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It is certainly well known that a mapping between metric spaces is continuous if and only
if it preserves convergent sequences. Does there exist a comparable characterization for
the mapping to be open? Of course, the inverse mapping is set-valued, in general. In this
research/expository note, we show that a mapping is open if and only if the set-valued
inverse mapping preserves convergent sequences in an appropriate set-theoretic sense.
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1. Introduction

Let X and Y be topological spaces and f : X → Y a general mapping. In particular, f
need not be onto. For convenience, we will assume that X and Y are metric spaces, so
that sequences suffice when considering convergence. (We leave the extension of our
main result to nets for the interested reader to pursue.) By definition, f is continuous
if f −1(U) is open in X , whenever U is open in Y . It is certainly well known that f is
continuous if and only if limn→∞ f (xn) = f (x) in Y , whenever limn→∞ xn = x in X (see
[1, Theorem 1, page 34]). Also by definition, f is open if f (U) is open in Y , when-
ever U is open in X . Does there exist a characterization of openness for f in terms of
convergent sequences analogous to that for continuity? It would seem that a positive
response to this question should be well known. However, we have not been able to
find such a result in the literature. Of course, this question is complicated by the fact
that f −1 need not be one-to-one in general, in which case we obtain a set-valued map-
ping from Y into X given by y → f −1(y), for all y ∈ Y , where f −1(y) might be empty,
for some y ∈ Y . Nevertheless, the answer to the previous question is yes. Specifically,
in this research/expository note, we will show that a mapping is open if and only if its
set-valued inverse mapping satisfies a familiar subsequence convergence property (see
Theorem 2.2). We have found this characterization to be very useful in our research (i.e.,
see [9]).

Although we have not been able to find our main result in the literature, there do ex-
ist comparable results which require additional assumptions. In [3], the authors establish
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such a result (see Theorem 2.4) for which no proof is given. Moreover, their result is stated
in terms of ultranets. However, of greatest importance is the fact that they assume the
mapping is continuous. The same is true in [4]. It is shown in [4, Proposition 1, Part 4]
that our subsequence convergence condition is equivalent to openness, but under the as-
sumption that the mapping in question is once again continuous and onto. (Moreover,
the work [4] is not easy to obtain.) Neither one of the two previous references states the
relevant results in the context of a set-valued inverse mapping which is, as we have tried
to motivate, a more appropriate way to view openness.

It has been suggested that by combining (in order) [6, Proposition 7.2.9], [1, Lemma
6.2.2] and the fact that limit points are cluster points, one may conclude that the subse-
quence convergence condition is equivalent to openness of the mapping. However, this
argument shows only that the subsequence convergence condition is necessary for open-
ness. Thus, this argument does not establish our main result either. Moreover, we feel that
the sufficiency is the more important half of the main theorem since it is more likely to
be used to show that a given mapping is open (see [9], e.g.).

Finally, our main result is verified in a practical and familiar context. Our proof is di-
rect and easily accessible to students in first-semester real analysis and point-set topology.
The most advanced concept we use is that of set-valued mapping, which easily can be
circumvented (as in [3, 4]).

As motivation for what follows, let {xn}∞n=1 be a sequence in X . Let limsupn f (xn) de-
note the set of cluster points of the sequence { f (xn)}∞n=1 in Y , that is, the set of points
y for which there exists a subsequence {xnk}∞k=1 of {xn}∞n=1 such that the correspond-
ing subsequence { f (xnk )}∞k=1 of { f (xn)}∞n=1 converges to y. This is common notation for
denoting the set of cluster points (see [8, page 337]). Moreover, it is worth noting that
liminfn f (xn) is used to denote the set of limit points [8, page 335].

We then have the following alternate ways of looking at continuity.

Lemma 1.1. Let X and Y be metric spaces and f : X → Y a map. Then the following are
equivalent.

(i) f is continuous.
(ii) f (x)∈ limsupn f (xn), for every convergent sequence limn xn = x in X .

(iii) { f (x)} = limsupn f (xn), for every convergent sequence limn xn = x in X .

Proof. (ii)⇒(i). Suppose f is not continuous. Then there exists a convergent sequence
limn→∞ xn = x in X for which limn→∞ yn �= y, where f (xn) = yn, for all n, and f (x) =
y. Thus, there exists a convergent subsequence limk→∞ xnk = x of {xn}∞n=1 and an open
neighborhood U of y in Y such that ynk /∈ U , for all k. But, by hypothesis, f (x) ∈
limsupk f (xnk ), that is, y ∈ limsupk ynk . Hence, there exists a convergent subsequence
lim j→∞ ynkj = y of {ynk}∞k=1. Hence, ynkj ∈ U eventually, which is a contradiction, since
ynk /∈U , for all k.

