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including type unsafe features, thread synchro-
nization, and overflow-sensitive arithmetic—
apply to real-time systems. This article will fur-
ther explore C# and the .NET Framework’s
suitability for real-time systems.

Real-time systems
Practitioners categorize real-time systems

as hard, firm, and soft.1 Hard real-time sys-
tems include those in which a single missed
deadline might cause catastrophic repercus-
sions. Firm real-time systems tolerate one
or more missed deadlines without cata-
strophic repercussions. In soft real-time sys-
tems, missed deadlines only result in per-
formance degradation.

Bart Van Beneden says, “All too often,
real-time behavior is associated with raw
speed. Popular conclusions are that the faster
a system responds or processes data, the more
real-time it is.”2 However, these conclusions

are incorrect. Real-time systems must fore-
most address schedulability and determinism,
especially under load.1 Schedulability indi-
cates a system’s ability to satisfy all deadlines.
Determinism lets an observer predict the sys-
tem’s next state at any time given its current
state and a set of inputs.

Real-time C#
Real-time Java systems have been studied

extensively.3 As the .NET Framework and
C# share traits with the Java Virtual Ma-
chine and Java,4,5 we’ll apply to the .NET
Framework and C# a synthesis of the ap-
proaches taken by these studies.

When examining C# and .NET for real-
time systems, you should note the character-
istics of the underlying platform—this pri-
marily means Microsoft operating systems.
Microsoft and Corel have joined forces in an
open source port of the Common Language
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M
icrosoft’s integrated development environment, Visual Studio.NET,
includes a new programming language C# (pronounced “C
sharp”), which targets the .NET Framework. Both the .NET
Framework and C# are fairly well-documented technologies, but

the platform’s appropriateness for real-time systems has not received much at-
tention. Microsoft doesn’t specifically claim that C# and .NET are intended for
real-time systems, but many of the platform’s general purpose features—
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Infrastructure and C# to the Unixlike
FreeBSD operating system. Additionally, at
least two other major efforts are underway to
port .NET and C# to Unix and Linux oper-
ating systems. 

Operating system considerations
Microsoft released the .NET Compact

Framework as a version of the .NET Frame-
work for scaled-down operating systems
such as Windows CE 3.0, Embedded Win-
dows XP, and handheld devices. Although
this condensed framework’s documentation
is sparse, it appears that it will include the
classes in the .NET Framework applicable to
real-time systems. 

Microsoft Windows CE 3.0 provides many
features for real-time systems, including 256
thread priorities, facilities to counteract prior-
ity inversion, and thread latency times com-
parable to other industry-leading real-time
operating systems.2 Windows CE 3.0 is highly
configurable, capable of scaling from small,
embedded-system footprints (350 Kbytes) and
upwards (for example, for systems requiring
user interface support).6 The minimum kernel
configuration provides basic networking sup-
port, thread management, dynamic link li-
brary support, and virtual memory manage-
ment. Although a detailed discussion falls
outside this article’s scope, Windows CE 3.0
clearly provides a powerful real-time operat-
ing system for the .NET platform to leverage.
Whether the .NET Compact Framework uses
all of CE’s real-time capabilities has yet to be
determined and warrants further study.

Physical memory access
C# supports unsafe code—code that runs

outside the Common Language Runtime
(CLR) and hence lets pointers refer to specific
memory locations.7 You must pin (by using
the keyword “fixed”) objects that pointers
reference, to prevent the garbage collector
from altering their location in memory. The
garbage collector collects pinned objects but
does not move them. This capability would
tend to increase schedulability, and it also al-
lows for direct memory device access to write
to specific memory locations—a necessary ca-
pability in embedded real-time systems.

Garbage collection and memory management
The typical C algorithm traverses a data

structure (typically a tree or hash table) to

find a suitable location for allocation. It al-
locates the memory, then updates the data
structure with the new object’s presence.

