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Abstract in hardware are often completely impractical in software.
Descriptions from the point of view of software or mi-

Early computers omitted instructions for integer multerocode typically present just the shift double word div-

plication and division, requiring these operations to hgéend method [13, pages 213-215] or occasionally the

synthesized in software. Even some modern RISC agtlft divisor method [18, page 38].

DSP architectures are deficient in the case of division.\jethods for performing division can be classified

T.hereforg software m_ethods for performing integer dinitmgth into methods based on digit recurrence (which
sion continue to be of interest. retire a fixed number of quotient bits per iteration) and

We consider typical architectures based on two's Coyethods based on functional iteration (which double the
plement binary arithmetic and present various methogigmber of retired quotient bits per iteration). Both types
of performing single precision unsigned integer divisiog,ye practical software implementations, depending on

in software. In addition to methods based on the staie operations provided by the underlying hardware ar-
dard test-subtract-shift approach, we present a methggtecture.

and variants based on a novel adaptation of the Newton

. . . We consider typical architectures based on two’s com-
Raphson recurrence to the domain of unsigned mtegerﬁI

ement binary arithmetic. Although one more bit of pre-
cision is required, unsigned integer division is esselgtial
a simpler problem than signed division because it can ig-
nore the case analysis required to deal with the signs of
There are many algorithms fdrardware im- the dividend_and the t_di\_/isor. we consider m?FhF’dS for
plementation of arithmetic operations which are performing single precision unsigned integer division.
very interesting but which appear to be inappli- Let W be the number of bits in a machine word. Typ-
cable to computer programs. . . ically W = 32. Since the subscriptl” would other-
—Donald Knuth [8, page 244] wise appear on all definitions, we omit it for clarity. Let
U = {0,...,2" — 1} be the set of unsigned integers
Early computers omitted instructions for integer multand Ut = {1,...,2" — 1} be the set of strictly posi-
plication and division, requiring these operations to i&e unsigned integers. Given dividende U and divi-
synthesized in software. Even some modern RISC a$@f ¥y € U™, the problem of unsigned integer division
DSP architectures, for example, the ARM [15] and tHg to compute the quotient = |z/y] and remainder
TMS320C64 [16], are deficient in the case of division.= = — ¢ * y. Note thatg, r € U andr < y.
Therefore software methods for performing integer divi- In the exposition to follow, some care is necessary to
sion continue to be of interest. distinguish between abstract mathematical operations and
Although there is much literature on hardware impléhe concrete operations implemented by a two’s comple-
mentations of computer arithmetic and division in pament architecture. Equations written in the text refer to
ticular [2, 4, 9, 11, 12, 13, 14], methods that are usefabstract operations, although named concrete operations

1 Introduction
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are used freely. When the text needs to refer to the con- Isr(u, k) = {%J
crete operations of addition and subtraction it uses 2

andsuB. Code examples are written in C and usand  gome architectures provide an instruction to count the
- sinceADD andsSUB would be clumsy. All of the code ,,mper of leading zeros in a non-zero value. A reason-
examples have been extracted mechanically from a cafpyy efficient software method can often be constructed

piled and extensively tested program. based on binary search afd. Giveny € U™ let
Section 2 describes operations that might be provided

by a hardware architecture. Section 3 presents division clz(y) = W — [logy(y)] — 1
methods based on digit recurrence. Section 4 presents di- 2
vision methods based on functional iteration. SeCtlonl\?ote thatk —

concludes. Proofs appear in Apendix A. [log» (y)] s the integer that satisfies

ok <y< ok+1
2 Operation definitions
clz(y) is the number of leading zero bits in the represen-
We assume the usual two's complement arithmetic opetation ofy. Observe thab < clz(y) < W.
tions in which overflow is ignored. Given b € U let Architectures that lack an integer divide instruction
sometimes provide an instruction to compute one quotient

_ w
aADDb = (a +b) mod 2 bit in a tight loop. One clever example is a peculiar test-

aSUBb = (a — b) mod 2"V subtract-shift operation. Givenb € U let
Comparison of unsigned integers is assumed to produce Isla—b1)+1 ita>b
the correct answer in all cases. Note that, because of over-tsubsh(a,b) = ’ _
Isl(a, 1) otherwise

flow, this is not the same thing as testing the high order bit

of a SUB b. Section 3.4 shows howsubsh can be useful.

We use the following operations to extract bits and to S hitect id ianed int Lol
compute half. Note that computing half is simply a matter ome architectures provide unsigned integer muftipli-

of shifting right by one bit position. Givea € U let cation operations. Given b € U let

bit(a) = {%J mod 2 mul(a,b) = (a *b) mod oW
. a
thZt(a) = {—2W71J umulh(a7 b) = \‘C;—Ijle

half (a) = |a/2]
Instructions to perform bit-wise logical operations ar@/(a; b) is the low-order word of the product efandb
common. It turns out that some of these are occasiondifyd unulh(a, b) is the high-order word of the product of

useful even in numeric calculations. Giverb € U let @ andb.
Although it is difficult to reverse the order of bits in a

word in software, this is an easy task for hardware. So
some architectures provide an instruction for it. Given
a,be Ulet

Instructions to perform arbitrary logical shifts are com-
mon. Note that we adopt the typical restriction that the w-1
shift amount must be less than the word size. Given bitrev(a) = Y _ bity(a) « 2"V F!
u, k € Uwith k < W let k=0

w-—1
band(a,b) = Y _ bity(a) * bity,(b) » 2*
k=0

Isl(u, k) = (u* 2%) mod 2" Section 4.2 shows howitrev can be useful.



