
Software Integer Division

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

August 26, 2008

Abstract

Early computers omitted instructions for integer multi-
plication and division, requiring these operations to be
synthesized in software. Even some modern RISC and
DSP architectures are deficient in the case of division.
Therefore software methods for performing integer divi-
sion continue to be of interest.

We consider typical architectures based on two’s com-
plement binary arithmetic and present various methods
of performing single precision unsigned integer division
in software. In addition to methods based on the stan-
dard test-subtract-shift approach, we present a method
and variants based on a novel adaptation of the Newton-
Raphson recurrence to the domain of unsigned integers.

1 Introduction

There are many algorithms forhardware im-
plementation of arithmetic operations which are
very interesting but which appear to be inappli-
cable to computer programs. . .

—Donald Knuth [8, page 244]

Early computers omitted instructions for integer multi-
plication and division, requiring these operations to be
synthesized in software. Even some modern RISC and
DSP architectures, for example, the ARM [15] and the
TMS320C64 [16], are deficient in the case of division.
Therefore software methods for performing integer divi-
sion continue to be of interest.

Although there is much literature on hardware imple-
mentations of computer arithmetic and division in par-
ticular [2, 4, 9, 11, 12, 13, 14], methods that are useful

in hardware are often completely impractical in software.
Descriptions from the point of view of software or mi-
crocode typically present just the shift double word div-
idend method [13, pages 213–215] or occasionally the
shift divisor method [18, page 38].

Methods for performing division can be classified
roughly into methods based on digit recurrence (which
retire a fixed number of quotient bits per iteration) and
methods based on functional iteration (which double the
number of retired quotient bits per iteration). Both types
have practical software implementations, depending on
the operations provided by the underlying hardware ar-
chitecture.

We consider typical architectures based on two’s com-
plement binary arithmetic. Although one more bit of pre-
cision is required, unsigned integer division is essentially
a simpler problem than signed division because it can ig-
nore the case analysis required to deal with the signs of
the dividend and the divisor. We consider methods for
performing single precision unsigned integer division.

Let W be the number of bits in a machine word. Typ-
ically W = 32. Since the subscriptW would other-
wise appear on all definitions, we omit it for clarity. Let
U = {0, . . . , 2W − 1} be the set of unsigned integers
andU + = {1, . . . , 2W − 1} be the set of strictly posi-
tive unsigned integers. Given dividendx ∈ U and divi-
sor y ∈ U +, the problem of unsigned integer division
is to compute the quotientq = bx/yc and remainder
r = x − q ∗ y. Note thatq, r ∈ U andr < y.

In the exposition to follow, some care is necessary to
distinguish between abstract mathematical operations and
the concrete operations implemented by a two’s comple-
ment architecture. Equations written in the text refer to
abstract operations, although named concrete operations

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357214009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are used freely. When the text needs to refer to the con-
crete operations of addition and subtraction it usesADD

andSUB. Code examples are written in C and use+ and
- sinceADD andSUB would be clumsy. All of the code
examples have been extracted mechanically from a com-
piled and extensively tested program.

Section 2 describes operations that might be provided
by a hardware architecture. Section 3 presents division
methods based on digit recurrence. Section 4 presents di-
vision methods based on functional iteration. Section 5
concludes. Proofs appear in Apendix A.

2 Operation definitions

We assume the usual two’s complement arithmetic opera-
tions in which overflow is ignored. Givena, b ∈ U let

a ADD b = (a + b) mod 2W

a SUB b = (a − b) mod 2W

Comparison of unsigned integers is assumed to produce
the correct answer in all cases. Note that, because of over-
flow, this is not the same thing as testing the high order bit
of a SUB b.

We use the following operations to extract bits and to
compute half. Note that computing half is simply a matter
of shifting right by one bit position. Givena ∈ U let

bitk(a) =
⌊ a

2k

⌋

mod 2

hibit(a) =
⌊ a

2W−1

⌋

half (a) = ba/2c

Instructions to perform bit-wise logical operations are
common. It turns out that some of these are occasionally
useful even in numeric calculations. Givena, b ∈ U let

band(a, b) =

W−1
∑

k=0

bitk(a) ∗ bitk(b) ∗ 2k

Instructions to perform arbitrary logical shifts are com-
mon. Note that we adopt the typical restriction that the
shift amount must be less than the word size. Given
u, k ∈ U with k < W let

lsl(u, k) = (u ∗ 2k) mod 2W

lsr(u, k) =
⌊ u

2k

⌋

Some architectures provide an instruction to count the
number of leading zeros in a non-zero value. A reason-
ably efficient software method can often be constructed
based on binary search andlsr . Giveny ∈ U + let

clz (y) = W − blog2(y)c − 1

Note thatk = blog2(y)c is the integer that satisfies

2k ≤ y < 2k+1

clz (y) is the number of leading zero bits in the represen-
tation ofy. Observe that0 ≤ clz (y) < W .

Architectures that lack an integer divide instruction
sometimes provide an instruction to compute one quotient
bit in a tight loop. One clever example is a peculiar test-
subtract-shift operation. Givena, b ∈ U let

tsubsh(a, b) =

{

lsl(a − b, 1) + 1 if a ≥ b
lsl(a, 1) otherwise

Section 3.4 shows howtsubsh can be useful.
Some architectures provide unsigned integer multipli-

cation operations. Givena, b ∈ U let

mul(a, b) = (a ∗ b) mod 2W

umulh(a, b) =

⌊

a ∗ b

2W

⌋

mul(a, b) is the low-order word of the product ofa andb
andumulh(a, b) is the high-order word of the product of
a andb.

Although it is difficult to reverse the order of bits in a
word in software, this is an easy task for hardware. So
some architectures provide an instruction for it. Given
a, b ∈ U let

bitrev(a) =

W−1
∑

k=0

bitk(a) ∗ 2W−k−1

Section 4.2 shows howbitrev can be useful.

2

r = 0; q = x;
unsignedi = W;
do {

// double word left shift (r,q)
r = r + r + hibit(q);
q = q + q;

if (r >= y) { r = r−y; q = q+1;}
i = i−1;

} while (i != 0);

Figure 1: Shift double word dividend method.

3 Digit recurrence methods

Digit recurrence methods retire a fixed number of quo-
tient bits per iteration. Although versions that retire more
than one quotient bit per iteration are popular in hardware,
such as radix-4 SRT division [7, 10], the quotient digit
selection and factor selection functions are inefficient to
implement in software. Hence the only practical software
digit recurrence methods are those that retire one quotient
bit per iteration. Although these methods all employ the
same basic test-subtract-shift approach, there are many
variations.