.NET manages dynamic, heap-based
memory with a stack. A system pointer,
NextObjPtr, always points to the loca-
tion for the next dynamic memory alloca-
tion. So, allocating memory in .NET is a
simple, streamlined process. Microsoft’s
measurements support this claim.8

.NET offers a generational approach to
garbage collection intended to minimize
thread blockage during mark and sweep.8

Microsoft’s garbage collector and other ven-
dors’ .NET implementations will improve
this algorithm over time and might even spe-
cialize it for various needs (such as real-time
systems). The algorithm is built on the as-
sumption that processing a portion of the
heap is less expensive than processing the en-
tire heap. Even with .NET’s generations,
however, it’s impossible to know the collec-
tion’s exact schedule, nor is it possible to
guarantee each collection’s cost. This nonde-
terministic behavior might pose the most
significant barrier to hard real-time systems
written in C#.

Thread schedulability and determinism
C# and the .NET platform do not sup-

port many of the thread management con-
structs that real-time systems, particularly
hard ones, often require.9,10 Even Anders
Hejlsberg (Microsoft’s C# chief architect)
states, “I would say that ‘hard real-time’
kinds of programs wouldn’t be a good fit (at
least right now)” for the .NET platform.11

For instance, the Framework does not sup-
port thread creation at a particular instant
in time with the guarantee that it completes
by a particular point in time. C# supports
many thread synchronization mechanisms
but none with this precision.

Windows CE 3.0 has significantly im-
proved thread management constructs.6 If
properly leveraged by C# and the .NET
Compact Framework, it could provide a
reasonably powerful thread management
infrastructure. Current enumerations for
thread priority in the .NET Framework,
however, are largely unsatisfactory for
real-time systems. Only five levels exist:
AboveNormal, BelowNormal, Highest,
Lowest, and Normal. Contrast this to Win-
dows CE 3.0, designed specifically for real-
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time systems with 256 thread priorities.
Microsoft’s ThreadPriority enumeration
documentation also states that “the sched-
uling algorithm used to determine the order
of thread execution varies with each operat-
ing system.”7 This inconsistency might
cause real-time systems to behave differ-
ently on different operating systems.

Clearly, Microsoft must extend .NET’s
thread priority enumeration to fully leverage
the thread priority levels in Windows CE
3.x. Most Windows implementations (in-
cluding Windows 2000 and XP) support 32
thread priorities, which is considered inade-
quate for many real-time systems.6

C# supports an array of thread synchro-
nization constructs:10

� Lock. A lock is semantically identical to
a critical section (a code segment guar-
anteeing entry to itself by only one
thread at a time).7

� Monitor. Lock is shorthand notation for
the monitor class type.

� Mutex. A mutex is semantically equiva-
lent to a lock, with the additional capa-
bility of working across processes spaces.
The downside to mutexes is their per-
formance cost. 

� Interlock. You use interlock, a set of
overloaded static methods, to increment
and decrement numerics in a thread-safe
manner.

Related to thread management is execu-
tion-time predictability—the schedulability
we have been discussing. Real-time systems
designers should include runtime code
analysis, which proactively determines the
expected runtime of critical code segments.12

If the platform realizes that the code will not
execute in a predefined timeframe, it throws
an exception. This lets the software react ap-
propriately (for example, by performing an
imprecise computation, returning less accu-
rate results, which is often better than no re-
sults) and is superior to reactively realizing a
missed deadline.11 The .NET Framework
falls short of most real-time developers’
needs in this regard.

However, if the .NET Compact Frame-
work eventually allows for 256 priority lev-
els and if the operating system addresses
.NET thread priority inversion as it does for
unmanaged threads, developers will be able

to address some real-time deadline con-
straints. Additionally, .NET threads are easy
to code, offer synchronization mechanisms,
and are type safe (instead of raw function
pointers, .NET uses delegates). C# might
prove attractive to architects as a candidate
for soft and firm real-time systems. 