r= Q; a=x structions. The first instruction shiftsleft while saving
unsignedi = W hibit(g) in the carry and the second shiftsleft while
dc;/{double word left shift (r,q) bringing ".1 the carry. . :
F=r+ 1 + hibit(q); ’ The shift double word dividend method is frequently
’ employed in hardware as well as software. It turns out

azara that the logic required to computeSUB y can evaluate

if r>=y){r=r—y; q=qg+1;} r > y with essentially no extra effort and so both of these

i=i—1; can be computed simultaneously in the same logic unit.
} while (i = 0); There are variations depending on whether the remainder

is updated conditionally based on> y (as shown in

the code example here), is updated unconditionally and

then restored if- > y turns out to have been false (the

so-called “restoring version”), or updated unconditidyal

3 Digit recurrence methods and then the future logic of the algorithm inverted it
turns out to have been false (the so-called “non-restoring

Digit recurrence methods retire a fixed number of queersion”). Depending on the details of the architecture,

tient bits per iteration. Although versions that retire mosoftware implementations of these variants may or may

than one quotient bit per iteration are popular in hardwaret be practical.

such as radix-4 SRT division [7, 10], the quotient digit

;election and factor selection functions are _inefficient ¥o  ghift divisor

implement in software. Hence the only practical software

digit recurrence methods are those that retire one quoti€ht shift divisor method [18, page 38] is based on shift-

bit per iteration. Although these methods all employ theg the divisor rather than shifting the dividend. The idea

same basic test-subtract-shift approach, there are mango shift the divisor left (by iterated doubling) until it

Figure 1: Shift double word dividend method.

variations. exceeds the dividend and then compute each bit of the
quotient using a step of divisor right-shift (halving) and
3.1 Shift double word dividend test-subtraction.

However, there is a problem. Because of the difference

The shift double word dividend method pads the divideme@tween abstract and concrete operations, a naive imple-
out to a double wordr, ¢) and then perform$V test- mentation fails for large dividends. When > 2W !
subtract-shift iterations. Each iteration determines otteere will be some divisorsy( = 2, for example) for
quotient bit by test-subtracting the divisor fromand then which the required left-shifted value would equal or ex-
shifting the double wordr, ¢) one bit left. The quotient ceed2"" and thus cannot be represented as an unsigned
bits can cleverly be shifted intg as the dividend shifts integer. Fortunately this can be fixed without much trou-
left. At the endg contains the quotient andthe remain- ble.
der. The fix is to stop doubling the divisay whenzy <

Figure 1 shows a code example. The shift double woygdt y, wherez is the original value of, and then adjust
dividend method requirdd’ iterations independent of thethe quotient loop so that the test-subtraction occurs kefor
values ofz andy. halving the divisor. But since we cannot dependyo

Note that the concrete operatipnDD ¢ shiftsq one bit y = y ADD y, the doubling phase proceeds carefully as
position to the left, discarding the high-order bit. This ifllows.
an instance in which the difference between the concreté\e start out by evaluating > y. If this is false, we are
operationy ADD ¢ and the abstract mathematical operatiaione with doubling. Otherwise, we know that- y =
q + g can be exploited. 2 SUB y, SO we decrease by y, which results in a state

On architectures with a carry flag the double-word lefivith the invariantr = 2y — y. At this point, ifz > y we
shift of (r,q) can typically be implemented in two in-know thatzy > y+y and thereforg+y = yADDy. Given



r=x;q=0; r=x;q=0;
unsignedy0 =y; // original divisor if (y<=nH{
/I divisor doubling phase unsignedi = clz(y) — clz(r);
if (x >=y) { y = Isl(y.);
X =X-Y; /I quotient computing phase
while (x >=y) { Xx=x-y;y =y+y; } for () {
if(r>=y){r=r-y;q=q+l;}
/I quotient computing phase if (i==0) break;
for (;;) { i=i—1;
if(r>=y){r=r-y;q=q+1} q=qg+aq;
if (y ==y0) break; y = half(y);
q=q+q; }
, y = half(y); }

Figure 3: Improved shift divisor method.
Figure 2: Shift divisor method.

operations fall within their defined ranges and so produce
this, decreasing by y and then doubling preserves the intelligible results. Assuming < vy, the check foyy < r
invariant. We iterate until the condition > y is false. guarantee8 < r and so we can conclude
When any of the evaluations af > y comes up false, it
must be the case thaty < y + y, and so the doubling clz(r) < clz(y)
phase is done. Figure 2 shows a code example.

Observe that once > y comes up false in the divisor
doubling phase, the value ofis never used thereafter. In
many architectures, decreasindpy y evaluates: > y as
a side effect and so these two operations can be combi@ehsequently the operatidsi(y, i) produces exactly the
into a single instruction, resulting in a tight loop. aligned divisor we need.

Compared with the shift double word dividend method, Architectures that provide a count-leading-zeros opera-
the code for the shift divisor method is longer and runi®n typically define a result forlz (0) that can be checked
slower in the worst case, since there are iterations deasily. In such a case, it might be advantageous to recast
bling the divisor to scale it up and then iterations halvinhe argument checking.
the divisor to compute the quotient bits. However, the Replacing the divisor doubling loop with count-
number of iterations depends on the logarithm of the queading-zeros and logical-shift-left operations redubes
tient, which is typically much less thdir, so in the typi- instruction count and makes this method roughly identical
cal case the shift divisor method runs faster than the shiftthe shift double word dividend method in both code size
double word dividend method. and worst case execution time. The improved shift divi-
sor method also has the advantage of considerably better
typical execution time.