3.1 Shift double word dividend

The shift double word dividend method pads the dividend
out to a double word(r, q) and then performsW test-
subtract-shift iterations. Each iteration determines one
quotient bit by test-subtracting the divisor fromr and then
shifting the double word(r, q) one bit left. The quotient
bits can cleverly be shifted intoq as the dividend shifts
left. At the end,q contains the quotient andr the remain-
der.

Figure 1 shows a code example. The shift double word
dividend method requiresW iterations independent of the
values ofx andy.

Note that the concrete operationq ADD q shiftsq one bit
position to the left, discarding the high-order bit. This is
an instance in which the difference between the concrete
operationq ADD q and the abstract mathematical operation
q + q can be exploited.

On architectures with a carry flag the double-word left-
shift of (r, q) can typically be implemented in two in-

structions. The first instruction shiftsq left while saving
hibit(q) in the carry and the second shiftsr left while
bringing in the carry.

The shift double word dividend method is frequently
employed in hardware as well as software. It turns out
that the logic required to computer SUB y can evaluate
r ≥ y with essentially no extra effort and so both of these
can be computed simultaneously in the same logic unit.
There are variations depending on whether the remainder
is updated conditionally based onr ≥ y (as shown in
the code example here), is updated unconditionally and
then restored ifr ≥ y turns out to have been false (the
so-called “restoring version”), or updated unconditionally
and then the future logic of the algorithm inverted ifr ≥ y
turns out to have been false (the so-called “non-restoring
version”). Depending on the details of the architecture,
software implementations of these variants may or may
not be practical.

3.2 Shift divisor

The shift divisor method [18, page 38] is based on shift-
ing the divisor rather than shifting the dividend. The idea
is to shift the divisor left (by iterated doubling) until it
exceeds the dividend and then compute each bit of the
quotient using a step of divisor right-shift (halving) and
test-subtraction.

However, there is a problem. Because of the difference
between abstract and concrete operations, a naive imple-
mentation fails for large dividends. Whenx ≥ 2W−1

there will be some divisors (y = 2, for example) for
which the required left-shifted value would equal or ex-
ceed2W and thus cannot be represented as an unsigned
integer. Fortunately this can be fixed without much trou-
ble.

The fix is to stop doubling the divisory whenx0 <
y + y, wherex0 is the original value ofx, and then adjust
the quotient loop so that the test-subtraction occurs before
halving the divisor. But since we cannot depend ony +
y = y ADD y, the doubling phase proceeds carefully as
follows.

We start out by evaluatingx ≥ y. If this is false, we are
done with doubling. Otherwise, we know thatx − y =
x SUB y, so we decreasex by y, which results in a state
with the invariantx = x0 − y. At this point, ifx ≥ y we
know thatx0 ≥ y+y and thereforey+y = yADDy. Given

3

r = x; q = 0;
unsignedy0 = y; // original divisor
// divisor doubling phase
if (x >= y) {

x = x−y;
while (x >= y) { x = x−y; y = y+y; }

}
// quotient computing phase
for (;;) {

if (r >= y) { r = r−y; q = q+1;}
if (y == y0) break;
q = q + q;
y = half(y);

}

Figure 2: Shift divisor method.

this, decreasingx by y and then doublingy preserves the
invariant. We iterate until the conditionx ≥ y is false.
When any of the evaluations ofx ≥ y comes up false, it
must be the case thatx0 < y + y, and so the doubling
phase is done. Figure 2 shows a code example.

Observe that oncex ≥ y comes up false in the divisor
doubling phase, the value ofx is never used thereafter. In
many architectures, decreasingx by y evaluatesx ≥ y as
a side effect and so these two operations can be combined
into a single instruction, resulting in a tight loop.

Compared with the shift double word dividend method,
the code for the shift divisor method is longer and runs
slower in the worst case, since there are iterations dou-
bling the divisor to scale it up and then iterations halving
the divisor to compute the quotient bits. However, the
number of iterations depends on the logarithm of the quo-
tient, which is typically much less thanW , so in the typi-
cal case the shift divisor method runs faster than the shift
double word dividend method.

3.3 Improved shift divisor

It can be observed that what the doubling phase of the
shift divisor method achieves is to align the leading 1 bit
of the divisor with the leading 1 bit of the dividend. The
count-leading-zeros and logical-shift-left operations can
be exploited to attain this alignment directly. Figure 3
shows a code example.

Care must be taken that the arguments to theclz andlsl

r = x; q = 0;
if (y <= r) {

unsignedi = clz(y) − clz(r);
y = lsl(y,i);
// quotient computing phase
for (;;) {

if (r >= y) { r = r−y; q = q+1;}
if (i == 0) break;
i = i − 1;
q = q + q;
y = half(y);

}
}

Figure 3: Improved shift divisor method.

operations fall within their defined ranges and so produce
intelligible results. Assuming0 < y, the check fory ≤ r
guarantees0 < r and so we can conclude

clz (r) ≤ clz (y)

0 ≤ clz (y) − clz (r) < W

clz (y) − clz (r) = clz (y) SUB clz (r)

Consequently the operationlsl(y, i) produces exactly the
aligned divisor we need.

Architectures that provide a count-leading-zeros opera-
tion typically define a result forclz (0) that can be checked
easily. In such a case, it might be advantageous to recast
the argument checking.

Replacing the divisor doubling loop with count-
leading-zeros and logical-shift-left operations reducesthe
instruction count and makes this method roughly identical
to the shift double word dividend method in both code size
and worst case execution time. The improved shift divi-
sor method also has the advantage of considerably better
typical execution time.

3.4 Align divisor shift dividend

The align divisor shift dividend method is based on align-
ing the divisor under the dividend and then performing a
number of test-subtract iterations which shift the dividend
left. As in the shift divisor method, the number of itera-
tions isk + 1, wherek is the number of bit positions the

4

divisor must be shifted left in order to align it under the
dividend. The quotient bits can cleverly be saved in the
rightmost positions of the dividend as it shifts left on each
test-subtract iteration.

Thetsubsh operation defined in Section 2 performs the
entire iteration. This operation is attractive for hardware
implementation because only two registers are required,
one containing the aligned divisor (read only) and one
containing the dividend (read and written). TheSUBC
instruction on the TMS320C64 performs exactly this op-
eration and details of how to exploit it appear in an appli-
cation note [3].

Unfortunately, the align divisor shift dividend method
has a problem with large dividends. It is possible for the
dividend to exceed2W−1 − 1 but still be less than the
aligned divisor. The naive implementation performs a left
shift, but this drops the high order bit of the dividend.

