
23, 1996, published by IEEE, pp26-39.

1

A Security Framework Supporting Domain Based Access Control in
Distributed Systems

Nicholas Yialelis Morris Sloman

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, United Kingdom

Email: {ny, mss}@doc.ic.ac.uk

Abstract

This paper describes a security framework for object-
based distributed systems which is being developed in the
CORBA-compliant OrbixTM environment. This framework
allows the development of secure distributed applications
on existing operating systems that do not support
distributed security. The design aims at making the
authentication and access control mechanisms transparent
to the application level and supporting access control
policies specified using the concept of the management
domain. This concept has been developed as a means of
specifying policies in terms of groups of objects. The
description focuses on how the Access Control List
paradigm is combined with pseudo capabilities which are
used as hints to improve the time-efficiency of the access
control decision mechanism. The protocols to support the
(cascaded) delegation of access rights to agents acting on
behalf of a grantor are explained. A brief description of the
authentication mechanism is also given.

1 Introduction

Management of very large, inter-organisational
distributed systems cannot be centralised; it must be
distributed to reflect the distribution of the system being
managed. In addition, these systems may include millions
of entities. In order to make the management of these
systems practically feasible, the concept of the
Management Domain has been used within the framework
of the Esprit funded SysMan Project. Management
domains provide the means of partitioning management
responsibility by grouping objects in order to specify
policies including access control policies[1]. Access
control policies specify what operations a group of subject
objects is permitted to perform on a group of target
objects. As the scope of these policies is specified in
terms of management domains, access control decisions
are mainly based on the authenticated domain membership
of the subject.

A Domain Service is provided by a set of domain
servers which are distributed for efficiency, availability,
management and security reasons. However, this implies
that verification of a subject’s membership in domains
cannot be based on a trusted centralised server. A verifier

may receive membership certificates from multiple domain
servers which are trusted to different extents (c.f. the
notion of the Privilege Attribute Service-PAS in the
SESAME architecture [2]). Access control policies are
specified in terms of domain membership rather than
individual identities so performance of domain
membership verification is critical for the access control
decision mechanism.

This paper describes a security framework for object-
based distributed systems that is being developed using the
Orbix™[3] implementation of the Common Object
Request Broker (CORBA) distributed programming
environment. The aim of the design is two-fold: (i) to
provide a security platform for distributed applications that
makes the access control and authentication mechanisms
transparent to the application level, and (ii) to support the
enforcement of access control policies that are specified
using management domains. The design of the system
supports user authentication, verification of object
membership in management domains, secure channel
establishment between remote objects, access control and
cascaded delegation of access rights. The description given
in this paper focuses on the access control and delegation
mechanisms. A brief description of the authentication
mechanism and the supporting domain and policy services
is given.

The framework permits the development of large secure
distributed applications on existing operating systems that
do not support distributed security. Although the system
has been designed to cope with the enforcement of domain-
based access control policies, it deals with issues that
appear in more general object-based distributed systems
and in access control systems that make use of the notion
of group of principals as a means of specifying access
control policies.

The next section introduces the basic concepts of
domains, the access control policy and the delegation of
access rights. Section 3 sketches the security architecture
and discusses the concept of the secure channel which is
the cornerstone of the architecture. Section 4 explains how
a secure channel is established between a subject and a
target object and how it is employed to make access
control decisions. Section 5 presents the delegation
mechanism and how it relates to the access control

™ Orbix is a registered Trademark of Iona Technologies
Ltd, Dublin, Ireland.

2

system. Section 6 summarises the presented architecture
and discusses further work. A list of the abbreviations used
in this paper is given in Appendix II.

2 Background

This section gives an overview of the basic concepts
behind domain-based access control systems and discusses
some implementation details with respect to the Orbix
environment.

2.1 Objects

An object-based approach has been adopted to building
domain-based access control systems. In this approach an
object encapsulates a state and provides an interface on
which operations on its state can be invoked by other
objects. In the Orbix environment objects are maintained
within servers. In the scope of this paper, we consider a
server to be a Unix process (see figure 2.1).

An object has a unique name which is called Object
Identifier (OID) which is the string representation of the
object reference in the Orbix environment. It consists of

the object’s marker which is unique within its server, the
server name and the host name of its server. An object can
act as a server (accept invocations) and as a client (make
invocations on other object interfaces).

2.2 Domain service

A domain is an object which maintains a list of
references to objects that have been explicitly grouped
together for the purposes of management [1]. If a domain
holds a reference to an object, the object is said to be a
direct member of that domain and the domain is said to be
its parent. A domain may be a member of another domain
and is then said to be a subdomain of its parent. Members
of a subdomain are indirect members of the parent domain.
An object can be a direct or indirect member of multiple
domains.

For example, in figure 2.2 DomA is the parent domain
of DomC, DomC is a direct member of DomA, and DomD
and DomF are indirect members of DomA. DomF is a
member of DomC and DomE. Finally, ObjX (a non-domain
object) is a direct member of DomE and indirect member of
DomB.

A Domain Server is implemented as a Unix process
that maintains domain objects within its address space and
supports persistence by storing the information held by
domains in a Unix file system. Domain creation is
performed by invoking an operation on a Domain Server
Object. A domain server is trusted to certify membership
of objects in the domains it maintains. Not all domain
servers are trusted to the same extent as they may be
managed by principals that represent different interests.

2.3 Policy service

2.3.1 Access Control Policies: An access control
policy is a relationship between a subject scope and a
target scope in terms of the operations which subjects are
permitted to perform on targets as well as constraints on
the applicability of the policy (e.g. validity time for the
policy) [1, 4]. The operations field specifies operation
names along with the type of the objects on which they
can be invoked. A graphical representation of an access
control policy is given in figure 2.3. The subject and
target scopes in a policy are specified using scope
expressions. They are applied on objects and return a set of
objects. Domains provide the means of first-order
grouping while scope expressions are used to specify
groups in terms of set intersection, difference and union.