0 < clz(y) — clz(r) < W
clz(y) — clz(r) = clz(y) SUB clz(r)

3.3 Improved shift divisor

It can be observed that what the doubling phase of the ; - (¥ PR LR

shift divisor method achieves is to align the leading 1 b%'4 Align divisor shift dividend

of the divisor with the leading 1 bit of the dividend. Th&he align divisor shift dividend method is based on align-

count-leading-zeros and logical-shift-left operatioas cing the divisor under the dividend and then performing a

be exploited to attain this alignment directly. Figure Bumber of test-subtract iterations which shift the dividen

shows a code example. left. As in the shift divisor method, the number of itera-
Care must be taken that the arguments tacth@ndisl  tions isk + 1, wherek is the number of bit positions the



divisor must be shifted left in order to align it under tﬂme r=x9=0;

dividend. The quotient bits can cleverly be saved in thef (Y <=1 {

rightmost positions of the dividend as it shifts left on each Unsignedk = clz(y) — clz(r);

test-subtract iteration. ?;Erlil(:yyk)){/i illrg—r‘y>'/q =Isl(1,k); } // special first iter
Theisubsh operation defined in Section 2 performs the ¢ |- ¢ { ’ n

entire iteration. This operation is attractive for hardevar y = half(y);

implementation because only two registers are required, unsignedi = k;

one containing the aligned divisor (read only) and gne  do { r = tsubsh(r,y); i = i-1; } while (i!=0); // k iters

containing the dividend (read and written). TBEBC q = q + r;// combine with first cycle quotient bit
instruction on the TMS320C64 performs exactly this gp-  r =Isr(r,k); // extract remainder

eration and details of how to exploit it appear in an appli-  d=q— Isl(r,k); // leave just quotient

cation note [3]. }

Unfortunately, the align divisor shift dividend methad }
has a problem with large dividends. It is possible for the
dividend to excee@"V ! — 1 but still be less than the Figure 4: Align divisor shift dividend method.
aligned divisor. The naive implementation performs a left
shift, but this drops the high order bit of the dividend.
The problem can be fixed, but the fix is not very pleation.
ant. Basically, the first test-subtract iteration has to beThere are two basic functional iteration methods. Divi-
handled as a special case, saving its quotient bit in a sej@-reciprocation uses the Newton-Raphson recurrence to
rate location and not shifting the (possibly subtracted) dicompute the reciprocal of the divisor which is then multi-
idend. Then, if # 0, additional iterations are requiredplied by the dividend. Goldschmidt’s Algorithm [5] mul-
In this case, we know that the divisor must have betplies both dividend and divisor by a series of factors that
shifted left by at least one bit during alignment, so weause the divisor to converge to 1.
can safely shift the divisor right by one bit. This produces The principal difficulty in using functional iteration
the same alignment as if the dividend had been shifted anethods is arranging for enough precision in intermediate
bit left during the special first iteration. Then we proceeashiculations so that the final result has sufficient accuracy
with k regular test-subtract-shift-dividend iterations. A#ardware floating pointimplementations often use a large
the end, the first quotient bit has to be combined with thember of extra bits of precision, in some cases even dou-
quotient bits resulting from thke regular iterations. bling the width of the data path [12]. Such an approach is
Figure 4 shows a code example. The complexities dinful to emulate in software.
handling the special first iteration and then extracting theAn adaptation of divisor reciprocation for software un-
quotient and remainder at the end are mitigated by tigned integer division is presented below. This method
tight inner loop based on thisubsh operation. uses only single precision unsigned integer operations as
defined in Section 2. Previous work has used floating

. . . point operations [1] or considered only the special case
4 FunCtlonal |terat|on methOdS of division by a constant [6]

Functional iteration methods compute a recurrence that

converges to a useful value. They have the advantalg Divisor reciprocation

that fewer iterations are required, especially for larger

word sizes, because the recurrence converges quadfatie way of dividing real numbers is to multiply the divi-
cally, doubling the number of retired quotient bits each itlend by the reciprocal of the divisor. Given a real divisor
eration. They have the disadvantage that each iteration¥e> 0 and an initial approximatio#, that satisfies

quires multiplication. Fortunately, architectures thaatid

division often provide a high-speed multiplication opera- 0< Zyp<2/Y



the Newton-Raphson recurrence as good to multiply by a close lower bound ofv(y).
We will still get a close lower bound of the quotient, just
Zitn = Zix (2= ZixY) perhaps not as close as if we had used the actual value of
inv(y). Several test-subtract iterations may be required to
et to the actual quotient.
So the problem becomes how to obtain a close lower
An analogous technique can be used to implement (UNd ofinu(y). This can be accomplished by an ana-
signed integer division. The val®" serves as an ana-°9uYe of thg Nev_vtpn—Raphspn recurrence. For the follow-
logue of the unit value. An unsigned integesuch that ing exposition, it is convenient to define several sets of

the product  » approximate" serves as an analogud®Ve" bounds oinu(y). Let
of the reciprocal ofy. And an analogue of the Newton-
Raphson recurrence can be used to compute an approxi-
mation of the reciprocal.

Care is required to guarantee that the correct result is
obtained in all cases. We arrange for all intermediate re- TYLB,={zc U": W 24y <ysxz< QW}
sults to fall within the permitted range of unsigned inte- )
gers, so that the concrete operations can be used dired}f. S8y that’B, is the set of all lower bound€) LB, of
The main insight is to use lower bound approximation@€centower bounds, and’YL B, of two-ylower bounds.
This makes all the details work out in a very direct man-
ner. 4.1.2 The UNR recurrence

Newton-Raphson iteration is often used to implement . )
fixed-point division in hardware. However we are ndtNR stands for Unsigned integer Newton-Raphson.
aware of any treatment of this idea for unsigned integer _
division. The following sections develop and evaluate t heorem 1 Giveny € U*, z; € LB, and the UNR
method in some detail. recurrence

converges to the reciprocal &f. The convergence is
amazingly fast, with the error falling quadratically o
each iteration.