(iii)⇒(ii). The proof is obvious.
(i)⇒(iii). Let limn→∞ xn = x be a convergent sequence in X . Since f is continuous,

we have that { f (x)} ⊆ limsupn f (xn). Let y ∈ limsupn f (xn). Then there exists a conver-
gent subsequence limk→∞ xk = x of {xn}∞n=1 for which limk→∞ f (xnk )= y. Since f is con-
tinuous, limk→∞ f (xnk ) = f (x). Therefore, f (x) = y, since Y is a Hausdorff space, that
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is, the sequence { f (xnk )}∞k=1 cannot converge to two distinct points in Y . Consequently,
{ f (x)} ⊇ limsupn f (xn). �

2. The main result

For our purposes here, we require the notion of the set of cluster points of a sequence
of arbitrary sets. Let {An}∞n=1 be a sequence of nonempty subsets of X . Then x ∈ X is
a cluster point of this sequence of sets if there exists a subsequence {Ank}∞k=1 of {An}∞n=1

and a corresponding convergent sequence limk→∞ xk = x in X such that xk ∈ Ank , for all k.
Let limsupnAn denote the set of all such points (see [8, page 337]). Similarly, liminfnAn

denotes the set of limit points of the An, that is, those x ∈ X such that x = limn xn, for
xn ∈ An, for all n (see [8, page 335]). We then have the following property (amongst
others). We emphasize that the sets An are not assumed to be closed.

Lemma 2.1. In general, limsupnAn is a closed subset of X .

Proof. It can be shown that limsupnAn = ∩∞n=1 ∪k≥nAk (see [8, page 337]). See also [2,
page 121] and [5, page 169]. �

The following is our main result.

Theorem 2.2. Let X and Y be metric spaces and let f : X → Y be a map. Then the following
are equivalent.

(i) f is open.
(ii) f −1(y)⊆ limsupn f

−1(yn), for every convergent sequence limn yn = y in Y .

Proof. (i)⇒(ii). Suppose f is open and {yn}∞n=1 is a sequence in Y which converges to
y ∈ Y . Since f is open, the range f (X) of f is an open subset of Y . Either y ∈ f (X)
or not. If y /∈ f (X), then f −1(y) = ∅, so that part (ii) holds. If y ∈ f (X), then yn is
eventually in f (X), since it is open. Thus, without loss of generality, we may assume
yn ∈ f (X), for all n. The subset limsupn f

−1(yn) of X is clearly closed (see Lemma 2.1).
Suppose the subset f −1(y) ofX is not contained in limsupn f

−1(yn). Then there exists x ∈
f −1(y), that is, f (x) = y, such that x /∈ limsupn f

−1(yn). Let U denote the complement
of limsupn f

−1(yn) in X , an open neighborhood of x. Let {Un}∞n=1 be a descending open
base for the neighborhood system of {x}, which is contained in U , that is, a sequence of
neighborhoods Un of x in X satisfying

x ∈Un+1 ⊆Un ⊆U ∀n,

∩∞n=1Un = {x}. (2.1)

Let n= 1. Then, by hypothesis, f (U1) is an open neighborhood of f (x)= y in Y . Since
limn yn = y, there exists n1 such that yn ∈ f (U1), for all n ≥ n1. Suppose we have cho-
sen yn1 , . . . , ynk such that ynj ∈ Uj , for all j = 1, . . . ,k, and yn ∈ f (Uk), for all n≥ nk. For
Uk+1, there exists nk+1 > nk such that yn ∈ f (Uk+1), for all n ≥ nk+1. Then {ynk}∞k=1 is
a subsequence of {yn}∞n=1. Let xk ∈ X be such that xk ∈ Uk, and f (xk) = ynk , that is,
xk ∈ f −1(ynk ), for all k. Then the sequence {xj}∞j=1 is eventually in each Uk. In fact, given
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k, we have xk ∈Uk, and xj ∈Uj ⊆Uk, for all j ≥ k. Consequently, limk→∞ xk = x. By def-
inition of limsupn f

−1(yn), it follows that x ∈ limsupn f
−1(yn), a contradiction. Thus,

f −1(y)⊆ limsup
n

f −1(yn
)
. (2.2)

(ii)⇒(i). Suppose the condition in (ii) holds and f is not open. Then there exists an
open subset U of X such that f (U) is not open in Y , that is, its complement Y\ f (U)
is not closed in Y . Consequently, there exists a convergent sequence limn→∞ yn = y in Y
such that yn /∈ f (U), for all n, while y ∈ f (U). Since y ∈ f (U), there exists x ∈ U such
that f (x)= y, that is, x ∈ f −1(y). By hypothesis,

f −1(y)⊆ limsup
n

f −1(yn
)
. (2.3)

Thus, there exists a subsequence {ynk}∞k=1 of {yn}∞n=1, and a corresponding sequence
{xk}∞k=1 in X such that xk ∈ f −1(ynk), for all k, and limk→∞ xk = x. Then xk /∈U , for all k;
if not, xk ∈U , for some k, which implies

ynk = f
(
xk
)∈ f (U), (2.4)

a contradiction. Since X\U is closed, and xk ∈ X\U , for all k, it follows that x ∈ X\U ,
that is, x /∈U , a contradiction. �

As expected, we have the following special case.

Corollary 2.3. If f is one-to-one and onto, then f is open if and only if f −1 is continuous.

Proof. This follows from Theorem 2.2 and Lemma 1.1. �

Remark 2.4. (1) We urge the reader to compare part (ii) of Lemma 1.1 for continuous
maps with part (ii) of Theorem 2.2 for open maps. (2) In [2], the author gives three
notions of semicontinuity and continuity for set-valued maps, each of which is a gener-
alization of classical continuity for single-valued maps. One of these is part (ii) of our
main theorem for set-valued inverse mappings. Thus, our theorem says that a point-
valued mapping f is open if and only if the corresponding set-valued inverse mapping
f −1 is continuous (in the sense of part (ii) of the main theorem). (3) The results con-
tained herein can be reworked for continuity and openness at a point. The details are
straightforward and left to the reader.
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