeted. The high leverages can occur in both
transmission and distribution networks. The research reported
here has used the concept of regression analysis to identify
the outliers and influential measurements in the system. It
has been found that identifying the bad data for leverage
measurements is particularly difficult due to the low value
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of residuals even if they are infected with gross errors. In
addition, if there are multiple leverage measurements some of
the high leverage measurement points may be masked or some
of the non-influential measurement points may be swamped.
Hence, in order to take care of this masking and swamping
effect, the concept of diagnostic-robust generalized potential
has been proposed to separate the leverage measurements from
rest of the measurements and then the studentized residuals
are applied on the measurements to identify the bad data
for multiple high leverage measurements. Moreover, even
if there are large errors in high leverage measurements it
will be possible to identify them. Comprehensive results and
comparative studies on both transmission and distribution
systems/balanced and unbalanced systems further show the
advantages of this methodology against other existing residual
techniques to identify bad data against leverage attack. The
proposed method can assist the EMS/DMS in taking control
and operation decisions in these scenarios.

APPENDIX A
THEOREMS ON ATTACK STRATEGY

Let, H̄ is defined as H̄ = R−1/2H , and H̄i is the ith row
of H̄

Theorem 1: Let ε be the threshold and σi=1,...,3m be
the variance of errors in the J(x̂) test. Given any set of
measurements z, it is guaranteed to pass the J(x̂) test when∑3m
i=1(1−Kii)

∑3m
j=1(z2j /σ

2
j ) ≤ ε.

Theorem 2: Suppose the original set of measurements z
can bypass the J(x̂) test. When the measurement zi in
z is perturbed into zattackedi by the attacker, there always
exists a new value Kattacked

ii ∈ (Kii, 1], such that the new
measurement set zattacked is guaranteed to bypass the J(x̂)
test.

Theorem 3: Let Kii be the ith diagonal element of hat
matrix K, then,

(1−Kii)
2 ≤

∥∥∥∥[H̄p

H̄f

]∥∥∥∥2
2∥∥∥H̄T

i

∥∥∥2
2

where H̄ is partitioned as: H̄ =
[
H̄pH̄iH̄f

]T
.

An attacker can increase the value of Kii by just increasing
the l2-norm of H̄T

i . Since, H̄i = 1/σi.Hi, it gives rise to three
rules

Rule 1: Increase the absolute values of elements in Hi.
Rule 2: Decrease the value of σi.
Rule 3: Increase the number of non-zero elements in Hi.
The proofs of the theorems are given in [25].

Therefore, there is a relationship between the measurement zi
and the corresponding Kii. Let the attacked measurement be
denoted by zattackedi and the attacked corresponding diagonal
element of the hat matrix be Kattacked

ii . Then, ∆Kii =
Kattacked
ii −Kii. Hence, the change in the value of Kii reflects

a change in the value of the corresponding zi.
A smaller σi indicates a higher accuracy measurement. A

higher accuracy measurement is more likely to become a
leverage measurement and thus has a higher chance of getting

attacked. From Theorem 2, it is clear that with a small change
in the value of Kii can make the attack successful against
measurements with larger value of Kii. Hence, the leverage
measurements are more susceptible to successful attacks.

APPENDIX B
STUDENTIZED RESIDUALS

The diagnostics for single case influential observations are
ineffective in case of multiple influential observations due
to masking/swamping effects. The phenomenon of masking
and/or swamping has been explained in Section II-D. Let the
set of deleted cases be D and the set of remaining cases be
R. When a group of observations is deleted

K
−(D)
ii = hTi (HT

RHR)−1hi

K
−(D)
ii is the ith diagonal element of the H(HT

RHR)−1HT

matrix. Most of the outlier detection methods separate the
clean observations from the potential outliers.

When an additional point i is added to the set R, according
to [27], [34]

K
−(D)+i
ii = hTi (HT

RHR + hih
T
i )−1hi =

K
−(D)
ii

1 +K
−(D)
ii

The new state variables with the additional point i in the set
R is given by

∆x̂R+i = (HT
RHR + hih

T
i )−1(HT

R∆zR + hi∆zi)

= ∆x̂R +
(HT

RHR)−1hi

1 +K
−(D)
ii

r∗st,i

Let r−(D)
i be the ith deletion residual.

r∗,R+i
st,i =

r
−(D)
i

σ̂R

√
1 +K

−(D)
ii

The variances of the observations in the basic subset and
outside the basic subset are given [35] as:

1− hTi (HT
RHR)−1hi, i ∈ R

1 + hTi (HT
RHR)−1hi, i /∈ R

The studentized residuals for the two subsets are given as

r
−(D)
i

σ̂R

√
1− hTi (HT

RHR)−1hi

, i ∈ R

r
−(D)
i

σ̂R

√
1 + hTi (HT

RHR)−1hi

, i /∈ R
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