LB, ={zc Ut :1<yxz<2"}

DLB, ={zc UT: 2" <yx2 <2}

zi% (2% —yx z;)
4.1.1 Definitions Ziyl = Zi + oW

Giveny € U™ observe that there exist one or mare it follows thats < 2. andz.. € LB
U+ such thaty x z < 2. We defineinv(y) as the largest @il i+l Y
suchz. The valueinv(y) serves as an analogue of the

. It may be observed that the UNR recurrence bears a lot
reciprocal ofy. It follows that

of similarity to the Newton-Raphson recurrence. How-
oWy <y xinu(y) < 2% ever, the variables have been pushed around so that the
calculation maps directly onto the concrete operations. It
For any dividendr € U and quotieny = |z/y] it fol- turns out that
lows that .
(1< {x *;Tvl;](y)J <q Zi+1 = z; ADD umulh(z;, mul(0 SUB y, z;))
This can be verified by checking the ranges of the argu-

W _
Obs_ervg thata * b/2 J N “m.u”l(a’ b) whena, b € U. ment and result values of each of the concrete operations.
Multiplying the dividendz by inv(y) does not quite get In particular, sincey, z;,y + z; € U+ we have

us the quotient, but only a close lower bound of the quo- ' LY E A

tient. We can get to the actual quotient by computing the ,
. . . ) mul(0 SUB y, z;)
remainder and performing a few test-subtract iterations.
If we multiply the dividend byinv(y), at most one test-
subtract iteration will be required. However, it is almost

= ((0SUBY) * z;) mod 2"V
= (—y*z)mod 2"V

oW gk z



4.1.3 Final value of the UNR recurrence I decent start
unsignedz = Isl(1,clz(y));
Starting from an initialzg € LB, the UNR recurrencg //z recurrence
computes a non-decreasing sequengces, zo, . . . of in- unsignedmy = 0-y;
tegers where; < inv(y) for all i. Consequently the rer for () {

currence must eventually reach a final value. There must Unsignedzd = umulh(z, mul(my,z));
be some smallest > 0 such that,, = z,, for all m > n. If (2d == O)break;

We say that the recurrence reaches its final value ita z=z+zd;

) }
erations. Il g estimate

of course, we would I!ke the final vz?\Iue to be close|to 4 = ymulh(x,2); r = x— mul(y,q);
inv(v). This is accomplished by starting the recurrerjcey/ q refinement

with a decent lower bound as discussed next. if (r>=y){r=r—y;q=q+1;
if(r>=y){r=r—y;q=q+1}

4.1.4 Starting with a decent lower bound !

Theorem 2 Givenz, € DLB, and computingz, 22, Figure 5: UNR recurrence method.

and so on using the UNR recurrence, it follows that the
final valuez, € TYLB,,. )
We can use: € TYLB, to compute a quotient lower
Observe from the definition of 'YL B, that the final boundg and corresponding remainder
value z,, is within 1 of inv(y), since at most one more
multiple ofy will fit before 2.
It may be observed that the conditiene DLB, is an . ) .
exact analogue to the condition on the initial approxima- P =2 —y*q=xSUBmully,q)
tion for Newton-Raphson iteration. By checking the ranges, it is easy to verify that the con-
Of course, in order to start the recurrence with a derete operations compute the desired results. From The-
cent lower bound, we need to be able to compute oreem 3 it follows that at most two test subtractionsyof
Fortunately, that is not hard. Given € U™T take from + are needed to arrive at the final quotient and re-
k = |logy(y)]. Observe thak® < y < 2% and mainder.
0<W—-—k—-1< W. Takezg = 2W~*=1,_ Clearly
2o € U™T. Substitution shows that 4.1.6 Implementation

\\LL’*Z

S J = umulh(x, z)

W=l <ywzg < 2W Putting it all together gives the UNR recurrence method
for computing unsigned integer division shown in Fig-
Thereforezy € DLB,. Observe thatV — k — 1 is com- ure 5. Each iteration of the UNR recurrence requires one
puted by the count-leading-zeros operation. Hence  mul and oneumulh. However, convergence is very fast,
with the number of accurate significant bits doubling on
2o = 2W Rl = 9¢BW) — [51(1, clz(y)) each iteration. FoWW = 32, the recurrence never takes
more than six iterations to reach the final value and then
one additional iteration to establish that the recurrence
makes no further improvement. In almost all cases, fewer
Theorem 3 Givenz € TYLB,, z € U, andg = |z/y] than six iterations are required. The next section provides

4.1.5 Using a two-y lower bound

it follows that detailed performance measurements.
Although the code of the UNR recurrence method is
g—2< VC * ZJ <q longer and more complicated than for the improved shift
—L2w - divisor method, due to the small iteration count it typigall



/I decent start

unsignedz = Isl(1,clz(y));

/I z recurrence, 5 iterations

unsignedmy = 0-vy;

z =z + umulh(z,mul(my,z));

z = z + umulh(z,mul(my,z));

z =z + umulh(z,mul(my,z));

z =z + umulh(z,mul(my,z));

z = z + umulh(z,mul(my,z));

/I q estimate

g = umulh(x,z); r = x— mul(y,q);

/I q refinement

if(r>=y){r=r—y;q=q+1;
if(r>=y){r=r—y,q=q+1}

}

error after 5 iters number of iters to final value
o = N wo = N w H (6] (o]

ZZ -t .
k = |log,(y)] Figure 7: UNR recurrence method for W=32.

o
N
o]

