
EDN-LD: A simple linked data tool
James A. Overton1∗

1Knocean, Toronto, Ontario, Canada

ABSTRACT
EDN-LD is a set of conventions for representing linked data using

Extensible Data Notation (EDN) and a library for conveniently working
with those representations in the Clojure programming language. It
provides a lightweight alternative to existing linked data tools for many
common use cases, much in the spirit of JSON-LD. We present the
motivation and design of EDN-LD, and demonstrate how it can clearly
and concisely transform tables into triples.

1 INTRODUCTION
EDN-LD is a set of conventions for representing linked data using
Extensible Data Notation (EDN),1 and a library for conveniently
working with those representations in the Clojure programming
language.2 Clojure is a modern Lisp that runs on the Java Virtual
Machine (JVM) and has full access to the vast ecosystem of Java
libraries. Since many linked data libraries and tools also target the
JVM, Clojure is a tempting alternative to Java for working with
linked data. Tawny-OWL is another example of a linked data tool
written in Clojure (Lord, 2013), however it is focused on ontology
development and takes quite a different approach from EDN-LD.
With this project our goal is to provide a lightweight alternative to
existing linked data tools for many common use cases, much in the
spirit of JSON-LD.3 In this presentation we discuss the motivation
and design of EDN-LD, and demonstrate how it can clearly and
concisely transform tables into triples.

EDN-LD is open source software, published under a BSD license.
The source code is written in a literate style, with extensive unit
tests. It is available on GitHub4 with a tutorial that also serves
as an automated integration test. Our interactive online tutorial
can be used without needing to install Clojure.5 Feedback and
contributions are welcome on our GitHub site.

2 JSON-LD
EDN-LD shares many of the motivations and goals of JSON-LD.
First we will discuss the benefits and shortcomings of JSON-LD,
then show how EDN-LD improves on it in several respects.

JavaScript Object Notation (JSON)6 is a subset of the JavaScript
programming language that is widely used for expressing literal data
within JavaScript programs. JSON’s elements are: null, booleans,
strings, and numbers. Elements can be combined into arrays and
objects, where the latter are effectively maps from strings to other
values. These simple elements are common to virtually every

∗To whom correspondence should be addressed: james@overton.ca
1 https://github.com/edn-format/edn
2 http://clojure.org
3 http://json-ld.org
4 https://github.com/ontodev/edn-ld
5 http://try.edn-ld.com
6 http://json.org

programming language, and JSON is now widely used for data
transfer between programs. It has replaced heavier formats such as
XML in many applications.

JSON has many limitations, including a lack of comments,
ambiguous numbers, and the lack of any mechanism for extending
its types. In practise, strings are used to represent most types of
data, but since it is difficult to attach type information to aid in their
interpretation, this can quickly lead to ambiguity.

The ubiquity of JSON was one motivation for the JSON-LD W3C
Recommendation: “A JSON-based Serialization for Linked Data”.7

In JSON-LD strings are used to represent IRIs (and compact IRIs)
for resources, plain literals can be strings, and typed literals are
objects (maps) with a special @value, @type, and @language
keys. Graphs and datasets are represented as nested objects (maps)
and sets are represented by arrays, with details depending on the
chosen “Document Form”.

The core of JSON-LD is the @context map, which can be
specified inside a JSON record, externally using a link, or provided
by the consuming application. The context allows for strings to be
interpreted as IRIs, for compact IRI strings to be expanded, and for
types to be attached to literals. Since the context can be supplied
externally, existing JSON data can be reinterpreted as JSON-LD by
providing an appropriate context.

JSON-LD is an exciting addition to the ecosystem of linked
data tools, but it is constrained by the limitations of the JSON
format. The heavy use of strings, in particular, can make it difficult
to distinguish between a literal string, a compact IRI, or a fully
resolved IRI. The complex context processing8 and expansion
algorithms9 are indicative of this problem, as is the need for several
similar-but-different “Document Forms”. EDN-LD uses the richer
elements and structures available in EDN to reduce these problems.

3 EXTENSIBLE DATA NOTATION
Like JSON and JavaScript, Extensible Data Notation (EDN) is the
a data format at the core of Clojure. The basic EDN elements are:
nil, booleans, strings, characters, symbols, keywords, integers, and
floating point numbers. These can be combined into lists, vectors,
maps, and sets. Any element can serve as the key or value of a map.
EDN is extensible in the sense that it allows for tagged elements,
indicated by a special tag followed by an EDN element. EDN
also allows two kinds of comments. Multiple alternatives to strings
(i.e. keywords and symbols), more carefully defined numbers, sets,
and more flexible maps all make it easier to express complex data
efficiently and unambiguously in EDN than in JSON.