The problem can be fixed, but the fix is not very pleas-
ant. Basically, the first test-subtract iteration has to be
handled as a special case, saving its quotient bit in a sepa-
rate location and not shifting the (possibly subtracted) div-
idend. Then, ifk 6= 0, additional iterations are required.
In this case, we know that the divisor must have been
shifted left by at least one bit during alignment, so we
can safely shift the divisor right by one bit. This produces
the same alignment as if the dividend had been shifted one
bit left during the special first iteration. Then we proceed
with k regular test-subtract-shift-dividend iterations. At
the end, the first quotient bit has to be combined with the
quotient bits resulting from thek regular iterations.

Figure 4 shows a code example. The complexities of
handling the special first iteration and then extracting the
quotient and remainder at the end are mitigated by the
tight inner loop based on thetsubsh operation.

4 Functional iteration methods

Functional iteration methods compute a recurrence that
converges to a useful value. They have the advantage
that fewer iterations are required, especially for larger
word sizes, because the recurrence converges quadrati-
cally, doubling the number of retired quotient bits each it-
eration. They have the disadvantage that each iteration re-
quires multiplication. Fortunately, architectures that lack
division often provide a high-speed multiplication opera-

r = x; q = 0;
if (y <= r) {

unsignedk = clz(y)− clz(r);
y = lsl(y,k); // align y
if (r >= y) { r = r−y; q = lsl(1,k);} // special first iter
if (k != 0) {

y = half(y);
unsignedi = k;
do { r = tsubsh(r,y); i = i−1; } while (i!=0); // k iters
q = q + r; // combine with first cycle quotient bit
r = lsr(r,k); // extract remainder
q = q− lsl(r,k); // leave just quotient

}
}

Figure 4: Align divisor shift dividend method.

tion.
There are two basic functional iteration methods. Divi-

sor reciprocation uses the Newton-Raphson recurrence to
compute the reciprocal of the divisor which is then multi-
plied by the dividend. Goldschmidt’s Algorithm [5] mul-
tiplies both dividend and divisor by a series of factors that
cause the divisor to converge to 1.

The principal difficulty in using functional iteration
methods is arranging for enough precision in intermediate
calculations so that the final result has sufficient accuracy.
Hardware floating point implementations often use a large
number of extra bits of precision, in some cases even dou-
bling the width of the data path [12]. Such an approach is
painful to emulate in software.

An adaptation of divisor reciprocation for software un-
signed integer division is presented below. This method
uses only single precision unsigned integer operations as
defined in Section 2. Previous work has used floating
point operations [1] or considered only the special case
of division by a constant [6].

4.1 Divisor reciprocation

One way of dividing real numbers is to multiply the divi-
dend by the reciprocal of the divisor. Given a real divisor
Y > 0 and an initial approximationZ0 that satisfies

0 < Z0 < 2/Y

5

the Newton-Raphson recurrence

Zi+1 = Zi ∗ (2 − Zi ∗ Y)

converges to the reciprocal ofY . The convergence is
amazingly fast, with the error falling quadratically on
each iteration.

An analogous technique can be used to implement un-
signed integer division. The value2W serves as an ana-
logue of the unit value. An unsigned integerz such that
the producty ∗ z approximates2W serves as an analogue
of the reciprocal ofy. And an analogue of the Newton-
Raphson recurrence can be used to compute an approxi-
mation of the reciprocal.

Care is required to guarantee that the correct result is
obtained in all cases. We arrange for all intermediate re-
sults to fall within the permitted range of unsigned inte-
gers, so that the concrete operations can be used directly.
The main insight is to use lower bound approximations.
This makes all the details work out in a very direct man-
ner.

Newton-Raphson iteration is often used to implement
fixed-point division in hardware. However we are not
aware of any treatment of this idea for unsigned integer
division. The following sections develop and evaluate the
method in some detail.

4.1.1 Definitions

Giveny ∈ U + observe that there exist one or morez ∈
U + such thaty ∗z < 2W . We defineinv(y) as the largest
suchz. The valueinv(y) serves as an analogue of the
reciprocal ofy. It follows that

2W − y ≤ y ∗ inv(y) < 2W

For any dividendx ∈ U and quotientq = bx/yc it fol-
lows that

q − 1 ≤

⌊

x ∗ inv (y)

2W

⌋

≤ q

Observe that
⌊

a ∗ b/2W
⌋

= umulh(a, b) whena, b ∈ U .
Multiplying the dividendx by inv(y) does not quite get
us the quotient, but only a close lower bound of the quo-
tient. We can get to the actual quotient by computing the
remainder and performing a few test-subtract iterations.

If we multiply the dividend byinv(y), at most one test-
subtract iteration will be required. However, it is almost

as good to multiply by a close lower bound ofinv (y).
We will still get a close lower bound of the quotient, just
perhaps not as close as if we had used the actual value of
inv (y). Several test-subtract iterations may be required to
get to the actual quotient.

So the problem becomes how to obtain a close lower
bound ofinv (y). This can be accomplished by an ana-
logue of the Newton-Raphson recurrence. For the follow-
ing exposition, it is convenient to define several sets of
lower bounds ofinv(y). Let

LBy = {z ∈ U + : 1 ≤ y ∗ z < 2W }

DLBy = {z ∈ U + : 2W−1 ≤ y ∗ z < 2W }

TYLBy = {z ∈ U + : 2W − 2 ∗ y ≤ y ∗ z < 2W }

We say thatLBy is the set of all lower bounds,DLBy of
decentlower bounds, andTYLBy of two-ylower bounds.

4.1.2 The UNR recurrence

UNR stands for Unsigned integer Newton-Raphson.

Theorem 1 Given y ∈ U +, zi ∈ LBy, and the UNR
recurrence

zi+1 = zi +

⌊

zi ∗ (2W − y ∗ zi)

2W

⌋

it follows thatzi ≤ zi+1 andzi+1 ∈ LBy.

It may be observed that the UNR recurrence bears a lot
of similarity to the Newton-Raphson recurrence. How-
ever, the variables have been pushed around so that the
calculation maps directly onto the concrete operations. It
turns out that

zi+1 = zi ADD umulh(zi,mul(0 SUB y, zi))

This can be verified by checking the ranges of the argu-
ment and result values of each of the concrete operations.
In particular, sincey, zi, y ∗ zi ∈ U + we have

mul(0 SUB y, zi) = ((0 SUB y) ∗ zi) mod 2W

= (−y ∗ zi) mod 2W

= 2W − y ∗ zi

6

4.1.3 Final value of the UNR recurrence

Starting from an initialz0 ∈ LBy the UNR recurrence
computes a non-decreasing sequencez0, z1, z2, . . . of in-
tegers wherezi ≤ inv (y) for all i. Consequently the re-
currence must eventually reach a final value. There must
be some smallestn ≥ 0 such thatzn = zm for all m ≥ n.
We say that the recurrence reaches its final value inn it-
erations.