Figure 6: Performance for W=32 of the UNR recurrence. . o
y < 2'°is common. Observe that no more than five iter-

ations are required to reach the final value for any divisor
runs faster, assuming that theu! andumulh operations except for an anomaly &t = 16.
are reasonably fast. It can be seen that the maximum error never exceeds
1 after five iterations. Therefore, although the recurrence
may not have reached the final value in all cases, there is
4.1.7  Performance for W=32 no harm to correctness if we stop calculating at this point.

the special case 61 = 32, the method was instrumented Nis means that for the majority of divisors, the current
to record two statistics: the number of iterations requirdglue after five iterations is in faétv(y) and at most one
to reach the final value of the recurrence (not counting tifSt-subtract will be required to reach the actual quotient
extra iteration that merely establishes no further improve Since five iterations are always sufficient fof = 32,

ment) and the error between the value of the recurrerfcéPecialized method can be produced by unrolling the
after five iterations and the actual valueiof (y). UNR recurrence five times and totally eliminating the

The instrumented method was run once for every difOP overhead. Figure 7 shows the result.

sory € {1,...,232 — 1}. The divisors were grouped into
buckets based oh = |log,(y)| and the maximum and4.2 Bit reverse UNR recurrence

average of each statistic calculated for each bucket. The inal hth d b
results are plotted in Figure 6. It turns out amazingly enough thétrev andband can be

The average number of iterations decreases fidno Esed (Ijn ptlf’:uie OJSI atndfclzt:]o (ijm:f ute ttr?e ddtlecent tl_owler
0.0 ask increases frond to 31. This can be explained by ound nitial estimate for the method. In particular,

considering thatog, (y) + log,(inv(y)) ~ W, so fewer giveny € U™

and fewer bits are It_aft foinv(y) ask increases. With. band (bitrev(y), 0 SUB bitrev(y)) = isl(1, clz(y))

fewer bits to determine, the recurrence reaches the final

value sooner. Observe [17] thaband(a, 0 SUB a) isolates the lowest or-
Depending on the relative costs of computing the recder 1 bit ina. Takinga = bitrev(y) causes this to be

rence and controlling the loop, it might be more efficiethe highest order 1 bit iy shifted to the correct place

always to run a fixed number of iterations, especially fibr Isi(1, clz(y)). Figure 8 shows the UNR recurrence



// decent start
unsignedyr = bitrev(y);
unsignedz = band(yr,0-yr);
Il z recurrence
unsignedmy = 0-vy;
for (;;) {
unsignedzd = umulh(z,mul(my,z));
if (zd == 0)break;
z=2z+zd;
}
/I q estimate
g = umulh(x,z); r = x— mul(y,q);
I q refinement
if(r>=y){r=r—y;q=q+1

inv(y) are values in the rang¥, ..., 2% — 1. Since this
range comes up a lot, let

Lg={2%...,2° -1}

The idea is to feed the leading 9 bitsgpthrough a table
to produce the leading 9 bits of a decent lower bound of
inv(y). The domain and range of this table is tole
Depending on the architecture, this might or might not
be a useful software approach. Note that the table needs
only to contain 256 entries of 8-bit values. This does not
seem out of the question as a hardware acceleration.
The problem becomes how to prescalto a table in-
dex in Lg, how to determine the contents of the table that

fr>=y){r=r—yiqg=a+1} maps fromLg to Lo, and finally how to postscale the ta-

ble value fromLg to a decent lower bound éfv(y). The

prescaling and postscaling are fairly straightforwarde Th
Figure 8: Bit reverse UNR recurrence method.  big question is how to determine the contents of the table.
Approximation error makes it tricky. Taking the lead-

) ) ) o ing 9 bits fromy > 2'° ignores some low order bits of
method using this approach for computing the initial es{j-"|, this case, the table index represents a range of val-
mate. ues with the samelz(y) and the result from the table will

have to produce an estimat¢hat works as a lower bound
4.3 Leading 9-bit table UNR recurrence oninv(y) fo_r a_II of them. On.e approach v_vould be to ac-
count for this in the prescaling by rounding up, but that
The UNR recurrence requires a decent lower bound inéquires additional overhead on every division. A better
tial estimatezo € DLB, in order to guarantee that theapproach is to account for this in determining the contents
final valuez,, € TYLB,, which enables the quotient esef the table.
timate to be improved to the actual quotient in no more The following formulation assumese U™, i € Lo,
than two test-subtract iterations. The basic UNR recandWW > 17. For prescaling, let
rence method uses the initial estimate ty(y) = Isr(isi(y, clz(y)), W — 9)

20 = Isl(1, clz(y)) For the contents of the table, let
. . _ . . 9 _
which for some divisors is just barely good enough. Pro- ¢[i] = b (i i+ i)’ W—17) i< 2. !
- L . . 2 otherwise
viding a better initial estimate will enable the recurrence

to reach the final value sooner. Since the recurrerfegr postscaling, let
roughly doubles the number of accurate bits on each it- . .

. -~ ) o . t = lsr(lsl(i, W —9),W — ¢l -1
eration, providing eight significant bits should allow us to 20, y) = lor(Isl(i, ) czy) = 1)
skip the first three iterations. Stringing them all together, let

2y(y) = 2t (t[ty(y)], y)
Theorem 4 Giveny € U™ it follows thatty(y) € Lo.

We could get an more accurate initial estimate by meafiseorem 5 Giveni € Ly it follows thatt[i] € Lo.
of a lookup table using the leading bits @f Note that

the leading bit of any non-zero value is, by definition, T.heorem 6 Giveny € U™ it follows that zty(y) €
So the leading 9 bits of as well as the leading 9 bits of DLBy.