7 http://www.w3.org/TR/json-ld/
8 http://www.w3.org/TR/json-ld-api/
#context-processing-algorithms
9 http://www.w3.org/TR/json-ld-api/
#expansion-algorithms

1Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357213903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/edn-format/edn
http://clojure.org
http://json-ld.org
https://github.com/ontodev/edn-ld
http://try.edn-ld.com
http://json.org
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld-api/#context-processing-algorithms
http://www.w3.org/TR/json-ld-api/#context-processing-algorithms
http://www.w3.org/TR/json-ld-api/#expansion-algorithms
http://www.w3.org/TR/json-ld-api/#expansion-algorithms


Overton

EDN does not have a type system and does not include schemas.
However several schema systems have been created for validating
EDN data structures. EDN-LD uses Prismatic’s Schema library10 to
specify the required “shapes” for various elements.

4 EDN FOR LINKED DATA
In EDN-LD as in JSON-LD, IRIs and blank node identifiers are
represented by strings. IRIs can be contracted to keywords using
a context: a map from keywords to IRIs or other contractions.
Contractions can be expanded to IRIs using the same context.
Literals are always represented as maps with a special :value key
for the lexical value, and optional :type and :lang keys. Discrete
triples and quads are represented with vectors. Graphs and datasets
are represented as nested maps from graph IRI to subject IRI to
predicate IRI, ending with a set of objects. These two “document
forms” have very different shapes, suited to different processing
goals, e.g. sequences of triples for streaming and filtering, and
nested maps for sorting and selecting. EDN-LD uses Apache Jena11

to read from and write to a wide range of linked data formats.
Figure 1 shows an EDN-LD context. It includes a :dc prefix

for Dublin Core metadata elements, and an :ex prefix for the
example domain. The nil key indicates that its value :ex is the
default prefix. The :title and :author contractions expand
(recursively) to Dublin Core IRIs.

(def context
{:dc "http://purl.org/dc/elements/1.1/"
:ex "http://example.com/"
nil :ex
:title :dc:title
:author :dc:author})

(expand context :title)
; "http://purl.org/dc/elements/1.1/title"

Fig. 1. An example of an EDN-LD context, showing an expand function
call on the :title contraction, and the expanded IRI that is returned

Figure 2 shows an example of a simple data conversion pipeline
using EDN-LD. First we define a map from names (strings) to
contracted resource IRIs and merge our context with the default
prefixes. The ->> is a “threading macro” that inserts the first value
as the last argument to the second function, and so on, letting
deeply nested function calls be clearly expressed as “pipelines”.
Here “books.tsv” is the name of a file in tab-separated values
format and read-tsv is a function that returns a sequence
of maps for each row, each with column names as keys. The
assign-subject-iri function is called on each of the maps
to add a :subject-iri key with appropriate value. Then
triplify is used to convert the maps to triples, represented as
vectors: subject keyword, predicate keyword, and object keyword or
literal map as determined by the resources map. The keywords
represent contracted IRIs, and the expand-all function converts
them to full IRI strings. Finally the write-triples function
writes the results to the “books.ttl” Turtle file using our specified

10 https://github.com/Prismatic/schema
11 http://jena.apache.org

prefixes. By using keywords to distinguish contracted IRIs from full
IRIs and literal data, and consistently using maps for literal data, we
gain more control over the interpretation of strings than JSON-LD,
without loss of concision.

(def resources
{"Homer" :Homer})

(def prefixes
(merge

default-prefixes
context))

(->> "books.tsv"
read-tsv
(map assign-subject-iri)
(mapcat #(triplify resources %))
(map #(expand-all context %))
(write-triples "books.tsv"

prefixes))

Fig. 2. An example of an EDN-LD conversion pipeline

5 FUTURE WORK
EDN-LD is still in development, but available for use. We plan
to implement convenient syntax for RDF collections (linked lists),
and for various OWL constructs including annotation axioms
and class expressions. We are also considering a ClojureScript
implementation of EDN-LD. ClojureScript is a language that is
closely related to Clojure, compiling to JavaScript rather than JVM
bytecode. Dual Clojure and ClojureScript libraries are becoming
increasingly common. But a ClojureScript version of EDN-LD
could not use Jena, and would need alternative methods for reading
and writing linked data files.

6 DEMONSTRATION
At ICBO we plan to demonstrate the use of EDN-LD for
transforming tables to triples, and for efficiently filtering large
linked data files to specified subsets.

7 CONCLUSION
EDN-LD was developed for the Immune Epitope Database (IEDB),
and was preceded by several related systems for working with linked
data and ontologies using Clojure. These techniques have proved
valuable for rapid development of data processing workflows,
merging disparate sources of biological data. EDN-LD improves on
JSON-LD in several respects, and is well suited to working with
linked data in Clojure.

ACKNOWLEDGEMENTS
The author was supported in this work by the Immune Epitope
Database and Analysis Project, funded by the National Institutes
of Health [HHSN272201200010C].

REFERENCES
Lord, P. (2013). The Semantic Web takes wing: Programming ontologies with Tawny-

OWL. OWLED 2013.

2 Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes

https://github.com/Prismatic/schema
http://jena.apache.org

	Introduction
	JSON-LD
	Extensible Data Notation
	EDN for Linked Data
	Future Work
	Demonstration
	Conclusion

