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A BERNSTEIN TYPE RESULT FOR SPECIAL
LAGRANGIAN SUBMANIFOLDS

Mao-Pei Tsui and Mu-Tao Wang

Abstract. Let Σ be a complete minimal Lagrangian submanifold of C
n. We iden-

tify several regions in the Grassmannian of Lagrangian subspaces so that whenever
the image of the Gauss map of Σ lies in one of these regions, then Σ is an affine
space.

1. Introduction

The well-known Bernstein theorem states any complete minimal surface that
can be written as the graph of a function on R

2 must be a plane. This type of
result has been generalized in higher dimension and codimension under various
conditions. See [2] and the reference therein for the codimension one case and
[1], [3], [4] and [7] for higher codimension case. In this note, we prove a Bernstein
type result for complete minimal Lagrangian submanifolds of C

n. We remark
that Jost-Xin [8] obtained similar results from a somewhat different approach.

Recall a submanifold Σ of C
n is called Lagrangian if the Kähler form

∑n
i=1

dxi ∧ dyi restricts to zero on Σ. If Σ happens to be the graph of a vector-valued
function from a Lagrangian subspace L to its complement L⊥ in C

n. Rotating
C

n by a element in U(n), we may assume L is the xi subspace and L⊥ is the yi

subspace. In this case, there exists a smooth function F : R
n → R such that Σ

is defined by the gradient of F , ∇F . The minimal Lagrangian equation can be
written in terms of F .

Im(det(eiθ(I + i Hess (F )))) = 0(1.1)

where I = identity matrix, Hess F = ( ∂2F
∂xi∂xj ) and θ is a constant.

Such minimal submanifolds were studied by Harvey and Lawson [6] in the
context of calibrated geometry. In fact, they are calibrated by n forms of the type
Re(eiθdz1 ∧ · · · ∧ dzn) for some constant θ. They are usually referred as special
Lagrangian submanifold (SLg) in literature in a more general sense. Recently,
Strominger-Yau-Zaslow [9] proposed a geometric construction of mirror manifold
through special Lagrangian tori fibration.
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In terms of (1.1), the Bernstein type question is to determine under what
conditions an entire solution F becomes a quadratic polynomial.

The results in this paper impose conditions on the image of the Gauss map
of Σ. Recall the set of all Lagrangian subspaces of C

n is parametrized by the
Lagrangian Grassmannian U(n)/SO(n). The Gauss map of a Lagrangian sub-
manifold γ : Σ �→ U(n)/SO(n) assigns to each x ∈ Σ the tangent space at x,
TxΣ.

A particular subset of the Lagrangian Grassmannian consists of the graphs of
any symmetric linear transformation from R

n to R
n. These can be considered

as Lagrangians defined by the gradient of quadratic polynomials on R
n.

For any K > 0, let BK denote the subset of the Lagrangian Grassmannian
consisting of graphs of symmetric linear transformations L : R

n �→ R
n with

eigenvalues |λi| ≤ K for each i. We remark that if the Gauss map of Σ lies in
BK then Σ is the graph of f : R

n �→ R
n with uniformly bounded |df |.

Theorem A. Denote by Ξ the subset of the Lagrangian Grassmannian consist-
ing of graphs of symmetric linear transformations L : R

n �→ R
n with eigenvalues

λiλj ≥ −1 for any i, j. Let Σ be a complete minimal Lagrangian submanifold of
C

n. Suppose there exists an element g ∈ U(n) such that the image of the Gauss
map of g(Σ) lies in Ξ ∩ BK , then Σ is an affine space.

We remark that the gradient of g(Σ) is not necessarily bounded.
Indeed, the most general theorem of this type is the following.
Let M be the set of graphs of all symmetric linear transformation L : R

n �→ R
n

whose eigenvalues (λi) satisfy the following two conditions:
1.

F (hijk) =
∑
i,j,k

h2
ijk +

∑
k,i

λ2
i h

2
iik + 2

∑
k,i<j

λiλjh
2
ijk ≥ 0

for any trace-free symmetric three tensor hijk.
2.