4.3.1 Leading 9-bit table



unsignedunrt [256]; unsignedinv (unsignedy) {
/I decent start
void calcunrt () { unsignedz = Isl(1,clz(y));
unsignedty = 256; /I z recurrence
for (; ty < 512—1; ty++) { unsignedmy = 0-y;
unsignedt = Isr(inv(ty + 1),W—17); for (;;) {
unrt[ty — 256] =t — 256; unsignedzd = umulh(z,mul(my,z));
} if (zd == 0)break;
unrtfty — 256] = 256— 256; z=z+zd;
} }

/l'inch z upward if possible
while (mul(my,z)>y &% 0—z > 1) { z=z+1;}

Figure 9: Method to compute the leading 9-bit table; .\ " .

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 . .

0 | 254 252 250 248 246 244 242 240 238 236 234 233 231 229 227 225 Figure 10: Method to calculatev(y).
16 | 224 222 220 218 217 215 213 212 210 208 207 205 203 202 200 199

32 |197 195 194 192 191 189 188 186 185 183 182 180 179 178 176 175

48 173172 170 169 168 166 165 164 162 161 160 158 157 156 154 153 // table lookup start

64 |152 151 149 148 147 146 144 143 142 141 139 138 137 136 135 134 unsignedk = clz(y);

80 |132 131 130 129 128 127 126 125 123 122 121 120 119 118 117 116 - _ ) ;

96 | 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 UNSignedty =Isr(Isl(y.k), W—9); // prescaling
11299 98 97 96 95 94 93 92 91 90 89 88 88 87 86 85| Unsignedt=unrt[ty — 256 ] + 256;// table lookup
128|84 83 82 81 80 80 79 78 77 76 75 74 74 73 72 71| unsignedz =Isr(Isl(t,W—9), W—k—1);// postscaling
144|70 70 69 68 67 66 66 65 64 63 62 62 61 60 59 59| /7 recurrence

176 | 46 46 45 44 43 43 42 41 41 40 39 39 38 37 37 36| unsignedmy=0-y;
19235 35 34 33 33 32 32 31 30 30 29 28 28 27 27 26| for (;;){

208|25 25 24 24 23 22 22 21 21 20 19 19 18 18 17 17 unsignedzd = umulh(z,mul(my,z));
224|16 15 15 14 14 13 13 12 12 11 10 10 9 9 8 8 if (zd == 0)break:
240/ 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 '

z=z+zd;

Table 1: Contents of the leading 9-bit table. }

/I q estimate

g = umulh(x,z); r = x— mul(y,q);

/I g refinement

if(r>=y){r=r—y;q=q+1
if(r>=y){r=r—y;q=q+1}

}

As mentioned before, we do not need to waste resources

for the first leading bit, since it is always 1. We onlyFigure 11: Leading 9-bit table UNR recurrence method.

implement the lower 8 bits of the table index and value,

and translate during prescaling and postscaling. Figure 9 )

shows a method of computing the leading 9-bit table. T&:3-3  Implementation

ble 1 shows the contents of the table.

4.3.2 Table implementation

Using a leading 9-bit table to improve the initial estimate
Figure 10 shows a method of calculatiing(yy). Once produces the UNR recurrence method for computing un-
a two-y lower bound is obtained using the UNR recusigned integer division shown in Figure 11. The prescal-
rence, the estimate is inched upward as far as possiing and postscaling operations are a little painful in soft-
ble. Note that we must have bo?W — y x z > y and ware.
2" — » > 1in order to be able to increase the estimate It is not clear that a totally software implementation of
by 1. the leading 9-bit table method would be more efficient

10



T / table lookup start
max —x— .
avg—e— | unsignedk = clz(y);
unsignedty = Isr( Isl(y,k), W—9); // prescaling
unsignedt = unrt[ ty — 256 ] + 256;// table lookup
unsignedz = Isr( Isl(t,W—9), W—k—1); // postscaling
/I z recurrence, 2 iterations
unsignedmy = 0-vy;
z =z + umulh(z,mul(my,z));

w A O O
T
I

N

error after 2 iters number of iters to final value

1 z =z + umulh(z,mul(my,2));

0 /I q estimate

3 g = umulh(x,z); r = x— mul(y,q);
/I q refinement

2 if(r>=y){r=r—y;q=q+1;

1 ifr>=y){r=r—y;q=q+1}
}

O * e R %

0 4 8 12 16 20 24 28 32 ) ]
k = |log,(y)] 2?:1/\523)123 Leading 9-bit table UNR recurrence method

Figure 12: Performance for W=32 of the leading 9-bit

table UNR recurrence. , i
exceedd after two iterations. Therefore, although the re-

currence may not have reached the final value in all cases,

than the three iterations of the UNR recurrence that it iétere is no harm to correctness if we stop calculating at
places. However, the code example can be used to geepoint. The average error is so close to zero that it can-
what additional hardware operations would be most usest be seen on the plot. In fact, for no valuekois the
ful. average error after two iterations in excess of 0.02. This

For example, if there were a hardware table lookup omeans that for the vast majority of divisors, the final value
eration that used bitd” — 2, ..., W —9 as the table index of the recurrence is in fachv (y).
and produced a result that had 1 in @it — 1, the table  Since two iterations are always sufficient 16t = 32,
valuein bitsW —2, ..., W —9, and zeros in the remaininga specialized method can be produced by unrolling the
bits, that operation would be quite useful, even though th\R recurrence twice and totally eliminating the loop
software would still have to first shift left bylz(y) and overhead. Figure 13 shows the result.
then afterwards shift right bl — clz(y) — 1.