Objects

Server (Unix Process)

Host

OID

OID = marker server name hostname

Figure 2.1: OID in the Orbix
environment

DomF

DomE

DomD

DomC

DomBDomA

 Domain
Server Object

Domain
Server (Unix Process)

Host

ObjX

Create
Domain
Objects

denotes
membership

 Figure 2.2: A Domain Server maintaining a simple domain structure

3

An example scope expression is *DomA ̂ *DomB which
defines the scope that contains the objects that are direct or
indirect members of DomA and DomB (the operator ^
denotes set intersection). A simplified definition of scope
expressions is given in Appendix I.

When a person logs into the system, one or more
adapter objects are created on the login host. These objects
represent the user in the system and their access privileges
depend on their domain membership. It is, therefore,
important to control to which domains a user is permitted
to add new members.

We are also experimenting with the concept of a role as
a set of policies applying to a particular manager position
[5]. Using this concept, the user would be able to select
the access rights an adapter object possesses by specifying
the role or roles it is acting in. The use of roles, however,
does not affect the access control enforcement mechanism
described in this paper as the specification of the access
rights is still based on the notion of policy.

Subject Scope Target Scope

Operations

Constraints

Invoke

T1: op1, op2,...
T2: op1, op3,...

Figure 2.3: Graphical representation of an
access control policy

2.3.2 Delegation and Extended Access Control
Policies: The notion of the access control policy has
been extended to deal with the delegation of access rights
whereby an object authorises a possibly remote agent to
act on its behalf to access a service or resource.
Distribution means that the components involved may not
be equally trusted. We describe a simple scenario in order
to illustrate the issues and define some useful terms. Let
us assume that a subject X invokes an operation Op1 on a
target Y. This operation triggers the invocation of Op2 on
Z (figure 2.4). X possesses the right to invoke Op2 on Z
but Y is not trusted to possess this right permanently, so
X temporarily delegates the necessary access rights to Y to
enable it to invoke Op2 on Z. The access control facilities
of Z allow the invocation of Op2 if they ensure that Y has
been delegated the necessary access rights. We refer to X as
the grantor, to Y as the grantee and to Z as the end-point.
Cascaded delegation is also possible in the sense that a
grantee may further delegate to a second grantee, the
second to a third, etc.

In general, objects maintained within different servers
are trusted to different extents. Therefore, it is necessary to
control what access rights can be delegated to which
objects. In addition, the possession of access rights does
not imply the right to delegate these rights. For these

reasons, there is a need for a policy scheme that enables
the determination of:

i) The Grantor, i.e. who can delegate
ii) The Grantee, i.e. to whom rights can be delegated
iii) The Delegatable rights, i.e. what rights the grantor

is permitted to delegate to the grantee.

An extended access control policy, (figure 2.5) is used
to specify delegation policy. It determines that objects in
the Subject scope can delegate to objects in the Grantee
scope the right to perform operations, specified in the
Operations field, on objects in the Target scope.

Delegates Proves
Delegation

Op2
X Y Z

Grantor Grantee End-Point
Op1

Figure 2.4: A simple delegation scenario

Cascaded delegation is allowed provided that all grantees
are in the Grantee scope of the policy. This approach is
weaker in terms of security than that adopted by the DSSA
and described in [6] and [7] which specifies the order of
delegation steps in the Access Control List (ACL). Our
scheme does not impose constraints on the order of the
delegation steps which can be difficult to determine in
advance for some applications.

Subject Scope Target Scope

Operations

Constraints

Grantee Scope

Delegate InvokeDelegate

Figure 2.5: Graphical representation of an
extended access control policy

2.3.3 Policy Servers: Access Control Policy Objects
are maintained within Policy Servers (see figure 2.6)
which collectively provide the policy service. A policy
server object is the factory that creates policy objects. A
user that has the necessary access privileges can create,
edit, activate and delete policies using a Policy Editor [8].
When a policy is activated, Policy scope Evaluation
Tokens (PETs) are propagated down the domain structure
by the domain service. These tokens contain the OID of
the policy object and information related to the scope

4

expressions of the policy. This information is used by the
domain service and the access control service to determine
which objects are in the subject, target and grantee scopes
of the policy. This is done dynamically in the sense that
the scopes of the activated policies are re-evaluated every
time the domain structure changes.

3 Overview of the security architecture

This section gives an overview of the security
architecture and briefly discusses the functionality of its
main building blocks. In addition, it introduces the
concept of the secure channel which is the cornerstone of
the design. This concept is explained in more detail in
section 4.

A Host Manager Server is present on all hosts (see
figure 3.1). It supports the Host Manager Object, which is
aware of all objects maintained within its host, an
Authentication Agent (AA) object and an Access Control
Agent (ACA) object which are described below.

We take an approach to building the system in which
distributed security is provided at the levels of the host
manager server and the application server but is transparent
to the application objects. This is because the code of the

application objects (supported by the application servers)
can be developed independently of the security
components. A simple application programming interface
(API) to the security components is provided. By
transferring part of the security functionality into the host
manager we minimise the size of the security components
that must be replicated among the application servers. In
addition, we minimise the number of principals (objects in
this context) that have to be registered with the
authentication service.

3.1 Security components and secure channels

There is a need to provide secure communication
between subject and target objects. The type and degree of
security required is dependent upon the application. For
many applications, integrity would be sufficient. Other
applications may in addition require secrecy. By the term
integrity we mean that the receiver of a message knows
the identities of the possible senders while by the term
secrecy we mean that the sender of a message knows the
possible receivers of that message. We can achieve both
properties by encrypting the cleartext along with a suitable
checksum [7, 9]. Integrity can be achieved by using a
digest function (see for example [10]). Use of encryption
may be limited by time-efficiency requirements or
legislation.