Of course, we would like the final value to be close to
inv(v). This is accomplished by starting the recurrence
with a decent lower bound as discussed next.

4.1.4 Starting with a decent lower bound

Theorem 2 Given z0 ∈ DLBy and computingz1, z2,
and so on using the UNR recurrence, it follows that the
final valuezn ∈ TYLBy.

Observe from the definition ofTYLBy that the final
valuezn is within 1 of inv(y), since at most one more
multiple ofy will fit before 2W .

It may be observed that the conditionz0 ∈ DLBy is an
exact analogue to the condition on the initial approxima-
tion for Newton-Raphson iteration.

Of course, in order to start the recurrence with a de-
cent lower bound, we need to be able to compute one.
Fortunately, that is not hard. Giveny ∈ U + take
k = blog2(y)c. Observe that2k ≤ y < 2k+1 and
0 ≤ W − k − 1 < W . Takez0 = 2W−k−1. Clearly
z0 ∈ U +. Substitution shows that

2W−1 ≤ y ∗ z0 < 2W

Thereforez0 ∈ DLBy. Observe thatW − k − 1 is com-
puted by the count-leading-zeros operation. Hence

z0 = 2W−k−1 = 2clz(y) = lsl(1, clz (y))

4.1.5 Using a two-y lower bound

Theorem 3 Givenz ∈ TYLBy, x ∈ U , andq = bx/yc
it follows that

q − 2 ≤
⌊x ∗ z

2W

⌋

≤ q

// decent start
unsignedz = lsl(1,clz(y));
// z recurrence
unsignedmy = 0−y;
for (;;) {

unsignedzd = umulh(z,mul(my,z));
if (zd == 0)break;
z = z + zd;

}
// q estimate
q = umulh(x,z); r = x− mul(y,q);
// q refinement
if (r >= y) { r = r − y; q = q + 1;

if (r >= y) { r = r − y; q = q + 1;}
}

Figure 5: UNR recurrence method.

We can usez ∈ TYLBy to compute a quotient lower
boundq̂ and corresponding remainderr̂.

q̂ =
⌊x ∗ z

2W

⌋

= umulh(x, z)

r̂ = x − y ∗ q̂ = x SUBmul(y, q̂)

By checking the ranges, it is easy to verify that the con-
crete operations compute the desired results. From The-
orem 3 it follows that at most two test subtractions ofy
from r̂ are needed to arrive at the final quotient and re-
mainder.

4.1.6 Implementation

Putting it all together gives the UNR recurrence method
for computing unsigned integer division shown in Fig-
ure 5. Each iteration of the UNR recurrence requires one
mul and oneumulh. However, convergence is very fast,
with the number of accurate significant bits doubling on
each iteration. ForW = 32, the recurrence never takes
more than six iterations to reach the final value and then
one additional iteration to establish that the recurrence
makes no further improvement. In almost all cases, fewer
than six iterations are required. The next section provides
detailed performance measurements.

Although the code of the UNR recurrence method is
longer and more complicated than for the improved shift
divisor method, due to the small iteration count it typically

7

max
avg

0

1

2

3

4

5

6

n
u

m
b

er
o

fi
te

rs
to

fin
al

va
lu

e

max
avg

0 4 8 12 16 20 24 28 32

k = blog2(y)c

0

1

2

3

er
ro

r
af

te
r

5
ite

rs

Figure 6: Performance for W=32 of the UNR recurrence.

runs faster, assuming that themul andumulh operations
are reasonably fast.

4.1.7 Performance for W=32

To investigate the performance of the UNR recurrence for
the special case ofW = 32, the method was instrumented
to record two statistics: the number of iterations required
to reach the final value of the recurrence (not counting the
extra iteration that merely establishes no further improve-
ment) and the error between the value of the recurrence
after five iterations and the actual value ofinv(y).

The instrumented method was run once for every divi-
sory ∈ {1, . . . , 232 − 1}. The divisors were grouped into
buckets based onk = blog2(y)c and the maximum and
average of each statistic calculated for each bucket. The
results are plotted in Figure 6.

The average number of iterations decreases from5.0 to
0.0 ask increases from0 to 31. This can be explained by
considering thatlog2(y) + log2(inv (y)) ≈ W , so fewer
and fewer bits are left forinv(y) as k increases. With
fewer bits to determine, the recurrence reaches the final
value sooner.

Depending on the relative costs of computing the recur-
rence and controlling the loop, it might be more efficient
always to run a fixed number of iterations, especially if

// decent start
unsignedz = lsl(1,clz(y));
// z recurrence, 5 iterations
unsignedmy = 0−y;
z = z + umulh(z,mul(my,z));
z = z + umulh(z,mul(my,z));
z = z + umulh(z,mul(my,z));
z = z + umulh(z,mul(my,z));
z = z + umulh(z,mul(my,z));
// q estimate
q = umulh(x,z); r = x− mul(y,q);
// q refinement
if (r >= y) { r = r − y; q = q + 1;

if (r >= y) { r = r − y; q = q + 1;}
}

Figure 7: UNR recurrence method for W=32.

y < 216 is common. Observe that no more than five iter-
ations are required to reach the final value for any divisor
except for an anomaly atk = 16.

It can be seen that the maximum error never exceeds
1 after five iterations. Therefore, although the recurrence
may not have reached the final value in all cases, there is
no harm to correctness if we stop calculating at this point.
In fact, the average error after five iterations is quite low.
This means that for the majority of divisors, the current
value after five iterations is in factinv(y) and at most one
test-subtract will be required to reach the actual quotient.

Since five iterations are always sufficient forW = 32,
a specialized method can be produced by unrolling the
UNR recurrence five times and totally eliminating the
loop overhead. Figure 7 shows the result.

4.2 Bit reverse UNR recurrence

It turns out amazingly enough thatbitrev andband can be
used in place oflsl andclz to compute the decent lower
bound initial estimate for the UNR method. In particular,
giveny ∈ U +

band(bitrev (y), 0 SUB bitrev(y)) = lsl(1, clz (y))

Observe [17] thatband(a, 0 SUB a) isolates the lowest or-
der 1 bit ina. Taking a = bitrev (y) causes this to be
the highest order 1 bit iny shifted to the correct place
for lsl(1, clz (y)). Figure 8 shows the UNR recurrence

8

// decent start
unsignedyr = bitrev(y);
unsignedz = band(yr,0−yr);
// z recurrence
unsignedmy = 0−y;
for (;;) {

unsignedzd = umulh(z,mul(my,z));
if (zd == 0)break;
z = z + zd;

}
// q estimate
q = umulh(x,z); r = x− mul(y,q);
// q refinement
if (r >= y) { r = r − y; q = q + 1;

if (r >= y) { r = r − y; q = q + 1;}
}

Figure 8: Bit reverse UNR recurrence method.

method using this approach for computing the initial esti-
mate.