F (hijk) = 0

if and only if hijk = 0 for all i, j, k.
Here hijk is any element in ⊗3

R
n that is symmetric in i, j and k. hijk being

trace-free means
∑n

i=1 hiik = 0 for any k. In fact, hijk corresponds to the
second fundamental form of a Lagrangian submanifold. The trace-free condition
corresponds to vanishing mean curvature vector. It is clear that Ξ is a subset of
M.

Theorem B. The conclusion for Theorem A holds for MK , the subset of the
Lagrangian Grassmannian consisting of graphs of symmetric linear transforma-
tions in M ∩ BK .

These theorems are proved by maximum principle. When Σ is the graph over
a Lagrangian subspace L, we calculate the Laplacian of ln ∗Ω where ∗Ω is the
Jacobian of the projection from Σ to L. This is a positive function and when
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the Gauss map of Σ satisfies the above conditions it is indeed superharmonic.
The parabolic version of this equation was first derived in [10] in the study of
higher co-dimension mean curvature flows.

2. Proof of Theorem

Let Σ be a complete submanifold of R
2n. Around any point p ∈ Σ, we

choose orthonormal frames {ei}i=1···n for TΣ and {eα}α=n+1,··· ,2n for NΣ, the
normal bundle of Σ . The convention that i, j, k, · · · denote tangent indexes and
α, β, γ · · · denote normal indexes is followed.

The second fundamental form of Σ is denoted by hαij = 〈∇eiej , eα〉.
The following formula was essentially derived in [10]. To apply to the current

situation, we note that a minimal submanifold corresponds to a stationary phase
of the mean curvature flow.

Proposition 2.1. Let Σ be the graph of f : R
n �→ R

n and (λi) be the eigenvalues
of

√
(df)T df . If Σ is a minimal submanifold, then ∗Ω = 1√∏ n

i=1(1+λ2
i )

satisfies

the following equation.

∆∗ Ω =−∗ Ω
{ ∑

α,i,k

h2
αik − 2

∑
k,i<j

λiλjhn+i,ikhn+j,jk + 2
∑

k,i<j

λiλjhn+j,ikhn+i,jk

}(2.1)

where ∆ is the Laplace operator of the induced metric on Σ.

Geometrically, ∗Ω is the Jacobian of the projection from Σ to the domain
R

n. The second fundamental form hαij are with respect to special orthonormal
frames {ei} and {eα}, see [10] for detail.

Proof of Theorem A. First we show if the Gauss map of Σ lies in Ξ ∩BK , then
Σ is an affine space. The general case follows from the following observation: if
g ∈ U(n) then g(Σ) is again a minimal Lagrangian submanifold.

We rewrite equation (2.1) in the Lagrangian case. Hence the tangent bundle
is canonically isomorphic to the normal bundle by the complex structure J . We
define

hijk = 〈∇eiej , J(ek)〉
then hijk is symmetric in i, j and k.

The Lagrangian condition also implies 〈df(X), J(Y )〉 is symmetric in X, Y .
Notice that df can be identified with Hess F by J for any potential function F .
We can find an orthonormal basis {ai}i=1···n for the domain R

n so that df(ai) =
λiJ(ai). Then {ei = 1√

1+λ2
i

(ai+λiJ(ai))}i=1,··· ,n becomes an orthonormal basis

for TpΣ and {J(ei)}i=1···n an orthonormal basis for the normal bundle. Equation
(2.1) becomes

∆ ∗ Ω = − ∗ Ω
{ ∑

i,j,k

h2
ijk − 2

∑
k,i<j

λiλjhiikhjjk + 2
∑

k,i<j

λiλjhjikhijk

}
(2.2)
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We shall calculate

∆(ln ∗Ω) =
∗Ω∆(∗Ω) − |∇ ∗ Ω|2

| ∗ Ω|2(2.3)

The covariant derivative of ∗Ω can be calculated as in equation (3.1) of [10].

