
A Practical Pursuit-Evasion Algorithm:

Detection and Tracking

Amna AlDahak and Ashraf Elnagar

Abstract— This paper presents a practical algorithm for
evader detection and tracking using one or more pursuers. The
solution employs two advanced data structures. The first one is
the Rapidly-Exploring Random Tree (RRT). It is constructed
randomly but evenly distributed to generate a roadmap that
captures the connectivity of the free space. The second data
structure is the k-dimensional tree (Kd-Tree). Upon completion
of the RRTs construction, their vertices are inserted in a
Kd-Tree. At the tracking phase, the Kd-Tree will be queried
repeatedly for retrieving the set of potential locations to be
used by each pursuer in order to monitor or track an evader.
Thus, the usage of the Kd-Tree will reduce the querying
cost, during tracking, to a logarithmic time. A lazy collision
detection strategy is used to resolve collisions with obstacles
at runtime. As a result unnecessary checks are eliminated and
hence improving the system performance. Simulation results
show the validity of the proposed algorithm.

I. INTRODUCTION

A crucial issue in many security, surveillance and monitor-

ing systems is observing (tracking) the movements of targets

in a bounded environment. This class of problems is known

as the pursuit-evasion problems. Pursuit evasion is involved

in many real life applications. In medical applications, one

might need to move a camera around a surgery site to keep

the surgeon hands under continuous observation while he

moves to pick up the instruments and operates during the

surgery. The camera should move it in a way to avoid

any obstruction. In general the purpose of tackling this

family of problems (pursuit-evasion) is to design autonomous

mobile robots for applications such as surveillance, search-

and-rescue, and others.

Pursuit-evasion is a motion planning problem where visi-

bility constraints and obstacle avoidance must be taken into

account simultaneously. The problem of motion planning has

been recognized for many decades, but its real start was

fueled by the introduction of the idea of the configuration

space by Lozano-Perez and Wesley in 1979, [9]. The idea

is to reduce the robot to a point and enlarge the obstacles in

the environment accordingly. The resulted space is denoted

by the C-space. The free subset of the C-space is the

free space (Cfree) and the space occupied by obstacles is

the obstacle space (Cobs). This reduces the problem from

motion planning to path planning, where the holonomic, and

differential constraints are not considered. The complexity of

the path planning problem increases as the dimensions of C-

space grow. Most of the path planning algorithms that were

proposed after the introduction of the C-space require explicit

Both authors are with the Department of Computer Science, University
of Sharjah, P O Box 27272, Sharjah, UAE, ashraf@sharjah.ac.ae

construction of Cobs. Some of the algorithms presented are

very efficient for planning paths with very few dofs, but their

performance dramatically degrades as the number of dofs

increases.

The complexity of computing Cobs have made finding

practical solutions for real life motion planning problems

using combinatorial algorithms impossible. This has directed

research efforts toward new directions and has started the

ongoing evolution of the randomized sampling-based motion

planning algorithms. The main purpose of this class of

algorithms is to avoid constructing an explicit representa-

tion of the Cobs. Moreover, sampling-based path planning

algorithms have proven to be more successful in solving

path planning problems with high dofs and with holonomic

and differential constraints. Sampling-based algorithms are

mainly classified as multiple-query planners and single-query

planners. Multiple-query planners have two main phases,

the preprocessing phase and the querying phase. In the first

phase the planner constructs a roadmap that will capture the

connectivity of the whole free space. Afterward, the second

phase starts by specifying the initial and goal configurations,

qinit and qgoal, respectively. Then the planner connects the

two configurations to the roadmap, which is searched for a

feasible path between them. The second type of sampling-

based planners, the single-query planners, are based on the

idea of growing a tree from qinit that will incrementally

cover the free space until, eventually, it reaches qgoal. In

1990, Barraquand and Latombe introduced the planner that

was later called the Randomized Path Planner (RPP), [2].