4.3 Leading 9-bit table UNR recurrence

The UNR recurrence requires a decent lower bound ini-
tial estimatez0 ∈ DLBy in order to guarantee that the
final valuezn ∈ TYLBy, which enables the quotient es-
timate to be improved to the actual quotient in no more
than two test-subtract iterations. The basic UNR recur-
rence method uses the initial estimate

z0 = lsl(1, clz (y))

which for some divisors is just barely good enough. Pro-
viding a better initial estimate will enable the recurrence
to reach the final value sooner. Since the recurrence
roughly doubles the number of accurate bits on each it-
eration, providing eight significant bits should allow us to
skip the first three iterations.

4.3.1 Leading 9-bit table

We could get an more accurate initial estimate by means
of a lookup table using the leading bits ofy. Note that
the leading bit of any non-zero value is, by definition, 1.
So the leading 9 bits ofy as well as the leading 9 bits of

inv (y) are values in the range28, . . . , 29 − 1. Since this
range comes up a lot, let

L9 = {28, . . . , 29 − 1}

The idea is to feed the leading 9 bits ofy through a table
to produce the leading 9 bits of a decent lower bound of
inv (y). The domain and range of this table is to beL9.

Depending on the architecture, this might or might not
be a useful software approach. Note that the table needs
only to contain 256 entries of 8-bit values. This does not
seem out of the question as a hardware acceleration.

The problem becomes how to prescaley to a table in-
dex inL9, how to determine the contents of the table that
maps fromL9 to L9, and finally how to postscale the ta-
ble value fromL9 to a decent lower bound ofinv (y). The
prescaling and postscaling are fairly straightforward. The
big question is how to determine the contents of the table.

Approximation error makes it tricky. Taking the lead-
ing 9 bits fromy ≥ 210 ignores some low order bits of
y. In this case, the table index represents a range of val-
ues with the sameclz (y) and the result from the table will
have to produce an estimatez that works as a lower bound
on inv(y) for all of them. One approach would be to ac-
count for this in the prescaling by rounding up, but that
requires additional overhead on every division. A better
approach is to account for this in determining the contents
of the table.

The following formulation assumesy ∈ U +, i ∈ L9,
andW ≥ 17. For prescaling, let

ty(y) = lsr (lsl(y, clz (y)), W − 9)

For the contents of the table, let

t [i] =

{

lsr(inv(i + 1), W − 17) if i < 29 − 1
28 otherwise

For postscaling, let

zt(i, y) = lsr(lsl(i, W − 9), W − clz (y) − 1)

Stringing them all together, let

zty(y) = zt(t [ty(y)], y)

Theorem 4 Giveny ∈ U + it follows thatty(y) ∈ L9.

Theorem 5 Giveni ∈ L9 it follows thatt [i] ∈ L9.

Theorem 6 Given y ∈ U + it follows that zty(y) ∈
DLBy.

9

unsignedunrt [256];

void calc unrt (){
unsignedty = 256;
for (; ty < 512−1; ty++) {

unsignedt = lsr(inv(ty + 1),W−17);
unrt[ty− 256] = t− 256;

}
unrt[ty− 256] = 256− 256;

}

Figure 9: Method to compute the leading 9-bit table.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 254 252 250 248 246 244 242 240 238 236 234 233 231 229 227 225
16 224 222 220 218 217 215 213 212 210 208 207 205 203 202 200 199
32 197 195 194 192 191 189 188 186 185 183 182 180 179 178 176 175
48 173 172 170 169 168 166 165 164 162 161 160 158 157 156 154 153
64 152 151 149 148 147 146 144 143 142 141 139 138 137 136 135 134
80 132 131 130 129 128 127 126 125 123 122 121 120 119 118 117 116
96 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100
112 99 98 97 96 95 94 93 92 91 90 89 88 88 87 86 85
128 84 83 82 81 80 80 79 78 77 76 75 74 74 73 72 71
144 70 70 69 68 67 66 66 65 64 63 62 62 61 60 59 59
160 58 57 56 56 55 54 53 53 52 51 50 50 49 48 48 47
176 46 46 45 44 43 43 42 41 41 40 39 39 38 37 37 36
192 35 35 34 33 33 32 32 31 30 30 29 28 28 27 27 26
208 25 25 24 24 23 22 22 21 21 20 19 19 18 18 17 17
224 16 15 15 14 14 13 13 12 12 11 10 10 9 9 8 8
240 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0

Table 1: Contents of the leading 9-bit table.

4.3.2 Table implementation

As mentioned before, we do not need to waste resources
for the first leading bit, since it is always 1. We only
implement the lower 8 bits of the table index and value,
and translate during prescaling and postscaling. Figure 9
shows a method of computing the leading 9-bit table. Ta-
ble 1 shows the contents of the table.

Figure 10 shows a method of calculatinginv(y). Once
a two-y lower bound is obtained using the UNR recur-
rence, the estimatez is inched upward as far as possi-
ble. Note that we must have both2W − y ∗ z > y and
2W − z > 1 in order to be able to increase the estimatez
by 1.

unsignedinv (unsignedy) {
// decent start
unsignedz = lsl(1,clz(y));
// z recurrence
unsignedmy = 0−y;
for (;;) {

unsignedzd = umulh(z,mul(my,z));
if (zd == 0)break;
z = z + zd;

}
// inch z upward if possible
while (mul(my,z)> y && 0−z > 1) { z = z+1;}
return z;

}

Figure 10: Method to calculateinv(y).

// table lookup start
unsignedk = clz(y);
unsignedty = lsr(lsl(y,k), W−9); // prescaling
unsignedt = unrt[ty− 256] + 256;// table lookup
unsignedz = lsr(lsl(t,W−9), W−k−1); // postscaling
// z recurrence
unsignedmy = 0−y;
for (;;) {

unsignedzd = umulh(z,mul(my,z));
if (zd == 0)break;
z = z + zd;

}
// q estimate
q = umulh(x,z); r = x− mul(y,q);
// q refinement
if (r >= y) { r = r − y; q = q + 1;

if (r >= y) { r = r − y; q = q + 1;}
}

Figure 11: Leading 9-bit table UNR recurrence method.

4.3.3 Implementation

Using a leading 9-bit table to improve the initial estimate
produces the UNR recurrence method for computing un-
signed integer division shown in Figure 11. The prescal-
ing and postscaling operations are a little painful in soft-
ware.