4.4 Small divisor table UNR recurrence
4.3.4 Performance for W=32 ) ) . o
Since it seems likely that small divisors are common, a

To investigate the performance of the leading 9-bit tald@od software approach might be to create a table to store
UNR recurrence for the special caséBf= 32, an exper- the exact value ofnv(y) for y < 2%, for some parameter
iment similar to the one in Section 4.1.7 was performegd. This makes division by small divisors very fast, re-
except that the error was recorded after two iterationgiiring onewmulh to get the quotient estimate, oneul
The results are plotted in Figure 12. to compute the corresponding remainder, and then at most
As expected, using the leading 9-bit table generally rene test-subtract step to arrive at the actual quotient.
duces the number of iterations by three as compared withWe also have to consider larger divisors. At the cost
the basic UNR recurrence. Observe that no more than wfaloubling the table size, we can store lower bound esti-
iterations are required to reach the final value for any diates ofinv(y) for 25 < ¢y < 25+1, These lower bound
visor except for anomalous casesiof 8 andk = 12. estimates are used to provide the initial estimgtior the
However, it can be seen that the maximum error neM@NR recurrence in a way similar to that employed in the
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void calcunrtk () { unsignedk = clz(y);
unsignedi = 0; if (k>W-K-1){
unrtk[i] = 0; i = i+1; /I z = inv(y) table lookup
for (;i < Isl(1,K); i++) { unsignedz = unrtk[y];
unrtk[i] = inv(i); /I q estimate
g = umulh(x,z); r = x— mul(y,q);
for (;i < Isl(2,K)—1; i++) { I q refinement
unsignedz = inv(i+1); ifr>=y){r=r—y;q=q+1;}
unrtk[i] = Isl(z,clz(2)); }
else{
unrtk[i] = Isl(1,clz(1)); / table lookup start
} unsignedty = Isr(Isl(y,k), W—K—1); // prescaling

unsignedt = unrtk[ ty ]; // table lookup
unsignedz = Isr(t, W—k—1);// postscaling
I z recurrence

unsignedmy = 0—vy;

for (;;) {

leading 9-bit table method in Section 4.3. To facilitate the . _ .
. . . unsignedzd = umulh(z,mul(my,z));

software implementation, we store the lower bound esti- (zd == O)break:
mates with their leading bit aligned to the highest ordler  ,_, , ;4.
bit position. }

Figure 14 shows a code example of how to compute|jthe // q estimate
small divisor table. The first half of the table contains x- g = umulh(x,z); r = x— mul(y,q);
act values ofinv(y) for the small divisors and the second  // q refinement
half of the table contains lower bound estimates. Npte if r>=y){r=r—y;q=qg+1;
that although the table is for small divisors, it is not nec-  if r>=y){r=r—y;q=q+1}
essarily a small table. Depending on the size and speed}
of memory, the parametéf can be adjusted to scale the ;
table.

Figure 15 gives a code example of how to perfornfrigure 15: Small divisor table UNR recurrence method.
unsigned integer division using the small divisor table.
Wheny < 2K the first half of the table is accessed, get-
ting the exact value ofv(y). Otherwise, the second half The instrumented method was run once for every di-
of the table is accessed, getting a lower bound initial estisor y € {1,...,2% —1}. The divisors were grouped
matez, for the UNR recurrence. into buckets based oh = |log,(y)| and the maximum

As with previous variations, the performance of thaumber of iterations calculated for each bucket. This ex-
small divisor table UNR recurrence was investigated fBeriment was repeated for each of the parameter values
the special case d = 32. Given the objective of un- & € {1,...,16}. The results are plotted in Figure 16.
rolling the recurrence loop to a fixed number of iterations, Looking at the plot, it can be seen that in general more
it is not necessary to iterate the recurrence until it resctierations are required wheén=|log,(y)] has an inter-
its final value. Rather, what is important is that the rénediate value and fewer iterations are required when
currence arrive at an estimate @fv(y) that has an error takes an extreme value. This is because the small values
of at most 1 and, for some divisors, the recurrence maf/k are handled by looking up the exact valueiob(y)
attain such an error before it reaches its final value. Ca@nd the larger values df require fewer iterations since
sequently, the small divisor table UNR recurrence methéa (v) is limited to fewer bits.
was instrumented to determine how many iterations of theTable 2 gives the smalle#f and table size for a given
recurrence are needed to attain the desired error. For smmelkimum number of iterations required to reach error at
divisorsy < 2% the number of iterations is zero. most 1 for any divisory when using the small divisor ta-

Figure 14: Method to compute the small divisor table.

12



R

Z =

max iters to erro 1

0 4 8 24 28 32

k2 loga ()

ations of the standard test-subtract-shift approach were
elucidated, including one in which a single operation per-
forms the entire iteration. Large dividends present a diffi-
culty to naive implementations of some of the variations.

Another method and variants that were elucidated are
based on a novel adaptation of the Newton-Raphson re-
currence to the domain of unsigned integers. The primary
insight is to employ lower bound approximations so that
all calculated results fall within the range of unsigned in-
tegers. The recurrence requires onel and oneumulh
operation per iteration. By using a table of initial approx-
imations, the number of iterations can be reduced signifi-
cantly. A range of table sizes were investigated.

Figure 16: Performance for W=32 of the small diviqucknowledgementS

table UNR recurrence, fak € {1,...,16}.

max iters K table size
4 2 32B
3 4 128 B
2 7 1024 B
1 11 16 KB
0 16 512KB

Table 2: Smallesk and corresponding size of the small
divisor table for a given maximum number of iterations of

the UNR recurrence for W=32.

ble. The curves for these values Af are drawn with
thicker lines in Figure 16 for emphasis.