This planner was the first well known sampling-based plan-

ner. The Ariadne’s Clew algorithm is another randomized

sampling-based algorithm, [10]. It grows a search tree that

is directed toward exploring new portions of the free space

in each iteration. The main drawback of this algorithm is the

difficult heuristic choices required for the highly parallelized

genetic algorithm used during the exploration of Cfree. The

Expansive space planner is a single-query path planner which

was introduced by Hsu, [4]. It tries to “push” the tree

toward the unexplored area of the C-space. One limitation

of this approach is that it requires substantial parameter

tuning. Recently, probabilistic roadmaps became the most

popular paradigm for sampling-based motion planning, [6].

The original probabilistic roadmap (PRM) follows the typical

approach of the multiple-query planners. PRMs experienced

major success in a large number of applications. However,

PRMs failed to perform efficiently in motion planning prob-

lems that involve holonomic and nonholonomic constraints.

Lately, the Rapidly-Exploring Random Trees (RRTs) were

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA11.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 343

introduced to remedy this shortage, [7].

The pursuit-evasion problem is considerably more com-

plex than just the basic motion planning problem. Its first

appearance was in pursuit-evasion games, [5]. Suzuki and

Yamashita were the first to address the problem of pursuit-

evasion in a polygonal environment, [12]. The first complete

algorithm for a pursuer with omni-directional visibility was

presented in [8]. All of these algorithms work in simply-

connected planar environments that require explicit repre-

sentation of the C-space. This implies that problems with

high dofs or holonomic and differential constraints can

not be handled. Recently Sampling Techniques for tracking

unpredictable evaders have been studied in [13].

We present a practical algorithm that can be extended to

higher dofs and take into account the holonomic and differen-

tial constraints. Further, we employ the Kd-Tree to efficiently

query the vertices of the RRT for tracking purposes. The

algorithm proves to be fast, simple and practical.

Section II describes the basic data structures (RRT and

Kd-Tree) used by our algorithm. Details of the proposed al-

gorithm are described in section III. The complexity analysis

and completeness of the algorithm are discussed in section

IV followed by simulation results in Section V. Finally, we

conclude the work and present future research directions in

Section VI.

II. DATA STRUCTURES

The Rapidly-Exploring Random Tree (RRT) is one of

the latest and most successful randomized sampling-based

algorithms. It was originally introduced by LaValle in 1998,

[7]. Its success is due to its applicability to a wide range

of motion planning problems which involve holonomic,

nonholonomic and kinodynamic constraints. It is a single-

query algorithm that starts by initializing a tree rooted at the

starting configuration (qinit). RRTs incrementally search the

C-space for a path connecting qinit and the goal (qgoal).

At each iteration three main steps are executed: 1) new

configuration is sampled at random (qrand); 2) the nearest

vertex from the current tree to this sample is computed

(qnear); 3) and the tree is extended toward the sample point

(add a new edge, with edge length = ∆q, and a new vertex,

qnew, to the tree in the direction of the sample point). The

probability to choose a vertex for expansion is proportional

to the area of its Voronoi region. Thus, RRTs are Voronoi-

biased, [7].

We use a Bi-directional RRT to replace collision, when-

ever encountered. It is constructed by initializing two RRT

trees rooted at two different configurations. At each iteration,

one tree is extended and it attempts to connect the newly

added vertex toward its nearest neighbor from the other tree.

It should be noted that in the absence of motion constraints,

the planner attempts a complete connection from qnear to

qrand, if possible. However, in the presence of holonomic,

nonholonomic, and kinodynamic constraints, the planner

adds a vertex, qnew, along the path from qnear to qrand.

One bottleneck in RRT implementation is finding the

nearest neighbor. This step has to be performed in each itera-

tion. Naive nearest neighbor computations yield a linear-time

algorithm. As a consequence, executing the RRT algorithm

for M iterations with naive nearest neighbor computation

will result in a quadratic runtime. Atramentov and La Valle

have addressed a solution for this problem in [11].