It is not clear that a totally software implementation of
the leading 9-bit table method would be more efficient

10

max
avg

0

1

2

3

4

5

6

n
u

m
b

er
o

fi
te

rs
to

fin
al

va
lu

e

max
avg

0 4 8 12 16 20 24 28 32

k = blog2(y)c

0

1

2

3

er
ro

r
af

te
r

2
ite

rs

Figure 12: Performance for W=32 of the leading 9-bit
table UNR recurrence.

than the three iterations of the UNR recurrence that it re-
places. However, the code example can be used to see
what additional hardware operations would be most use-
ful.

For example, if there were a hardware table lookup op-
eration that used bitsW −2, . . . , W −9 as the table index
and produced a result that had 1 in bitW − 1, the table
value in bitsW−2, . . . , W−9, and zeros in the remaining
bits, that operation would be quite useful, even though the
software would still have to first shift left byclz (y) and
then afterwards shift right byW − clz (y) − 1.

4.3.4 Performance for W=32

To investigate the performance of the leading 9-bit table
UNR recurrence for the special case ofW = 32, an exper-
iment similar to the one in Section 4.1.7 was performed
except that the error was recorded after two iterations.
The results are plotted in Figure 12.

As expected, using the leading 9-bit table generally re-
duces the number of iterations by three as compared with
the basic UNR recurrence. Observe that no more than two
iterations are required to reach the final value for any di-
visor except for anomalous cases ofk = 8 andk = 12.

However, it can be seen that the maximum error never

// table lookup start
unsignedk = clz(y);
unsignedty = lsr(lsl(y,k), W−9); // prescaling
unsignedt = unrt[ty− 256] + 256;// table lookup
unsignedz = lsr(lsl(t,W−9), W−k−1); // postscaling
// z recurrence, 2 iterations
unsignedmy = 0−y;
z = z + umulh(z,mul(my,z));
z = z + umulh(z,mul(my,z));
// q estimate
q = umulh(x,z); r = x− mul(y,q);
// q refinement
if (r >= y) { r = r − y; q = q + 1;

if (r >= y) { r = r − y; q = q + 1;}
}

Figure 13: Leading 9-bit table UNR recurrence method
for W=32.

exceeds1 after two iterations. Therefore, although the re-
currence may not have reached the final value in all cases,
there is no harm to correctness if we stop calculating at
this point. The average error is so close to zero that it can-
not be seen on the plot. In fact, for no value ofk is the
average error after two iterations in excess of 0.02. This
means that for the vast majority of divisors, the final value
of the recurrence is in factinv (y).

Since two iterations are always sufficient forW = 32,
a specialized method can be produced by unrolling the
UNR recurrence twice and totally eliminating the loop
overhead. Figure 13 shows the result.

4.4 Small divisor table UNR recurrence

Since it seems likely that small divisors are common, a
good software approach might be to create a table to store
the exact value ofinv(y) for y < 2K , for some parameter
K. This makes division by small divisors very fast, re-
quiring oneumulh to get the quotient estimate, onemul
to compute the corresponding remainder, and then at most
one test-subtract step to arrive at the actual quotient.

We also have to consider larger divisors. At the cost
of doubling the table size, we can store lower bound esti-
mates ofinv(y) for 2K ≤ y < 2K+1. These lower bound
estimates are used to provide the initial estimatez0 for the
UNR recurrence in a way similar to that employed in the

11

void calc unrtk (){
unsignedi = 0;
unrtk[i] = 0; i = i+1;
for (; i < lsl(1,K); i++) {

unrtk[i] = inv(i);
}
for (; i < lsl(2,K)−1; i++) {

unsignedz = inv(i+1);
unrtk[i] = lsl(z,clz(z));

}
unrtk[i] = lsl(1,clz(1));

}

Figure 14: Method to compute the small divisor table.

leading 9-bit table method in Section 4.3. To facilitate the
software implementation, we store the lower bound esti-
mates with their leading bit aligned to the highest order
bit position.

Figure 14 shows a code example of how to compute the
small divisor table. The first half of the table contains ex-
act values ofinv (y) for the small divisors and the second
half of the table contains lower bound estimates. Note
that although the table is for small divisors, it is not nec-
essarily a small table. Depending on the size and speed
of memory, the parameterK can be adjusted to scale the
table.

Figure 15 gives a code example of how to perform
unsigned integer division using the small divisor table.
Wheny < 2K the first half of the table is accessed, get-
ting the exact value ofinv(y). Otherwise, the second half
of the table is accessed, getting a lower bound initial esti-
matez0 for the UNR recurrence.

As with previous variations, the performance of the
small divisor table UNR recurrence was investigated for
the special case ofW = 32. Given the objective of un-
rolling the recurrence loop to a fixed number of iterations,
it is not necessary to iterate the recurrence until it reaches
its final value. Rather, what is important is that the re-
currence arrive at an estimate ofinv(y) that has an error
of at most 1 and, for some divisors, the recurrence may
attain such an error before it reaches its final value. Con-
sequently, the small divisor table UNR recurrence method
was instrumented to determine how many iterations of the
recurrence are needed to attain the desired error. For small
divisorsy < 2K the number of iterations is zero.

unsignedk = clz(y);
if (k > W−K−1) {

// z = inv(y) table lookup
unsignedz = unrtk[y];
// q estimate
q = umulh(x,z); r = x− mul(y,q);
// q refinement
if (r >= y) { r = r − y; q = q + 1;}

}
else{

// table lookup start
unsignedty = lsr(lsl(y,k), W−K−1); // prescaling
unsignedt = unrtk[ty]; // table lookup
unsignedz = lsr(t, W−k−1); // postscaling
// z recurrence
unsignedmy = 0−y;
for (;;) {

unsignedzd = umulh(z,mul(my,z));
if (zd == 0)break;
z = z + zd;

}
// q estimate
q = umulh(x,z); r = x− mul(y,q);
// q refinement
if (r >= y) { r = r − y; q = q + 1;

if (r >= y) { r = r − y; q = q + 1;}
}

}

Figure 15: Small divisor table UNR recurrence method.

The instrumented method was run once for every di-
visor y ∈ {1, . . . , 232 − 1}. The divisors were grouped
into buckets based onk = blog2(y)c and the maximum
number of iterations calculated for each bucket. This ex-
periment was repeated for each of the parameter values
K ∈ {1, . . . , 16}. The results are plotted in Figure 16.

Looking at the plot, it can be seen that in general more
iterations are required whenk = blog2(y)c has an inter-
mediate value and fewer iterations are required whenk
takes an extreme value. This is because the small values
of k are handled by looking up the exact value ofinv(y)
and the larger values ofk require fewer iterations since
inv (y) is limited to fewer bits.