With K = 16 no iterations are needed at all. The initial
estimate obtained from the table has an error of at most

1. SettingK = 16 results in the table containingl”

Thanks to John Davis and Niklaus Wirth for comments on
an earlier version of this paper.
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Proof Sincez, is the final valuez,, = z,,1 and hence 2%V >z > ¢+ yandy x z > 2" — 2 x 5, we have

W Tk z q*y*z
LZH*(2 2mjy*2n)J -0 oW 2 oW
S ax2V —2xy)
> oW
Therefore B 2xqgxy
T
zn*(2W—y*zn)<2W 2xx
= 1w
Multiplying by y/2" ! gives us o g2 2V
oW
(2 ) -
yxzpx (2 —yxz,
oW —1 <2xy
Therefore
. . X xz
We started witl2"W' =1 < y % 2, sincez, € DLB,. The { oW J >q—2
UNR recurrence hag < z;,1 for all i. So it must be the
W—-1 .
case thag™ ~* < y * z,. Therefore Second, since < (¢ + 1) *y andy * z < 2, we have
W s 2V =1y 2W — gy % 2,) TRz (q+1)*xy*z
Yy*in = oW -1 oW 2w
yxzn*x (2% —yx z,) (q+1)%2W
- 2w -1 < 2w
< 2xy = qg+1
Hence2" — 2 xy < y * z,. The UNR recurrence guar-Therefore
antees; * z, < 2. QED THRZ|
ow | =1

It may be observed that the final valug is slightly

better than a two-y lower bound, since it satisfies strict iE)_ED

equality rather than just the non-strict inequality reqdir

of a two-y lower bound. However, this point seems

be of no consequence, other than slightly improving

probability of getting a closer lower bound. Proof The computatiorsi(y, clz(y)) aligns the leading
1 bit of y in the leftmost position, that is, &"—!. Then

Theorem 3Givenz € TYLB,, z € U, andq = |z/y| Isr(...,W —9) shifts the value right causing the leading

it follows that 1 bit to move from2"'—! to 28. QED

tﬁ)georem 4Giveny € U™ it follows thatty(y) € Lo.

T * ZJ - Theorem 5Giveni € Ly it follows thatt[i] € Lo.
=49

Proof If i = 2% — 1 thent[i] = 2%. Otherwise2® < i <
29 — 1. In this case observe that

Proof We prove the inequalities one at a time. First, since AWy (i 1) > 2W 8 528 = oW
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Soinv(i + 1) < 2" 8. Hence

i)

Isr(inv(i+ 1), W —17)
inv(i+1)
- QW17
inv(i+1)
oW —17
oW -8

IN

< worr
= 92
Going the other way, observe that
oW =94 (i 4+ 1) < 2W 9429 = oW
Soinv(i + 1) > 2" =9 Hence

i)

Isr(inv(i+ 1), W —17)
| i@+ 1)
- QW —17
2W—9
2
_—
= 928
Therefore2® < t[i] < 2. QED

Lemmal Giveni € Lg andy € U™ it follows that

W= <y 2t (i, y).

Proof Letj = t[ty(y)]. From Theorem 4 and Theorem 5
it follows thatj € Ly. Hencej * 22 < 2V and there-
fore lsi(j, W —9) = j + 2"V =9. Consequently

2ty(y) = 2t(tty(y)],y)
= 2t(j,y)
= Isr(Isl(j, W —9),W — clz(y) — 1)
= Isr(j =2V W — clz(y) — 1)

- L j*QW_g J

- OW —clz(y)—1

_ {j “ 2clz(y)—8J

< s gclz(y)—8

= tlty(y)] x 2@
QED

Theorem 6 Giveny € U™ it follows that zty(y) €
DLB,.

Proof From Theorem 4, Theorem 5, and Lemma 1 we
have
2V <y aty(y)

Next we will showy  zty(y) < 2. Recall that

2W—clz(y)—1 <y< 2W—clz(y)

Leti = ty(y). There are two cases.
First case.Supposé = 2° — 1. Then we have|[ty(y)] =

Proof Sincei € Lo we have2® < i < 29. The com- 2° and Lemma 2 gives us

putationlsi(i, W — 9) aligns the leading 1 bit of in the
leftmost position, that is, &"'~1. Thenlsr(..., W —

2ty (y) < 28 % 26w =8 — 9clz(y)

clz(y) — 1) shifts the value right causing the leading 1 biﬁence

to move from2"W —! to 2¢%*(¥) | This gives us
2t(i,y) > 2clz(y)

Recall thaty > 2" —<#®)-1 Hence

2W*1 _ 2W7clz(y)71 * 2clz(y)

N

< yx2t(i,y)
QED

Lemma 2 Giveny € U™ it follows that

aty(y) < tlty(y)] « 2908

Y a2ty (y) < yx 2000 < gW—cle(y) 4 gelz(y) — oW

This completes the first case.
Second caseOtherwisei < 29 — 1. We have

i= ty(y)
Isr(lsl(y, clz(y)), W —9)

Y * 2clz(y)
b

y * 2clz(y)
2W -9
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Hence

Therefore
DAL
>
>
>

. y*zclz(y)
Z+ 1 > W

(i+1)xinv(i+1)
y * 9clz(y)

W * inv(i+1)

inv(i+1)
oW —17

y * 2clz(y)—8 * \"L’fl’l)(l + 1)J

y * 2clz(y)—8 *

QW —17
y * 2ch(y)_8 * t[Z]

- 9clz(y)—8 t[ty(y)]

y 2ty (y)

The last step comes from Lemma 2. This completes the
second case. Therefogex 2ty(y) < 2. Since both
inequalities are proved, we havg(y) € DLB,. QED
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