After constructing the RRT, we use a Kd-Tree as a second

data structure for storing the RRT vertices in order to yield a

better nearest neighbor querying time. Kd-Tree is a powerful

data structure for nearest neighbor problems, which was

originally developed for database querying purposes.

The basic idea for building a Kd-Tree for a set of points

(P) in the plane starts by sorting P (say along the x-axis).

At the root, the set P will be split into two subsets P1 and

P2 with a vertical line l1. P1 will contain the set of points

on or to the left of l1, and P2 will contain the set of points

to its right. The splitting line l1 will be stored at the root,

the subset P1 will be stored at the left subtree of the root

and the subset P2 at the right subtree. P1 will be again split,

but with a horizontal line, after sorting the points along the

y-axis. The subset of points below and on the line will be

stored in the left subtree of P1, and the subset of points

above it will be stored in its right subtree. The splitting line

will be stored in the left child node. Similarly, the set of

points in the right subtree will be split with a horizontal line

and the same division process will be applied. In general,

at nodes of even depth we split with a vertical line, and at

nodes with odd depth we split with a horizontal line. This

recursive procedure will be applied repeatedly until we reach

a subtree with a single point. This point will be stored as

a leaf child of the last splitting line in this subtree. The

algorithm BuildKD Tree() describes the construction a 2d-

tree:

Algorithm BuildKD Tree(P,depth)

Input: A set of points, P , and the current depth, depth.

Output: The root of a kd-tree storing P .

1. if P contains only one point

2. then return a leaf storing this point

3. else if depth is even

4. then Split P into two subsets with a vertical

line l through the median x-coordinate of

the points in P . Let P1 be the set of points

to the left of l or on l, and let P2 be the

set of points to the right of l
5. else Split P into two subsets with a horizontal

line l through the median y-coordinate of

the points in P . Let P1 be the set of points

below l or on l, and let P2 be the set of

points above l
6. vleft ← BuildKD Tree(P1, depth+1)

7. vright ← BuildKD Tree(P2, depth+1)

8. Create a node v storing l, make vleft the left

child of v, and make vright the right child of v
9. return v

The algorithm BuildKD Tree() requires two parameters:

the set of points (P) and the current depth (depth), which

determines the splitting direction. As a result from the Kd-

Tree construction phase, a node v which is contained in the

WeA11.5

344

tree will be included in a region that is bounded on one

or more directions by splitting lines stored at its ancestors.

We will refer to this region as region(v). For instance, the

region of the root is the entire plane. After the Kd-Tree

is constructed, we proceed to the query phase. The query

algorithm, SearchKD Tree() , requires two parameters, the

first is the root of the Kd-Tree, v, and the second is the query

range, R, which is a rectangular area (if we are querying a

2-d Kd-Tree). The following is the query algorithm for the

2-d Kd-Tree:

Algorithm SearchKD Tree(v,R)

Input: The root of (a subtree of) a Kd-Tree and a range, R.

Output: All points at leaves below v that lie in the range.

1. if v is a leaf

2. then Report the point stored at v if it lies in R
3. else if region(lc(v)) is fully contained in R
4. then ReportSubTree(lc(v))

5. else if region(lc(v)) intersects R
6. then SearchKD Tree(lc(v), R)

7. if region(rc(v)) is fully contained in R
8. then ReportSubTree(rc(v))

9. else if region(rc(v)) intersects R
10. then SearchKD Tree(rc(v), R)

The main test in this algorithm is finding if the range R
intersects the region(v). The region of every node in the Kd-

Tree can be computed and stored in v during the building

process. The algorithm uses a subroutine ReportSubTree(v)

to traverse the subtree rooted at v and report all the points

stored in its leaves.