(∗Ω)k = − ∗ Ω(
∑

i

λihiik)

Plug this and equation (2.2) into equation (2.3), we obtain

∆(ln ∗Ω) = −
{ ∑

i,j,k

h2
ijk +

∑
k,i

λ2
i h

2
iik + 2

∑
k,i<j

λiλjh
2
ijk

}
(2.4)

If the Gauss map of Σ lies in Ξ, by completing square it is obvious that
∆(ln ∗Ω) ≤ 0. Let us first assume Σ is a minimal Lagrangian cone. It is not
hard to check the equation (2.4) still holds in this case. Now ln ∗Ω assumes its
minimum on Σ and the maximum principle implies ln ∗Ω is a constant. The
right hand side

∑
i,j,k h2

ijk +
∑

k,i λ2
i h

2
iik + 2

∑
k,i<j λiλjh

2
ijk = 0 forces hijk = 0

for any i, j, k by symmetry considerations.
For the general case, we notice the condition |λi| ≤ K means Σ is the graph of

a vector-valued function with bounded gradient. We can then apply the standard
blow-down and dimension reduction to get a minimal cone and use Allard’s
regularity theorem to conclude Σ is totally geodesic and thus an affine space.

If Σ is minimal Lagrangian, so is any g(Σ) for g ∈ U(n). This is because U(n)
is contained in the isometry group of C

n and it preserves the standard Kähler
form. This completes the proof of Theorem A.

Proof of Theorem B. This follows immediately from the definition of the set MK

and equation (2.4). Because Σ is minimal, we only need to consider trace-free
hijk.

We remark that when n=3 only the bounded gradient condition is needed.
This is a special case of the classical result of Barbosa [1] and Fischer-Colbrie [4]
on two-dimensional minimal cones, see also [11]. When n ≥ 3, we identify other
more specific regions of the Lagrangian Grassmannian where the Bernstein-type
theorem also applies.

Corollary C. The conclusion for Theorem A holds for Ξ′ ∩ BK where Ξ′ is
the subset of Lagrangian Grassmannian consisting of graphs of symmetric linear
transformations L : R

n �→ R
n with eigenvalues λiλj ≥ c > − 3

2 for any i, j.
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Proof. We rewrite the right hand side of equation (2.4).

−
{ ∑

i,j,k

h2
ijk +

∑
k,i

λ2
i h

2
iik + 2

∑
k,i<j

λiλjh
2
ijk

}

= −
{ ∑

i,j,k

h2
ijk +

∑
i

λ2
i h

2
iii +

∑
i<k

(λ2
i + 2λiλk)h2

iik +
∑
i>k

(λ2
i + 2λiλk)h2

iik

+ 2
∑

i<j<k

(λiλj + λjλk + λkλi)h2
ijk

}
(2.5)

We can rewrite the second fundamental form as
∑
i,j,k

h2
ijk =

∑
i

h2
iii +

∑
i<k

3h2
iik +

∑
i>k

3h2
iik +

∑
i<j<k

6h2
ijk.(2.6)

Plug equation (2.6) into (2.5), we derive

∆(ln ∗Ω)

= −
{∑

i

(1 + λ2
i )h

2
iii +

∑
i<k

(λ2
i + 2λiλk + 3)h2

iik +
∑
i>k

(λ2
i + 2λiλk + 3)h2

iik

+ 2
∑

i<j<k

(λiλj + λjλk + λkλi + 3)h2
ijk

}

(2.7)

From the assumption, there exists a positive constant δ such that λiλj > − 3
2 +

δ for any i �= j. For any pairwise distinct i, j, k, at least one of {λiλj , λjλk, λkλi}
is nonnegative, therefore λiλj + λjλk + λkλi > −3 + 2δ.

Thus there exists a positive constant C such that ∆(ln ∗Ω) ≤ −Cδ|A|2. The
rest is identical to the proof of Theorem A.