The provision of secure communication between two
objects requires the execution of an authentication protocol
which results in the establishment of a shared secret key
(for a formal discussion see [11]). An Authentication
Agent (AA) on each node executes the authentication
protocols on behalf of the application objects on the node.
Subjects which request the provision of secure
communication can still specify the type and degree of
security they require. As shown in figure 3.2, the AA is
an object in the address space of the Host Manager Server
which is present on all nodes. This server also maintains
the Access Control Agent (ACA) which holds copies of
the access control policies applying to the objects on its
node and determines whether a policy exists to permit a
remote subject to access a target on its host.

Domain Service

Policy
Editor

Propagate
Policy
Evaluation
Tokens

Policy Server

Policy
Objects

 Figure 2.6: Policy Server maintaining Policy Objects

Host Manager
Server

Host Manager Object

Host

(Unix Process)

Other
Servers

Acces Control
 Agent

Authetication
 Agent

Figure 3.1: Host Manager Server

5

In order to integrate the authentication, cryptographic
and access control information related to a subject-target
pair, the concept of the secure channel has been adopted.
This represents a secure communication link between a
subject and a target object (i.e. authentication and
cryptographic information) as well as access control and
domain membership information related to the two objects
that use the channel. Each secure channel has a unique
identifier (CHID) which can be used as a reference to the
information related to the channel. Both the AA and ACA
are involved in the creation of secure channels on behalf of
the application objects on their host. When a secure
channel has been established, the target and subject can
exchange messages which are encrypted and decrypted by
the En/Decryption facilities (EDF) in their address space.
Furthermore, the access control decision for each
invocation is made by the Reference Monitor (RM) in the
address space of the target. These decisions are based on
the access control information related to the channel
through which the invocation is made. The RM is
provided with this information by the target ACA. The
En/Decryption and RM facilities are linked as a library
into each application server. The En/Decryption facility
uses the transformer feature added for Orbix version 1.3.2.
This feature allows access to the buffer carrying a request
immediately before it is transmitted and immediately after
it has been received.

3.2 A typical scenario

We give a brief description of how a secure channel is
used by presenting a simple but typical scenario. Let us
suppose that the object ObjA on Host_A intends to invoke
operations on ObjB which resides on a remote host
Host_B (figure 3.2). ObjB denotes the OID of that object
and we assume that it is known to ObjA. We also assume
there is an access control policy P1 permitting ObjA to
invoke operations on ObjB. In a more complicated
scenario, ObjA could be the grantee of another object that
has delegated access rights to it. The delegation
mechanism is described in detail in section 5.

In figure 3.2, the subject requests the local AA to
establish a secure channel between itself and the target
ObjB, specifying the type of secure channel it requires.
The subject AA and ACA co-operate with those of the
target to establish the channel and give the session key and
the cryptosystem type chosen by the AAs along with the
identifier (CHID) of the established channel to the local
encryption/decryption facilities. The session key can then
be used to exchange messages between the two application
objects.

Domain membership verification is also performed by
the two AAs in the framework of the established channel.
The target ACA determines the domain membership of the
subject (ObjA) that has to be verified to enable operation
invocations on the target (ObjB). Furthermore, the subject
may request authentication of domain membership of the

Subject Host (Host_A)

Access
Control
Agent Authentication

Agent

Application Server
address space

Subject

Target Host (Host_B)

Access
Control
AgentAuthentication

Agent

Application Server
address space

Target
En/De-
cryption
Facility

En/De-
cryption
Facility

RM
Facility

Invocation

Reply

Authentication
Service

Policy
ServiceDomain Service

Establish
Channel

ObjA ObjB

Authentication
Service

Policy
Service Domain Service

Host Manager Server
address space

Host Manager Server
address space

CH
ID

CH
ID

CH
ID

 S
es

si
on

 K
ey

C
ry

pt
os

ys
te

m

 S
es

si
on

 K
ey

C
ry

pt
os

ys
te

m

En
ab

le
d

Po
lic

y

 L
ist

Establish

Channel

Request

 Figure 3.2: Basic Security Architecture

6

target. The verified membership of the subject and target is
associated with the established secure channel.

In addition an Enabled Policy List (EPL) containing
those policies which permit the subject to access the
target, is associated with the channel. It is a subset of the
policies applying to the target, selected using the
authenticated OID and domain membership of the subject.
The EPL is given to the RM in the address space of the
target which can then grant or reject access requests that
are made through the established channel. In our example
this list contains the policy P1.

The CHID of an established channel is given to the
subject which includes it as a parameter in operation
invocations. The target can also retrieve the CHID of the
channel through which an invocation has been made. This
feature is used when delegation of access rights is taking
place (see section 5). The CHID is also used as identifier
of the session key and it is transmitted in plain text along
with the encrypted messages. This is illustrated in figure
3.3 where we assume that a cryptosystem that provides
both secrecy and integrity is employed. Each EDF
maintains a CryptoTable with entries to associate CHIDs
with session keys and cryptosystems. The subject EDF
uses the session key Ks and the cryptosystem associated
with the CHID specified in the invocation to encrypt the
marshalled data of the invocation along with a serial
number (SN) and the checksum. The marshalled data
contain the operation name, the arguments of the

operation and the CHID. Unique serial numbers are used in
the context of a channel to identify replayed messages.

The target EDF uses the CHID that is transferred in
plain text to determine the key and the cryptosystem it has
to use to decrypt the incoming invocation request. When
the message has been decrypted, the checksum and the SN
are checked to decide whether the incoming message is
fresh and has been sent by the subject associated with the
CHID. If the check is successful, the marshalled data is
passed to the Orbix unmarshalling routines. The
invocation data (containing the CHID) is then passed to
the RM. This retrieves the operation name and the CHID.
At this stage, the RM believes that the invocation request
has been made by the subject associated with the CHID. It
therefore checks whether there is a policy in the EPL
associated with the CHID that permits the operation. The
target and subject EDF swap roles when a reply has to be
transferred back to the subject. The following table
illustrates how the information associated with a channel
is distributed among the main security components. The
CHID is used as a reference to this information.
Delegation information is also associated with a channel.
This is described in section 6.