III. EVADER(S) DETECTION & TRACKING

We employ the RRT structure to detect evaders. In this

work we assume that the evader will not move until it is

spotted by a pursuer. The root of the tree, qinit, is the initial

position of the pursuer. From this position, branches are

added in all directions in the environment. The expansion

process continues until the position of the evader is reached

from one of the tree vertices, if possible, or the maximum

number of iterations is reached. The user defined value, M ,

allows an estimate of the coverage percentile of the free

space from the user perspective. This is a key parameter

that controls the termination of the algorithm. As a result, if

M is chosen smaller than what is required then the pursuer

may not find the evader.

We generalize this idea to account for multiple pursuers

searching for several evaders. In this case, the algorithm

starts by initializing a set of trees (T = {T1, T2, ..., Tk}),
where k is the number of pursuers, based on the locations

given in Qinit ({q1, q2, ..., qk}). Next, the nearest vertex,

from all the existing RRTs, to the generated random config-

uration, qrand, is determined. The algorithm and its analysis

are described in [1].

A. Evader(s) Tracking

To account for tracking after detection, we continue build-

ing all RRTs until the free space is covered (i.e., M itera-

tions), since tracking requires good and uniform coverage for

the environment.

Fig. 1. An evader located on the borders of two RRTs and can be tracked
by both pursuers in the environment.

The pursuers in our system are assumed to have omni-

directional and bounded visibility (i.e., the pursuer can see

the evader if it lies within a distance that is ≤ r) where r is

the radius of the evader’s visibility field (a circle centered at

the evader position). All the RRTs’ vertices that are contained

in this circle form potential pursuer future positions in order

to the maintain visibility of the evader. The visibility field

and its set of configurations are denoted by V isCircle and

V isV er, respectively. Figure (1) depicts the visibility field

and visible configurations (in bold) of a pursuer.

Upon completion of the RRTs construction, all the vertices

of the trees are sent to the BuildKD Tree() procedure in

order to generate the Kd-Tree, denoted by, T . Figure (2)

shows an RRT that was constructed using 50 iterations and

its corresponding Kd-Tree.

The algorithm EvaderTracking() takes as input the Kd-

Tree, T , the evader to be tracked, evd, and the responsible

pursuer, pur. Assigning pursuers to evaders is previously

accomplished in the evaders detection phase.

Algorithm EvaderTracking(T,evd,pur)

Input: The Kd-Tree T , the evader to be tracked evd, and

the pursuer tracking it, pur.

Output: Set of movements to maintain visibility of evd.

1. V isV er = ComputeVisVer(T , evd);

2. repeat

3. if pur /∈ V isV er
4. then v = ClosestVer(V isV er, pur);

5. Move pur to v;

6. V isV er = UpdateVisVer(T , evd);

7. until tracking flag is off;

The algorithm uses two basic functions, which are de-

scribed next.

Algorithm ComputeVisVer(T,evd)

Input: The Kd-Tree T and the evader to be tracked, evd.

Output: The list of visibile vertices V isV er.

WeA11.5

345

1. R = EnclosingRectangle(evd, r);

2. V isV er = SearchKD Tree(v, R);

3. for each v ∈ V isV er
4. if (evd is invisibile to v)or (distance(evd,v)> r)

5. then remove v from V isV er;

6. return V isV er;

EnclosingRectangle() is used to retrieve a region repre-

senting the enclosing rectangle of V isCircle in order to be

used in the SearchKD Tree() algorithm.

Algorithm UpdateVisVer(T,evd)

Input: The Kd-Tree T and the evader to be tracked evd.

Output: The list of visibile vertices V isV er.

1. for each v ∈ V isV er
2. if (evd is invisibile to v)or (distance(evd,v)> r)

3. then remove v from V isV er;

4. if V isV er is empty

5. then V isV er = ComputeVisVer(T , evd);

6. return V isV er;

Notice that in both, ComputeVisVer() and Update-

VisVer() , the pur does not move as long as it belongs to

V isV er. If the evd moves, UpdateVisVer() “filters” the

current V isV er list and a new computation of VisVer is not

required until it becomes empty. This contributes to a better

time complexity.