Priority inversion
Priority inversion implies that through

synchronization constructs (for example mu-
texes), lower-priority threads might block
higher-priority threads—a situation prefer-
ably avoided. Priority inversion might lead to
starvation, where higher-priority threads re-
ceive significantly less CPU time than their
lower-priority counterparts or even deadlock.
Both situations are classic real-time systems
problems.1 To deal with priority inversion,
many operating systems, including most
Windows implementations (for example,
CE), temporarily boost the priority of lower-
priority threads in these cases, freeing syn-
chronization objects for higher-priority thread
execution as quickly as possible. This solu-
tion is known as the priority ceiling proto-
col.1 Because the .NET platform, specifically
the CLR, relies on the underlying operating
system for its thread management mecha-
nisms, the CLR should benefit from Win-
dows’ priority inheritance mechanisms.

In tests conducted for this article, how-
ever, it did not appear that thread inheri-
tance works properly. The test configura-
tion consisted of Windows 2000 SP1, .NET
v1.0.3705 (release one), running on an 800-
MHz Dell Inspiron 8000 with 523 Mbytes
of physical memory. These negative results
occurred consistently for a variety of testing
approaches.

The tests dealt exclusively with C#’s lock
statement. This statement is equivalent to
Win32 critical sections.10 A critical section
(and lock) is an intraprocess synchronization
mechanism that serializes threads through
designated sections.

The tests generated multiple threads, al-
lowing a normal-priority thread to enter a
lock before all other threads. Meanwhile, a
set of lower-priority threads blocked against
this normal-priority thread’s lock. The
processes’ primary thread simply waited un-
til all worker threads completed their tasks.

These experiments showed that the lower-
priority threads’ blocked duration (wall-
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clock time) varied directly with their priority,
as opposed to an inverse relationship—the
desired result if the priority inheritance pro-
tocol was invoked properly. Specifically,
when we increased the priority of the
blocked threads in subsequent tests, Win-
dows should have temporarily increased the
running thread’s priority to speed it through
the critical section. Instead, the thread own-
ing the lock (normal priority) owned the lock
longer as higher priority was given to the
blocking threads. This is the problem of pri-
ority inversion almost by definition.

According to Microsoft documentation
on Windows 2000, Windows CE 2.1, CE
3.0, XP, and so forth, Windows handles pri-
ority inversion through priority inheritance.
Jeffrey Richter, a columnist for MSDN mag-
azine, says the CLR leverages the underlying
operating system’s thread management sys-
tem, so priority inheritance should theoreti-
cally behave similarly.5 According to these
experiments, however, at least in the case of
.NET’s lock mechanism, priority inheritance
was not easily noticeable.

Timers
Timers in C# resemble the existing Win32

timer’s functionality. When constructed,
timers are told how long to wait in millisec-
onds before their first invocation and are
also supplied an interval (in milliseconds),
specifying the period between subsequent in-
vocations.5 These timers’ accuracy are ma-
chine dependent and not guaranteed, reduc-
ing their usefulness for real-time systems.

Hardware characteristics discovery
Kelvin Nilsen notes that “development of

real-time Java programs is especially diffi-

cult. The developer of a Java application
has no idea how powerful the CPU [is] and
how much memory will be available in the
Java Virtual Machine environment in which
the application is to run.”13

Many of these shortcomings do not apply
to C# and the .NET platform. For instance,
C# (through .NET’s System.Runtime.
InteropServices library) supports un-
derlying system application programming
interface invocation through PInvoke. For
example, Figure 1 shows how to call the
QueryPerformanceCounter Win32 API,
accessing the system’s high-resolution per-
formance counter. The Win32 API provides
the CPU characteristics, memory usage, and
so on, at both the machine and process levels.
Furthermore, via the System.Diagnostics
library, C# developers can access the sys-
tem’s performance counters, consisting of
hundreds of system-level measurements. Mi-
crosoft has added numerous .NET-specific
performance objects: CLR Data, CLR
Memory, CLR Networking, ASP .NET
counters, and a set of JIT (just in time) com-
piler counters—all accessible programmati-
cally and through the Performance Manager
user interface (Perfmon.exe).