In the following, we rewrite the right hand side of equation (2.7) by using the
equation H = 0. Since Σ is minimal, the mean curvature vector

∑
i hiik = 0 for

each k , we have
∑

i

λ2
i h

2
iii =

∑
i

λ2
i (−

∑
j �=i

hijj)2

=
∑
i<j

λ2
i h

2
ijj +

∑
i>j

λ2
i h

2
ijj + 2

∑
i �=j,i �=l,j<l

λ2
i hijjhill

(2.8)

Plug equation (2.8) into equation (2.7), the righthand side of (2.7) becomes

−
{∑

i

h2
iii + 2

∑
i �=j,i �=l,j<l

λ2
i hijjhill +

∑
i<k

(λ2
i + 2λiλk + λ2

k + 3)h2
iik +

∑
i>k

(λ2
i + 2λiλk + λ2

k + 3)h2
iik + 2

∑
i<j<k

(λiλj + λjλk + λkλi + 3)h2
ijk

}
.
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Therefore we have

∆(ln ∗Ω) = −
{∑

i

h2
iii + 2

∑
i �=j,i �=l,j<l

λ2
i hijjhill +

∑
p�=q

[(λp + λq)2 + 3]h2
pqq +

+ 2
∑

i<j<k

(λiλj + λjλk + λkλi + 3)h2
ijk

}
.

(2.9)

When n = 3, the condition λ1λ2 + λ2λ3 + λ3λ1 ≥ −3 + δ implies

2
∑

i �=j,i �=l,j<l

λ2
i hijjhill +

∑
p�=q

[(λp + λq)2 + 3]h2
pqq ≥ δ

∑
p�=q

h2
pqq.

Therefore the Bernstein type result holds under this condition.

Remark. After this paper was finished, we were informed by Yu Yuan that
he has also obtained Bernstein type results in his paper “A Bernstein problem
for special Lagrangian equations” [12]. In the following, we compare our results
with his.

1. We consider a vector valued function f : R
n �→ R

n satisfying the minimal
surface system

gij ∂2fα

∂xi∂xj
= 0(2.10)

where gij is the inverse matrix to δij + ∂fα

∂xi
∂fα

∂xj . The Lagrangian condition
implies the linear map df : R

n �→ R
n is symmetric. Yu Yuan considers a

scalar function u : R
n �→ R satisfying equation (1.1). The relation between

these two formulations is f = ∇u and df = D2u.

2. Yu Yuan obtains an equivalent form to our formula (2.4) in [12]. This is the
key formula in both his paper and ours. The derivations are nevertheless

quite different. The equation satisfied by the quantity ln
√

det(δij + ∂fα

∂xi
∂fα

∂xj )
for a solution to the general minimal surface system (2.10) was essentially
calculated by the second author in [10] (see equation (3.8) in [10]). The
second fundamental form hαij becomes a symmetric three tensor hkij by
the Lagrangian condition. Yu Yuan derives his formula by considering
ln

√
det(I + (D2u)2) for a scalar solution u to (1.1). At any given point

by choosing a particular orthonormal coordinate the third derivative of u,
uijk is the same as our hijk.

3. Though the key formulae used in both papers are the same, the presenta-
tions of the results are different. We adopt a more geometric point of view
and express them in terms of the Gauss maps . Our condition is stated as a
region in the Lagrangian Grassmannian and the orbits of the region under
the U(n) action. Yu Yuan states his result in terms of the potential u and
its second derivative. Note such representation of a Lagrangian submani-
fold involves a choice of a base Lagrangian subspace in C

n upon which the
potential function u is defined and this choice is not canonical. Yu Yuan
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had the following interesting observation: the linear transformation on C
n,

(xi, yi) �→ (xi+yi

√
2

, −xi+yi

√
2

), i = 1 · · ·n, takes a convex potential function u

to another function u (defined on a different Lagrangian subspace though)
with −I ≤ D2u ≤ I. From this, we see the convexity of the potential re-
ally depends on the choice of the base Lagrangian subspace. This implies
a convex entire solution to equation (1.1) is a quadratic polynomial. Since
this transformation (so called Lewy transformation) is an element of U(n),
the implication is also contained in our Theorem A.
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