Table 2 gives the smallestK and table size for a given
maximum number of iterations required to reach error at
most 1 for any divisory when using the small divisor ta-

12

0 4 8 12 16 20 24 28 32
k = blog2(y)c

0

4

8

12

16

K
0

1

2

3

4

5

m
ax

ite
rs

to
er

ro
r≤

1

Figure 16: Performance for W=32 of the small divisor
table UNR recurrence, forK ∈ {1, . . . , 16}.

max iters K table size
4 2 32 B
3 4 128 B
2 7 1024 B
1 11 16 KB
0 16 512 KB

Table 2: SmallestK and corresponding size of the small
divisor table for a given maximum number of iterations of
the UNR recurrence for W=32.

ble. The curves for these values ofK are drawn with
thicker lines in Figure 16 for emphasis.

With K = 16 no iterations are needed at all. The initial
estimate obtained from the table has an error of at most
1. SettingK = 16 results in the table containing217

unsigned integers, which occupies 512 KB (W=32). For
some applications this may be a reasonable table size.

Based on a choice ofK, a specialized method can be
produced forW = 32 by unrolling the recurrence loop
the required number of times, or, in the case ofK = 16,
deleting the recurrence loop entirely.

5 Conclusion

We presented various methods of performing single pre-
cision unsigned integer division in software. Several vari-

ations of the standard test-subtract-shift approach were
elucidated, including one in which a single operation per-
forms the entire iteration. Large dividends present a diffi-
culty to naive implementations of some of the variations.

Another method and variants that were elucidated are
based on a novel adaptation of the Newton-Raphson re-
currence to the domain of unsigned integers. The primary
insight is to employ lower bound approximations so that
all calculated results fall within the range of unsigned in-
tegers. The recurrence requires onemul and oneumulh

operation per iteration. By using a table of initial approx-
imations, the number of iterations can be reduced signifi-
cantly. A range of table sizes were investigated.

Acknowledgements

Thanks to John Davis and Niklaus Wirth for comments on
an earlier version of this paper.

References

[1] R. Alverson. Integer division using reciprocals. In
Proceedings of the Tenth Symposium on Computer
Arithmetic, pages 186–190. IEEE Computer Society
Press, 1991.

[2] J. J. F. Cavanagh.Digital Computer Arithmetic: De-
sign and Implementation. McGraw-Hill, Inc., 1984.

[3] Y.-T. Cheng. TMS320C6000 integer division. Ap-
plication Report SPRA707, Texas Instruments, Oc-
tober 2000.http://focus.ti.com.cn/cn/
lit/an/spra707/spra707.pdf.

[4] M. D. Ercegovac and T. Lang.Digital Arithmetic.
Morgan Kaufman, 2004.

[5] R. E. Goldschmidt. Applications of division by con-
vergence. Master’s thesis, Dept. of Electrical Engi-
neering, MIT, June 1964.

[6] T. Granlund and P. L. Montgomery. Division by in-
variant integers using multiplication. InPLDI ’94:
Proceedings of the ACM SIGPLAN 1994 conference
on Programming language design and implemen-
tation, pages 61–72, New York, NY, USA, 1994.
ACM.

13

[7] D. L. Harris, S. F. Oberman, and M. A. Horowitz.
SRT division architectures and implementations. In
Proceeding of the 13th IEEE Symposium on Com-
puter Arithmetic, pages 18–25. IEEE Computer So-
ciety Press, 1997.

[8] D. E. Knuth. The Art of Computer Programming:
Seminumerical Algorithms. Addison-Wesley, 1969.

[9] I. Koren.Computer Arithmetic Algorithms (2nd Edi-
tion). A K Peters, 2001.

[10] H. Nikmehr, B. Phillips, and C.-C. Lim. A fast
radix-4 floating-point divider with quotient digit
selection by comparison multiples.Comput. J.,
50(1):81–92, 2007.

[11] S. F. Oberman and M. J. Flynn. An analysis of
division algorithms and implementations. Tech-
nical Report CSL-TR-95-675, Computer Systems
Laboratory, Departments of Electrical Engineering
and Computer Science, Stanford University, July
1995. ftp://reports.stanford.edu/
pub/cstr/reports/csl/tr/95/675/
CSL-TR-95-675.pdf.

[12] S. F. Oberman and M. J. Flynn. Division algorithms
and implementations.IEEE Transactions on Com-
puters, 46(8):833–854, 1997.

[13] B. Parhami.Computer Arithmetic: Algorithms and
Hardware Designs. Oxford University Press, 2000.

[14] D. A. Patterson and J. L. Hennessy.Computer Or-
ganization & Design: The Hardware/Software In-
terface, Second Edition, chapter 4.7 Division, pages
265–274. Morgan Kaufmann, 1997.

[15] D. Seal, editor.ARM Architecture Reference Manual
(2nd Edition). Addison-Wesley, January 2001.

[16] Texas Instruments. TMS320C64x/C64x+
DSP CPU and Instruction Set Reference
Guide, February 2008. Literature Number
SPRU732G. http://focus.ti.com/lit/
ug/spru732g/spru732g.pdf.

[17] H. S. Warren, Jr. Functions realizable with word-
parallel logical and two’s-complement addition in-
structions.Commun. ACM, 20(6):439–441, 1977.

[18] N. Wirth. Systematic Programming: An Introduc-
tion. Prentice-Hall, 1973.

A Proofs

Theorem 1 Given y ∈ U +, zi ∈ LBy, and the UNR
recurrence

zi+1 = zi +

⌊

zi ∗ (2W − y ∗ zi)

2W

⌋

it follows thatzi ≤ zi+1 andzi+1 ∈ LBy.

Proof Clearly zi+1 is an integer. Sincezi ∈ LBy we
have1 ≤ y ∗ zi < 2W . Takeε = 2W − y ∗ zi. Observe
that0 < ε < 2W . Hence

zi+1 = zi +

⌊

zi ∗ (2W − y ∗ zi)

2W

⌋

= zi +
⌊zi ∗ ε

2W

⌋

≥ zi

Since1 ≤ y ∗zi it follows that1 ≤ y ∗zi+1. We also have

zi+1 = zi +
⌊zi ∗ ε

2W

⌋

≤ zi +
zi ∗ ε

2W

=
zi ∗ (2W + ε)

2W

Multiplying by y gives us

y ∗ zi+1 ≤
y ∗ zi ∗ (2W + ε)

2W

=
(2W − ε) ∗ (2W + ε)

2W

=
(2W)2 − ε2

2W

= 2W − ε2/2W

< 2W

Since1 ≤ y we havezi+1 < 2W . Thereforezi+1 ∈ LBy.
QED

Theorem 2Givenz0 ∈ DLBy and computingz1, z2, and
so on using the UNR recurrence, it follows that the final
valuezn ∈ TYLBy.