 Invocation
(Op, args, CHID)

Orbix Marshalling
 routines

Marshalled data

Encryption
Ks

Marshalled data, SN, Checksum

{Marshalled data, SN, Checksum}Ks, CHID {Marshalled data, SN, Checksum}Ks, CHID

Decryption
Ks

Marshalled data, SN, Checksum

Generate
Checksum, SN Marshalled data

Check
Checksum, SN

Orbix UnMarshalling
 routines RM

TargetSubject

Orbix Communication Layer Orbix Communication Layer

Subject Object
address space

Target Object
address space

En/Decryption
Facilities

En/Decryption
Facilities

Crypto
Table

CHID Crypto
Table

 Figure 3.3: En/Decryption Facilities providing secrecy and integrity

7

3.3 Authentication service

The Authentication Service (AS) is transparent to the
application objects as only the authentication agents
interact with it. Authentication agents use the AS to
authenticate users as well as remote authentication agents.
Other objects cannot be authenticated directly as they are
not registered with the authentication service. Only users
and authentication agents are registered with the AS which
significantly reduces the size and update rate of the security
database used by the AS. Application objects and their
servers are registered with their local AA and ACA. It is
the responsibility of the user (or the object acting on her
behalf) to create an application object on a node whose AA
and ACA (and system software/hardware) can be
sufficiently trusted. An AA believes that the AA and ACA
on a remote host are sufficiently trustworthy to act on
behalf of the application objects on that node. Note,
however, that not all application objects on the same host
are equally trusted; objects representing different interests
may be maintained on the same host. The secrecy and
integrity of communication between servers on the same
node (for example between application and host manager
server) is provided by the underlying system software and
hardware which must be trusted anyway.

An on-line authentication service that is based on
symmetric cryptography and employs replicated
authentication servers with minimal state is being
developed. It uses private-key certificates [12] to disperse
the security database so that the authentication servers need
to maintain no state apart from their master key. This
permits very simple, replicated tamper-proof machines to
be used as authentication servers and as translators (relays)
– for a formal discussion on this see [7]. This function of
the AS is of great importance in the proposed security
architecture as it allows domain membership verification
without establishing shared secret keys between the
verifier and the domain servers that can certify the claimed
domain membership. Specifically, membership statements
encrypted with the secret keys of the AAs of the domain
servers, certifying the claimed membership, can be re-
encrypted by the AS with the secret key of the verifier. In
addition, the push method [7] can be employed whereby
the claimant can collect the necessary certificates which
can later be re-encrypted by the authentication service with
the secret key of the verifier.

Revocation of private-key certificates is accomplished
by utilising a revocation server which periodically
publishes a revocation list containing the OIDs of the
revoked certificates. This list is used by the authentication

agents involved in an authentication rather than the
authentication service. The current design of this
authentication system supports only intra-realm
authentication. A more detailed description of this system
and the membership verification mechanism is given in
[13].

The authentication service could be based on
asymmetric cryptography which eliminates the need for
network interaction with on-line authentication servers.
However, it dramatically increases the
encryption/decryption time (according to [7], symmetric
encryption is considered to be 1000-5000 times faster than
asymmetric cryptography in software). As our system
supports multiple domain membership authentication as
well as delegation, a relatively large number of
certificates/credentials are generated and verified for each
secure channel. Thus, use of an asymmetric cryptosystem
would significantly increase the processing required for
secure channel establishment.

4 Secure channel establishment

This section describes the function of the main security
components in relation to secure channel establishment. It
also discusses the mechanism that makes access control
decisions in the framework of an established secure
channel.

4.1 Authentication agent
Authentication agents are registered with the

authentication service, so each AA shares a secret key with
the AS. Authentication between remote AAs is achieved
by using a protocol described in [13]. which is similar to
that employed by the Kerberos system [14]. The main
difference is that the authentication server in our system is
provided with the private-key certificates that contain the
secret keys of the AAs involved in the protocol.

Figure 4.1 illustrates the operation of the subject and
target AAs when a secure channel between two application
objects is being established. If authentication between the
two AAs has not already taken place, they execute the
authentication protocol which results in the establishment
of the shared secret key Kxy1. At this point AAx

1 If the subject and target are on the same host, no
authentication protocol is executed. The secure channel i s
established by the local AA and ACA. Notice that in this case
integrity and secrecy are provided by the system
software/hardware and therefore no cryptosystem is
employed.

Subject AA Subject EDF Target AA Target ACA Target RM Target EDF
Subject OID,
Membership

Subject OID,
Membership

Subject OID,
Membership

Target OID,
Membership

Target OID,
Membership

Target OID,
Membership
EPL EPL

Session Key Session Key,
Cryptosystem

Session Key Security
Attributes

Session Key,
Cryptosystem

 Table 3.1: Distribution of information related to a channel (see also figure 3.2)

8

establishes that Kxy speaks for2 AAy and, similarly, AAy
establishes that Kxy speaks for AAx where AAx and AAy
denote the OIDs of the agents. Note that these OIDs
contain the names of the hosts of the two agents which
means that the location of the agents is also authenticated.
This is important as an agent can easily verify whether a
remote authenticated AA can be trusted to act on behalf of
an object of which the OID and consequently the location
are known. By definition, a remote AA is trusted to act on
behalf of all objects on its node. Therefore, an AA simply
checks whether the node name of the authenticated remote
agent matches the node name of the object with which a
channel has to be established. If mutual trust between the
two agents has been established they proceed to choose a
session key and a CHID. These are given to the
en/decryption facilities of the two application objects. The
CHID is generated by the subject AA and is based on its
host name and a sequence number.

AAs also perform authentication of object membership
in domains using the Domain Service. The target ACA
passes to the local AA the membership of the subject that
must be authenticated (see section 4.2) and the subject
may also request its AA to authenticate a particular
membership of the target. A description of the
membership authentication mechanism is given in [13]. In
addition, authentication agents support delegation of access
rights as explained in section 5.