Tracking multiple evaders poses few concerns that need

to be addressed. Among which is how a pursuer would react

if two evaders lie within its RRT boundary? Which one to

track? Another concern is whether communication among

pursuers is allowed.

Fig. 2. An example of an RRT and its corresponding Kd-Tree

Each pursuer has an RRT associated with it, which covers

a certain territory (denoted by territory(pur)). In the case of

multiple evaders, one pursuer can have two, or more, evaders

”wondering” around in its territory. Which evader should

the pursuer track? We resolve this conflict by forcing the

pursuer, pur, to follow the same evader it was assigned. The

tracking will continue until the evader exits territory(pur).

Afterward, pur tracks the closest evader in territory(pur),

if any. However, the system allows for the closest evader to

be always tracked by the closest pursuer. This is done for

simulation purposes.

In the case of multiple pursuers, imagine the following

setup: two pursuers, pur1 and pur2, and an evader, evd, lie in

both of the pursuers’ territories (i.e., evd ∈ territory(pur1)

and evd ∈ territory(pur2)). See Figure (1) for an example.

If no communication exists between the pursuers both will

track this evader. Otherwise, evd will be tracked by the

pursuer it was assigned to until it exits its territory. Our

system can simulate both scenarios.

B. Obstacle Avoidance and Collision Detection

The main idea in sampling-based motion planning al-

gorithms is to avoid the explicit construction of the Cobs.

Therefore, every sample and every edge between any two

vertices along the solution path have to be checked for

collision before adding it successfully to the resulting path. A

number of collision detection approaches exist such as incre-

mental and lazy detection. Sampling-based motion planning

algorithms are always developed without taking collision

detection into consideration.

Fig. 3. An example showing the RRT s of 9 pursuers distributed evenly
in a 2D environment. The RRTs cover the free space uniformly.

The lazy collision detection approach has proven to be

the most effective detection module so far, [3]. A number

of factors have led to the development of this module. Most

important is that in sampling-based roadmaps, a large number

of the roadmap edges are not on the final path to the goal,

and as a result a good number of unneeded collision checks

are performed. Lazy collision detection delays the collision

checks until the edge is considered for traversal. If it is

collision free it is added otherwise it is resolved. It has

been noticed that most collisions occur at the corners of the

obstacles. The remedy is to construct an alternative path by

building small bidirectional RRTs rooted at the two ends of

the invalid edge. Once a path is found, the vertices along

the path are inserted in the Kd-Tree and all the remaining

vertices will be “pruned”. For RRTs that use a small value

for the growth-rate (the edge length, ∆q), collision checks

are significantly reduced, but on the expense of more nearest

neighbor queries.

WeA11.5

346

TABLE I

SUMMARY DATA OF THE 9 PURSUERS IN FIGURE (3).

pursuer# pursuers’ Details
qinit RRT size Coverage %

1 (x: 490,y: 59) 621 12.42%
2 (x: 271,y: 59) 675 13.5%
3 (x: 60,y: 59) 515 10.3%
4 (x: 59,y: 249) 555 11.1%
5 (x: 271,y: 249) 678 13.56%
6 (x: 490,y: 250) 642 12.84%
7 (x: 490,y: 150) 332 6.64%
8 (x: 271,y: 151) 587 11.74%
9 (x: 60,y: 149) 395 7.9%

IV. COMPLEXITY ANALYSIS AND ALGORITHM

COMPLETENESS

The nearest neighbor operations is the most costly one

in the detection phase. A naive nearest neighbor results

in O(n2) running time. The Kd-Tree construction, which

follows the detection phase, is done only once. The most

expensive step in the BuildKD Tree() algorithm is finding

the split line. But, since we sort the set of points, the

cost of finding the median becomes constant. Therefore,

sorting becomes the most expansive step, and the best sorting

algorithms (e.g., Merge Sort) takes O(nlogn) time which is

the total cost of constructing the Kd-Tree. In addition, it

requires O(n) storage where n is the number of points in P .