14

Proof Sincezn is the final value,zn = zn+1 and hence

⌊

zn ∗ (2W − y ∗ zn)

2W

⌋

= 0

Therefore

zn ∗ (2W − y ∗ zn) < 2W

Multiplying by y/2W−1 gives us

y ∗ zn ∗ (2W − y ∗ zn)

2W−1
< 2 ∗ y

We started with2W−1 ≤ y ∗ z0 sincez0 ∈ DLBy. The
UNR recurrence haszi ≤ zi+1 for all i. So it must be the
case that2W−1 ≤ y ∗ zn. Therefore

2W − y ∗ zn =
2W−1 ∗ (2W − y ∗ zn)

2W−1

≤
y ∗ zn ∗ (2W − y ∗ zn)

2W−1

< 2 ∗ y

Hence2W − 2 ∗ y < y ∗ zn. The UNR recurrence guar-
anteesy ∗ zn < 2W . QED

It may be observed that the final valuezn is slightly
better than a two-y lower bound, since it satisfies strict in-
equality rather than just the non-strict inequality required
of a two-y lower bound. However, this point seems to
be of no consequence, other than slightly improving the
probability of getting a closer lower bound.

Theorem 3Givenz ∈ TYLBy, x ∈ U , andq = bx/yc
it follows that

q − 2 ≤
⌊x ∗ z

2W

⌋

≤ q

Proof We prove the inequalities one at a time. First, since

2W > x ≥ q ∗ y andy ∗ z ≥ 2W − 2 ∗ y, we have

x ∗ z

2W
≥

q ∗ y ∗ z

2W

≥
q ∗ (2W − 2 ∗ y)

2W

= q −
2 ∗ q ∗ y

2W

≥ q −
2 ∗ x

2W

> q −
2 ∗ 2W

2W

= q − 2

Therefore
⌊x ∗ z

2W

⌋

≥ q − 2

Second, sincex < (q + 1) ∗ y andy ∗ z < 2W , we have

x ∗ z

2W
<

(q + 1) ∗ y ∗ z

2W

<
(q + 1) ∗ 2W

2W

= q + 1

Therefore
⌊x ∗ z

2W

⌋

≤ q

QED

Theorem 4Giveny ∈ U + it follows thatty(y) ∈ L9.

Proof The computationlsl(y, clz (y)) aligns the leading
1 bit of y in the leftmost position, that is, at2W−1. Then
lsr(. . . , W − 9) shifts the value right causing the leading
1 bit to move from2W−1 to 28. QED

Theorem 5Giveni ∈ L9 it follows thatt [i] ∈ L9.

Proof If i = 29 − 1 thent [i] = 28. Otherwise28 ≤ i <
29 − 1. In this case observe that

2W−8 ∗ (i + 1) > 2W−8 ∗ 28 = 2W

15

Soinv (i + 1) < 2W−8. Hence

t [i] = lsr(inv (i + 1), W − 17)

=

⌊

inv (i + 1)

2W−17

⌋

≤
inv(i + 1)

2W−17

<
2W−8

2W−17

= 29

Going the other way, observe that

2W−9 ∗ (i + 1) < 2W−9 ∗ 29 = 2W

Soinv (i + 1) ≥ 2W−9. Hence

t [i] = lsr(inv (i + 1), W − 17)

=

⌊

inv (i + 1)

2W−17

⌋

≥

⌊

2W−9

2W−17

⌋

=
⌊

28
⌋

= 28

Therefore28 ≤ t [i] < 29. QED

Lemma 1 Given i ∈ L9 and y ∈ U + it follows that
2W−1 ≤ y ∗ zt(i, y).

Proof Sincei ∈ L9 we have28 ≤ i < 29. The com-
putationlsl(i, W − 9) aligns the leading 1 bit ofi in the
leftmost position, that is, at2W−1. Then lsr(. . . , W −
clz (y)− 1) shifts the value right causing the leading 1 bit
to move from2W−1 to 2clz(y). This gives us

zt(i, y) ≥ 2clz(y)

Recall thaty ≥ 2W−clz(y)−1. Hence

2W−1 = 2W−clz(y)−1 ∗ 2clz(y)

≤ y ∗ zt(i, y)

QED

Lemma 2 Giveny ∈ U + it follows that

zty(y) ≤ t [ty(y)] ∗ 2clz(y)−8

Proof Let j = t [ty(y)]. From Theorem 4 and Theorem 5
it follows thatj ∈ L9. Hencej ∗ 2W−9 < 2W and there-
fore lsl(j, W − 9) = j ∗ 2W−9. Consequently

zty(y) = zt(t [ty(y)], y)

= zt(j, y)

= lsr(lsl(j, W − 9), W − clz (y) − 1)

= lsr(j ∗ 2W−9, W − clz (y) − 1)

=

⌊

j ∗ 2W−9

2W−clz(y)−1

⌋

=
⌊

j ∗ 2clz(y)−8
⌋

≤ j ∗ 2clz(y)−8

= t [ty(y)] ∗ 2clz(y)−8

QED

Theorem 6 Given y ∈ U + it follows that zty(y) ∈
DLBy.

Proof From Theorem 4, Theorem 5, and Lemma 1 we
have

2W−1 ≤ y ∗ zty(y)

Next we will showy ∗ zty(y) < 2W . Recall that

2W−clz(y)−1 ≤ y < 2W−clz(y)

Let i = ty(y). There are two cases.
First case.Supposei = 29−1. Then we havet [ty(y)] =
28 and Lemma 2 gives us

zty(y) ≤ 28 ∗ 2clz(y)−8 = 2clz(y)

Hence

y ∗ zty(y) ≤ y ∗ 2clz(y) < 2W−clz(y) ∗ 2clz(y) = 2W

This completes the first case.
Second case.Otherwisei < 29 − 1. We have

i = ty(y)

= lsr(lsl(y, clz (y)), W − 9)

=

⌊

y ∗ 2clz(y)

2W−9

⌋

>
y ∗ 2clz(y)

2W−9
− 1

16

Hence

i + 1 >
y ∗ 2clz(y)

2W−9

Therefore

2W > (i + 1) ∗ inv(i + 1)

>
y ∗ 2clz(y)

2W−9
∗ inv (i + 1)

= y ∗ 2clz(y)−8 ∗
inv(i + 1)

2W−17

≥ y ∗ 2clz(y)−8 ∗

⌊

inv(i + 1)

2W−17

⌋

= y ∗ 2clz(y)−8 ∗ t [i]

= y ∗ 2clz(y)−8 ∗ t [ty(y)]

≥ y ∗ zty(y)

The last step comes from Lemma 2. This completes the
second case. Thereforey ∗ zty(y) < 2W . Since both
inequalities are proved, we havezty(y) ∈ DLBy. QED

17