4.2 Access control agent

The Access Control Agent of the target determines the
policies that apply to an established channel (i.e. the
EPL), when the authentication of the subject and the

2speak for is used as in [7], that is, A speaks for B if the
fact that A says something means that we can believe that
B says the same thing.

verification of its domain membership have been
accomplished by the local AA. The final access control
decision for each invocation is made by the RM in the
address space of the target. The ACA determines the
policies that apply to local targets by processing the PETs
it receives from the policy servers and the parent domains
of the targets (see section 2.3.3). For each target it holds
an Access Control Policy List (ACPL) containing the
OIDs of the policies that apply to the target (i.e. policies
for which the target scopes include the target). It also
holds copies of these policies provided by the policy
service. Note that it is necessary to authenticate the
identity of the server that provides these copies. Though in
a large distributed system the policy service should be
provided by multiple servers, in the first implementation
phase there is a single policy server whose OID is well
known. The integrity of the policy copies is achieved by
utilising the AS as a relay to decrypt them using the secret
key of the policy server, and re-encrypt them with the
secret key of the ACA.

The ACA also maintains a Pseudo-Capability List
(PCL) for each subject on its host. This list contains the
OIDs of the policies applying to it as a subject and so
permitting it to invoke operations. When a secure channel
has to be established, the PCL associated with the subject
is given to the target ACA. The access control decisions
made by the target ACA cannot be based on a pseudo-
capability. It is used by the target ACA as a hint to find
out the candidate policies for the EPL. Figure 4.2
illustrates the operation of the target ACA when a channel
is being established. The target ACA is given the
subject’s PCL determined by the subject’s ACA. This is
used as a hint to produce a candidate EPL which contains
the policy OIDs appearing in both the PCL of the subject
and the ACPL of the target. The target ACA then requests
authentication of specific domain membership of the
subject, to ensure it is in the subject scopes of the

Subject AAx Target AAy
- Execute authentication protocol
 (authenticate AAy)

- Execute authentication protocol
 (authenticate AAx)

- Shared secret key Kxy between
 AAx and AAy established

- Shared secret key Kxy between
 AAx and AAy established

Authentication
 Service

- Check AAy can act on behalf of
 ObjB

- Check AAx can act on behalf of
 ObjA

- Agree on a session Key Ks and
 CHID
- Provide subject En/Decryption
 facilities with Ks and CHID

- Provide target En/Decryption
 facilities with Ks and CHID

- Agree on a session Key Ks and
 CHID

- Verify target membership - Verify subject membership

Subject Target
ACA

 Figure 4.1: Participation of the AAs in channel establishment

9

candidate EPL. If the target AA manages to verify the
requested membership, the EPL is considered to be valid
and it given to the RM of the target.

The PCL specifies indirectly the exact domain
membership of the subject that should be checked and
therefore makes the determination of the EPL more time-
efficient as it considerably reduces the number of policies
that the ACA has to check. If the target ACA is not given
the PCL, it has to check all the policies in the ACPL of
the target to find out which of them apply to the subject.
This check, in general, is time consuming since the
subject may be direct or indirect member of many
domains. Note that if the PCL contains the OID of a
policy that does not apply to the subject, verification of
domain membership with respect to the subject scope of
that policy fails; therefore that policy is not included in
the EPL given to the RM.

We currently use the constraints field of a policy to
determine applicability of policy with respect to dates or
time of day, but it could be used to specify the degree of
security that should be provided by the channel through
which invocations are made. The ACA also checks that
the established channel provides sufficient security for the
policies in the EPL. For this reason, the ACA is aware of
the security attributes of the cryptosystem employed in an
established channel (see table 3.1).

5 Delegation of access rights

There is a need for a trustworthy mechanism that
enables the security components of the end-point (see
section 2.3.2) to verify that a delegation has indeed taken
place. In this section we assume that the grantor, the
grantee and the end-point are on different nodes. Delegation
can also take place among objects that reside on the same
host but this case does not exhibit special interest as the
local AA can easily handle the delegation.

Ideally, the grantor should be able to delegate the
minimal access rights required by the grantee in order to
act on behalf of the grantor. In practice, however, the
grantor can rarely determine in advance the exact access
rights required by the grantee. In [7] and [15] the rights to
be delegated are specified in terms of the roles the grantor
adopts. In our system, rights can be specified in terms of
domain membership of the grantor. The current
implementation does not support the facility which
specifies what access privileges are delegated, so all the
access privileges of the grantor are delegated to the grantee.
Note, however, that extended access control policies may
limit the rights a grantor can delegate (see section 2.3.2).

5.1 Delegation protocols

This section describes the protocol employed to verify
delegation. This protocol involves the AS which is used
as a relay. Figure 5.1 illustrates the protocol sequence for
one step delegation.

The protocol uses an encrypted delegation token (DT)
for each delegation step which is represented as:

<DID, PDT, Tde, DAR, Grantor, Grantee>
where:

DID is the identifier of the delegation token, created by
the AA of the grantor using its host name plus a
time stamp.

PDT is the DID of the Preceding Delegation Token for
cascaded delegation.

Tde is the expiration time of the delegation – assuming
loosely synchronised clocks.

DAR specifies the delegated rights (for future use) –
omitted in the presented protocols.

Grantor is the OID of the grantor.
Grantee is the OID of the grantee.

Subject
 ACA

Target
 ACA

- Determine subject PCL - Determine target ACPL

Send PCL
- Determine candidate EPL

- Request membership
 authentication

- Validate EPL

- Provide RM with the EPL

Domain
Service

 Policy
Service

PETs PETs

Target
 AAOK

 Channel
Establishment

RM

 Figure 4.2: Participation of the ACAs in channel establishment

10

The grantor AA encrypts the delegation token with its
secret key and sends it to the grantee AA. The grantee AA
forwards it to the end-point AA as a proof that a delegation
has taken place. Since the delegation token is encrypted
with the grantor AA’s secret key, its integrity cannot be
verified by the end-point AA. The DT has to be re-
encrypted with the end-point AA’s secret key by the AS
which can retrieve the secret keys of both the AAs from
the private-key certificates that are sent in message 3 along
with the encrypted delegation token. In figure 5.1 the
private-key certificate PKCi contains the secret key Ki of
AAi and is represented as:

{ , }Te AAi Ki AS Km where

Km is the master key of the AS. (We assume that a
cryptosystem that provides both secrecy and privacy
is used.)