On the other hand, the most expensive step in the tracking

phase is querying the Kd-Tree. It takes O(
√

n+ k) for every

query using SearchKD Tree() algorithm. The constant k
represents the number of vertices retrieved from the query.

Therefore, the algorithm is output sensitive. The querying

is performed every time an evader moves out of the pre-

viously computed visibility field using the two subroutines

ComputeVisVer() and UpdateVisVer() . Thus, the number

of queries needed at any instance of time is equal to the

number of evaders moved out of visibility field multiplied by

the cost of a single query. The complexity of the subroutine

ReportSubTree() , used by the algorithm SearchKD Tree(),

is linear in the number of vertices reported.

All sampling-based algorithms experience a form of com-

pleteness called the probabilistic completeness. It means, the

probability of finding collision-free path approaches one as

time goes to infinity. For our algorithm, the probability that

the RRT rooted at qinit will contain qgoal as a vertex ap-

proaches 1 as the number of vertices in the RRT approaches

∞. Formally, it is limn→∞ P [qgoal ∈ RRT (qinit)] = 1.

V. EXPERIMENTAL RESULTS

This section presents a complete set of simulations carried

out on an 800 MHz Pentium III PC. The input parameter ∆q
(edge length) is 10 and the maximum number of iterations

M is 2000. RRT building process is not stopped when

all evaders are detected, rather it continued until M is

reached in order to ensure uniform and even coverage of the

Fig. 4. The simulation after the detection phase. The paths of the two
pursuers are shown in bold.

Fig. 5. Tracking snap shot at t0.

environment. While the pursuer(s) configuration(s) (qinit) is

shown as a small solid circle(s) in dark color, the evaders

are shown in light color. Notice that we enlarged the size of

each configuration point (i.e., solid circle with radius of 5
pixels) for clarity of presentation.

Figure (3) shows the resulting RRTs for the environment

in which nine pursuers were evenly distributed. ∆q is set

to 5 distance-units. The computed set of RRTs cover the

environment uniformly. The building process was accom-

plished in 17.5 seconds. Table (I) includes information about

each pursuer. Namely, each pursuer starting configuration,

the size of its RRT (number of nodes), and the coverage

ratio on the environment. Although RRTs are constructed at

random, they (more or less) maintain a uniform coverage

of the whole environment. Heuristics may be introduced to

enforce balanced distributions among pursuers. However this

depends on the application it is used for. The simulation was

carried out for the environment in Figure (4). It contains two

pursuers and three evaders distributed as shown in the figure

along with the resulting RRTs. The left pursuer detected

the left lower evader after 0.21 seconds with 435 iterations

while the right pursuer detected the other two. The upper

right evader was detected in 0.38 seconds (540 iterations)

while the middle evader was found in 1.2 seconds (1058
iterations). The difference in time (4.6 the total time and

1.2 the time of detecting the last evader) is due to the

WeA11.5

347

Fig. 6. Tracking snap shots after ∆t1.

completion of the building process until reaching M . One

can notice the uniform and even coverage of the environment.

The left pursuer’s RRT contains 867 vertices, which results

in a coverage ratio of about 43.35%. On the other hand,

the right pursuer covers 56.65% from the area explored by

the RRTs using 1133 vertices in its RRT. Although RRTs

are constructed at random, they (more or less) maintain a

uniform coverage of the whole environment.

Fig. 7. Tracking snap shots after ∆t2.

In Figure (4), where the free paths get very close to an

obstacle boundary; it might lead to thinking of a collision

with that obstacle. It is not the case. Although, the right

pursuer detected two evaders, the path to the closest one is

only shown, since in the tracking phase the pursuer is only

capable of pursuing one evader.

Figures (5) to (7) depicts an example of tracking three

evaders by two pursuers. The first Figure shows the tracking

at t0 where the pursuers have moved forward to the evaders

they have detected (for the right pursuer, it moved to the

closer evader it detected). The V isCircles along with their

contents are displayed around each evader. The empty parts

of some of the V isCircles may lead the viewer to think that

this area does not contain RRT vertices. But the fact that this

is due to the removal of the V isV er configurations (RRT

vertices)that are not ”seen” by the evader because of the

existence of one or more obstacles between this vertex and

the evader. The two other Figures show the environment after

∆t1 and ∆t2 times, respectively. The movements (distances

and directions) of the evaders are shown by the black arrows.

The base of the arrow represents the evaders position before

the movement, which is also the last position it reached at

the last ∆t time. All evaders and pursuers have the same

speed. The evaders moved at random linearly, which caused

the evader to move in a straight-line until an obstacle is met,

followed by random turns until the evader is able to move

forward again without collision.

VI. CONCLUSIONS AND FUTURE WORKS

We proposed the use of RRT in pursuit-evasion problems.

We used a modified RRT algorithm to allow multiple pur-

suers and evaders. The checking for the evader(s) is done

during the construction phase of the RRT(s). The detection

was followed by a tracking phase where the Kd-Tree is used

to store the RRT vertices in order to cut down the search

space when an RRT vertex is selected by the pursuer in

order to maintain visibility of the evader. To improve the

performance of the algorithm, a lazy collision detector is

utilized for obstacle avoidance at runtime. In general, RRTs

have proved to perform faster than the basic probabilistic

roadmaps for holonomic, nonholonomic and kinodynamic

motion planning problems. It promises the motion planning

field with a brighter future.

REFERENCES

[1] A. Elnagar and A. Aldahak. RRT-Based Multiple Evaders Detection
algorithm. In Proceedings of the International Conference on Automa-

tion, Robotics and Autonomous Systems, pages 44–50, 2005.
[2] J. Barraquand and J. C. Latombe. A monte-carlo algorithm for

path planning with many degrees of freedom. IEEE International

Conference on Robotics and Automation, pages 1712–1717, 1990.
[3] R. Bohlin and L. E. Kavraki. Path planning using lazy prm.

Proceedings of the IEEE International Conference on Robotics and

Automation, 1:521–528, April 2000.
[4] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansize

configuration spaces. International Journal of Computational Geom-

etry and Applications, 4:495–512, 1999.
[5] R. Isaacs. Differential Games. Wiley, New York, NY, 1965.
[6] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Proba-

bilistic roadmaps for fast path planning in high dimensional spaces.
IEEE Transactions on Robotics and Automation, 12:566–580, 1996.

[7] S. M. LaValle. Rapidy-exploring random trees: A new tool for path
planning. TR98-11, October 1998.

[8] S. M. LaValle, D. Lin, L. J. Guibas, J. C. Latombe, and R. Motwani.
Finding an unpredictable target in a workspace with obstacles. Pro-

ceedings of the International Conference on Robotics and Automation,
pages 737–742, 1997.

[9] T. Lozano-Perez and M. A. Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. Communication of

the ACM, 22(10):560–570, 1979.
[10] E. Mazer, J. M. Ahuactzin, and P. Bessiere. The ariadne’s clew

algorithm. Journal of Artificial Intelligence Research, 9:295–316,
November 1998.

[11] A. Atramentov, and S. M. La Valle. Efficient Nearest Neighbor
Searching for Motion Planning. In Proceedings IEEE International

Conference on Robotics and Automation, pages 632–637, 2002.
[12] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a

polygonal region. SIAMJ. Comput., 21(5):863–888, 1992.
[13] R. Murrieta-Cid, B. Tovar and S. Hutchinson. A Sampling-based

Motion Planning Approach to Maintain Visibility of Unpredictable
Targets. Journal on Autonomous Robots, 19(3):285–300, December
2005.

WeA11.5

348