Te is the expiration time of the certificate

The authentication server that translates the DT checks
that the AA that encrypted the certificate can speak for the
grantor whose OID is mentioned in the DT. It does so by
comparing the host names in the OIDs of the AA and the
grantor. If the server does not perform this check, anyone
can make the AS translate a DT that represents a
delegation which has never taken place. The “translated”
DT is given back to the end-point AA which can now
establish that X has delegated to Y. In fact, whenever an
authentication server translates an encrypted statement of

the form {A says s}Kx, it checks that the agent that
encrypted the statement actually speaks for A.

In addition, the grantor AA sends to the grantee AA the
same DT encrypted with the shared secret key that has
been established between the grantor and the grantee AAs
(Kxy in figure 5.1, message 1). The grantee AA can
decrypt this token and verify its integrity. In this way the
grantor is aware of the delegation details. The integrity of
the DT is of importance when cascaded delegation takes
place. Note that the DT encrypted with the secret key of
the grantor cannot be read directly by the grantee; it has to
be translated by a relay.

In the case of cascaded delegation, the AA of each
intermediate grantor encrypts a DT which is sent to the
next grantee along with all the delegation tokens that refer
to the preceding delegation steps. In addition, all the
delegation tokens are sent encrypted with the secret key
shared with the next grantee. Figure 5.2 illustrates the
protocol sequence in a two-step cascaded delegation.

The PDT field is used to prevent misuse of delegation
tokens in cascaded delegations. If this field is omitted, it is
possible that a grantee can claim a false delegation chain.
For instance, consider the scenario illustrated in figure 5.3.
X1 delegates its rights to Y1 (token DT1) which
subsequently delegates these rights to Y2 (DT1, DT3). In
addition, X2 delegates to Y1 (DT2). If DT3 does not
specify the token that represents the preceding delegation
step (i.e. DT1) Y2 may claim that it has been delegated by
X2 via Y1 by forwarding DT2 and DT3 to Z (end-point).
Note that DT2 can easily be obtained by Y2 using
wiretapping.

AAx AAy

Authentication Service
 (Relay)

Delegates

Message 1

M
essage 4

M
essage 3

Message 2 AAz

Invokes
Operation

X Y Z

Message 1. AAx AAy: {DT}Kxy, {DT}Kx, PKCx
(delegate-send DT)
Message 2. AAy AAz: DT, {DT}Kx, PKCx
(claim delegation-forward DT)
Message 3. AAz AS: {DT}Kx, PKCx, PKCz
(request translation of DT)
Message 4. AS AAz: {DT}Kz
(receive translated DT)
DT = <DID, -, Tde, X, Y>, PKCx = { , }Te AAx Kx AS Km1
PKCz = { , }Te AAz Kz AS Km2

 Figure 5.1: One step delegation protocol

11

X1

X2

Y1 Y2 Z

DT1

DT2

DT1, DT3 DT2, DT3

Figure 5.3: Misuse of Delegation Token if
the PDT field is omitted

Another possible attack is illustrated in figure 5.4.
Initially X1 delegates to Y1 using DT1 which is identified
by DID1. Subsequently, X2 delegates to Y1 using DT2
which is also identified by DID1. If Y1 does not notice the
repeated delegation identifier, it can forward to Y2 the
access rights delegated by X2 using DT3 which mentions
DID1 in the PDT field. Though Y1 uses DID1 to refer to
DT2, Y2 can forward DT1 to the end point (Z) in order to
claim the delegation chain X1->Y1->Y2. This attack is
avoided if the grantee checks whether the host name in the

DID matches the host name of the AA that encrypted the
token. We assume here that the grantor AA is trusted not
to repeat the DIDs it generates.

The expiration time of the delegation tokens provides a
simple revocation mechanism. However, we are working
on a more drastic revocation mechanism, based on a
trusted server that periodically publishes a revocation list
containing the identifiers of the revoked DTs. The
integrity of this list is checked using the AS as a relay.

5.2 Channels and delegation

A delegation takes place in the framework of an
established channel between the grantor and the grantee.
Thus, a CHID can be used as a reference to a delegation. In
addition, when a subject intends to invoke operations as a
grantee, it requests the establishment of a channel
declaring that it is acting on behalf of certain grantors by
specifying the CHID related to the last delegation step.
This information is used by the ACAs and AAs to
perform the necessary authentication and verification of the
claimed delegation, and subsequently determine the EPL

AAx AAy1

Authentication Service
 (Relay)

AAy2

Delegates

Message 1 Message 2

M
essage 3

M
essage 4

Delegates

Message 5
AAz

Invokes
OperationX Y1 Y2 Z

Invokes
Operation

M
essage 6

M
essage 7

Message 1. AAx -> AAy1: {DT1}Kxy1, {DT1}Kx, PKCx
(delegate-send DT1)
Message 2. AAy1 -> AAy2: {DT1, DT2}Ky1y2, {DT1}Kx, {DT2}Ky1, PKCx, PK
(claim delegation-forward DT1, delegate-send DT2)
Message 3. AAy2 -> AS: {DT1}Kx, PKCx, PKCy2
(request translation of DT1)
Message 4. AS -> AAy2: {DT1}Ky2
(receive translated DT1)
Message 5. AAy2 -> AAz: DT1, DT2, {DT1}Kx, {DT2}Ky1, PKCx, PKCy1
(claim cascaded delegation-forward DT1, DT2)
Message 6. AAz -> AS: {DT1}Kx, {DT2}Ky1, PKCx, PKCy1, PKCz
(request translation of DT1 and DT2)
Message 7. AS -> AAz: {DT1}Kz, {DT2}Kz
(receive translated DT1 and DT2)

DT1 = <DID1, -, Tde1, X, Y1>, DT2 = <DID2, DID1, Tde1, Y1, Y2>
PKCx = { , }Te AAx Kx AS Km1 , P K C y 1 = { , }Te AAy Ky AS Km2 1 1

PKCy2 = { , }Te AAy Kz AS Km3 2 , P K C z = { , }Te AAz Kz AS Km4

 Figure 5.2: Two step delegation protocol

12

that enables the grantee to invoke operations on behalf of
the grantor.

DT2, DT3 DT1, DT3

DT2: <DID1, -, Tde2, X2, Y1>
DT3: <DID2, DID1, Tde3, Y1, Y2>

DT1: <DID1, -, Tde1, X1, Y1>

DID1

claim delegation
X1->Y1->Y2

delegate as
grantee of X2
(X2->Y1->Y2)

X1

X2

Y1 Y2 Z

DT1

DT2

Figure 5.4: Attack on the delegation
protocol using repeated DIDs

In figure 5.5, X delegates to the target of the channel
Ch1. The expiration time of the delegation is specified by
X. This delegation is associated with Ch1. When Y
requests the establishment of a channel between itself and
Z, it declares that it intends to act as grantee with respect
to the delegation associated with Ch1. The subject of the
resulting channel Ch2 is the object Y acting on behalf of
X. This information is used by the AA and ACA on the
node of Z in order to determine the EPL that enables Y to
invoke operations as grantee of X. The next section
discusses the mechanism employed to determine the EPL
when delegation is involved.

5.3 Delegation and access control

The ACA is aware of the policies applying to the
subject on its host. The list of the policies allowing a
subject to delegate rights is referred to as the Delegation
Pseudo-Capability List (DPCL). In other words, the
DPCL associated with a subject contains the extended
access control policies that appear in the PCL of the
subject. Furthermore, each object is associated with a

Delegation Policy List (DPL). This list contains the
OIDs of the policies that enable the object to act as
grantee. The intersection of the DPCL of the grantor and
the DPL of the grantee gives the DPCL of the grantee
with respect to the channel associated with the delegation.
The DPCL of the grantee is forwarded to the ACA of the
end-point in order to determine the candidate EPL for a
channel of which the subject acts as grantee.

We refer to the example illustrated in figure 5.6 in order
to show how the delegation mechanism can be integrated
with the access control mechanism. We assume that X on
host A invokes an operation Op1 on the object Y on host
B, which triggers the invocation of a second operation Op2
on the object Z on host C. We also assume that there is an
access control policy P1 that enables X to invoke Op1 on
Y and an extended policy P2 that gives to X the right to
invoke Op2 on Z as well as to delegate that right to Y. For
brevity, we assume that no other policies apply to these
objects. X, Y, Z, P1 and P2 represent OIDs.

Initially, a secure channel Ch1 between X and Y is
established. The PCL given to ACAy is (P1, P2) (see
figure 5.7). The ACPL of Y is (P1), therefore the EPL
given to the RM of Y contains the policy P1 which
permits X to invoke Op1 through Ch1. When X delegates
to Y, ACAy is given the DPCL of X which is (P2). As the
DPL of Y contains the same policy OID, the DPCL of Y
with respect to Ch1 also contains P2. At this stage, AAy
requests the grantor AA (AAx) to provide the membership
certificates that ensure that X is in the subject scope of P2.

Grantor Grantee End-point

X Y Z

Establish
Channel

Establish Channel

Delegation to the
target of Ch1
 (send DT)

Ch1

Delagate
to the
target of
Ch1

Establish
Channel (as
grantee with
respect to Ch1)

Establish Channel

Ch2

Claim Delegation
(forward DT)

The subject of Ch1
(X) delegates to the
target (Y)

The subject of
Ch2 (Y) acts on
behalf of X

AAx AAy AAz

Delegation Invoke on behalf of X

Figure 5.5: One step delegation associated with channel Ch1

AAx ACAx

X Op1 Op2

Delegates Proves
Delegation

AAy ACAy

Y

AAz ACAz

Z

Figure 5.6: A simple delegation scenario

13

These certificates are encrypted with the secret keys of the
AA of the domain servers that certify the requested
membership. AAy will later forward these certificates to
the end-point AA.

Following the invocation of Op1, Y, as a grantee of X,
requests the establishment of a channel between itself and
Z. ACAz is given the DPCL of Y with respect to Ch1.
This list contains P2. Since the ACPL of Z also contains
the same OID, ACAz determines a candidate EPL that
contains P2. In order to validate this EPL, AAz requests
the authentication of the domain membership of X and Y
that ensure that these objects are in the subject and grantee
scopes of P2. In addition, it requests the verification of the
claimed delegation. AAy forwards the required membership
certificates of X (already given by AAx), and sends the
membership certificates of Y as well as the delegation
token. These certificates and the delegation token are re-
encrypted with the secret key of AAx by the AS. As soon
as AAz verifies the membership of X and Y, and the
claimed delegation, ACAz validates the EPL which is then
given to the RM of Z. Y can then invoke Op2 as a grantee
of X.

6 Conclusion and future work

This paper has described a security framework for
object-based distributed systems aimed at enforcing access
control policy specified in terms of domains. Domains
provide a means of specifying policies in terms of groups
of objects so that it is not necessary to specify policies for
individual objects in large-scale systems containing
millions of objects.

A high degree of authentication and access control
transparency is achieved by employing security agents on
a per-node basis. These agents are trusted to act on behalf
of the application objects maintained at their node. The
concept of the secure channel is used as a means of
integrating access control, cryptographic and
authentication information. A subject is permitted to
invoke operations on a target in the context of secure
channels established by their local security agents,
provided that there are policies permitting these
operations. Pseudo-capabilities are sent by the subject as a
hint to locate the relevant access control policy at the
target.

The access control mechanism has been extended to deal
with the delegation of access rights at both the policy
specification level and at the implementation level,
although extensions are need to allows the grantor to
delegate a limited set of access rights to the grantee. This
presupposes that the application object is capable of
getting information about its access rights and its domain
membership.

An important issue that has not been covered in detail
in this paper is the verification of domain membership.
This is achieved by utilising an authentication service that
is based on symmetric cryptography and employs
authentication servers with minimal state. Development of
that authentication system is in progress.

The described security framework is currently being
implemented in the CORBA-compliant Orbix
environment. The domain service and policy service have
been implemented using ANSAware as the distributed
platform and Tcl/Tk to provide the graphical environments
but it is also being ported to the Orbix environment.

PCL: (P1, P2)

DPCL: (P2)

Candidate EPL: (P1)

Auth X with
respect to
subject sc. of
P1 Request

Certificates

Certificates

Validate EPL
DPCL(Ch1):
(P2)

Request Certificates for
subject scope of P2Certificates

Delegation
 Token

OK

Candidate EPL: (P2)
Validate EPL

Auth X with
respect to
subject sc. of P2
and Y with
respect to
grantee scope of
P2. Check
delegation token

Certificates

Delegation

Token

OK

Send PCL of X

Send DPCL of X
Delegation:

Forward

Certific
ates

Channel Est:

Channel Est:

Collect certificates

Delegation:
Create delegation
Token

Collect certificates

Channel Est:
Send
DPCL(Ch1)

AAx AAy AAz

ACAx ACAy ACAz

Request
certificates

DPCL(Ch1): (P
2)

 Figure 5.7: Access control mechanism in one step delegation

14

Acknowledgements

We gratefully acknowledge financial support from the
Swiss Bank Corporation (London) and Esprit SysMan
(7026) project. We also acknowledge the contribution of
our colleagues, working on these projects, to the concepts
discussed in this paper.

References

[1] M. Sloman, “Policy Driven Management for
Distributed Systems”, Journal of Network and Systems
Management, Vol. 2(4), pp. 333-361, 1994.

[2] P Kaijser, T. Parker and D. Pinkas, “SESAME: The
solution to security for open distributed systems”,
Computer Communications, Vol. 17(7), pp. 501-518,
1994.

[3] IONA, “OrbixTM - A Technical Overview”, Technical
Report PN: PR-TEC-7-5, IONA Technologies Ltd.
Dublin, Ireland, 1993.

[4] K. Becker, M. Sloman and K. Twidle (eds), “Domain and
Policy Service Specification”, IDSM Deliverable D6,
SysMan Deliverable MA2V2 S-SI-07-I-2-R, 1993.

[5] E.C. Lupu and M.S. Sloman, “An approach to Role
based management for Distributed Systems”, Imperial
College Research Report DoC 95/9, 1995,
ftp://dse.doc.ic.ac.uk/dse-
papers/management/rmds.ps.Z.

[6] M. Abadi, M. Burrows, B. Lampson and G. Plotkin, “A
Calculus for Access Control in Distributed Systems”,
ACM Transactions on Programming Languages and
Systems, Vol. 15(4), pp. 706-734, 1993.

[7] B. Lampson, M. Abadi, M. Burrows and E. Wobber,
“Authentication in Distributed Systems: Theory and
Practice”, ACM TOCS Vol. 10(4), pp. 265-310, 1992.

[8] D. Marriott and M. Sloman, “Management Policy
Service for Distributed Systems”, Imperial College
Research Report DoC 95/10, 1995,
ftp://dse.doc.ic.ac.uk/dse-
papers/management/maps.ps.Z.

[9] J. Voydock and S. Kent, “Security Mechanisms in high-
level network protocols”, ACM Computing Surveys,
Vol. 15(2), pp. pp135-171, 1983.

[10] R. Rivest, “The MD5 Message-Digest Algorithm”, RFC
RFC1321, MIT Laboratory for Computer Science and
RSA Data Security, Inc., 1992.

[11] M. Burrows, M. Abadi and R. Needham, “A Logic of
Authentication”, ACM Transactions on Computer
Systems, Vol. 8(1), pp. 18-36, 1990.

[12] D. Davis and R. Swick, “Network Security via Private-
Key Certificates”, ACM SIGOPS Operating Systems
Review, Vol. 24(4), pp. 64-67, 1990.

[13] N. Yialelis and M. Sloman, “An Authentication Service
Supporting Domain Based Access Control Policies”,
Imperial College Research Report DoC 95/13, 1995,
ftp://dse.doc.ic.ac.uk/dse-
papers/management/auth.ps.Z.

[14] S.P. Miller, B.C. Neuman, J.I. Schiller and J.H. Saltzer
“Kerberos Authentication and Authorization System”,
Technical Plan MIT, 1987.

[15] M. Gasser and E. McDermott. “An Architecture for
Practical Delegation in a Distributed System”, In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pp. 20-30, 1990.

Appendix I

A simplified definition of scope expressions is given
below:

Syntax:
 SC_EXPR ::= *object |

@object |
{ object } |
SC_EXPR + SC_EXPR |
SC_EXPR - SC_EXPR |
SC_EXPR ^ SC_EXPR |
(SC_EXPR)

Operators:
+ set union
- set difference
^ set intersection
* when applied on a domain object, a set is returned

that contains all direct and indirect members of the
domain and the domain object itself; otherwise a set
is returned that contains the object itself.

@ when applied on a domain object, a set is returned
that contains all direct members of that domain;
otherwise Ø is returned.

{ } returns a set that contains the object on which it is
applied.

The interpretation of the expressions is from left to right.

Appendix II

The following abbreviations are used in this paper:
AA Authentication Agent
ACPL Access Control Policy List
AS Authentication Service
CHID Channel Identifier
DCPL Delegation Pseudo-Capability List
DPL Delegation Policy List
DT Delegation Token
EDF Encryption/Decryption Facilities
EPL Enabled Policy List
OID Object Identifier
PCL Pseudo-Capability List
PET Policy scope Evaluation Token
RM Reference Monitor