Type safety
Type safety is integral to the .NET plat-

form; it catches program errors at compile
time and proactively catches them at run-
time—a valuable asset for real-time systems.
In .NET, Richter notes that type safety as-
sures that “allocated objects are always ac-
cessed in compatible ways. Hence, if a
method input parameter is declared as ac-
cepting a 4-byte value, the CLR will detect
and trap attempts to access the parameter as
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Figure 1. Calling the
QueryPerformance-

Counter Win32 
application 
programming 
interface.

using System.Runtime.InteropServices;

namespace CSharp_ConsoleApp

{

public class TimingStuff

{ [DllImport("kernel32")]

private static extern int QueryPerformanceCounter(ref Int64 X);

// Constructor

public TimingStuff()

{

if( QueryPerformanceCounter( ref m_t1 ) == 0)

{

throw new Exception( "QueryPerformanceCounter failed" );

} } } }



an 8-byte value. Similarly, if an object occu-
pies 10 bytes in memory, the application
can’t coerce this into a form that will allow
more than 10 bytes to be read.”5

Richter continues, noting type safety also
indicates that “execution flow will only trans-
fer to well-known locations (namely, method
entry points). There is no way to construct an
arbitrary reference to a memory location and
cause code at that location to begin execu-
tion. Together, these eliminate many common
programming errors and classic system at-
tacks such as exploiting buffer overruns.”

Exception handling
The .NET Framework contains structured

exception handling. Exception handling is

based on the “try, throw, catch, finally” ap-
proach that many mainstream object-oriented
languages use.10 Exception handling in .NET
spans languages and is extensible, meaning a
developer can extend the error messages based
on a specific application.

Thrown exceptions create exception ob-
jects caught in catch blocks.5 So, in C# er-
ror handling, an exception is literally an
object. Furthermore, this approach spans
all languages targeting the .NET platform,
including VB.NET, C#, and Managed C++.
In the current Win32/COM (Component
Object Model) programming model, a myr-
iad of error-handling mechanisms exist, in-
cluding HRESULTs (COM), the implementa-
tion of special interfaces to get a more
meaningful error message (COM),7 and calls
to GetLastError (Win32). .NET supports
one well-understood, structured exception-
handling technique common to all languages.

Performance tests
Although performance is not the essence

of real-time systems, it’s an important as-
pect.14 The faster a process executes, the
easier it is to meet associated deadlines, al-
though speed alone does not guarantee a
100-percent success rate.

We conducted two experiments comparing
C#’s performance against C. All tests were
built with version 55603-652-0000007-
18846 of C++. NET, and we built and exe-
cuted C# .NET on the .NET platform, ver-
sion 1.0.3705. These versions correspond to
.NET’s first generally available, nonbeta ver-
sion. All builds were optimized release builds.
The tests ran on an 800-MHz Inspiron 8000,
running Windows 2000 Professional, SP 1,
with 523 Mbytes of physical memory.

The first test consisted of 10 billion float-
ing-point operations. Figure 2 shows the cu-
mulative wall clock runtime.

The second test dealt with memory man-
agement. We generated and released a linked
list containing 5,000 nodes in both C and
C# 24 times (48 total). Every other list saw
an increase in node size. So for the first two
sets of 5,000 nodes, each node contained a
simple numeric value and a string of length
zero. For the second set of two lists, each
node contained a simple numeric again and
a string of 2,500 bytes, and so on, increas-
ing the string size by 2,500 bytes every other
list iteration.
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To make the tests as comparable as possi-
ble, we originally wrote the code in C# and
then copied it and rewrote it in C. The result-
ing algorithms differed in two primary ways.
First, the C# algorithm used an object ori-
ented approach in which the nodes consisted
of a class—for example, the linked list was a
class. We wrote the C solution strictly in the
structural paradigm with structs, pointers,
and so on.

Second, we explicitly freed the 5,000-
node linked list after each of the 24 itera-
tions in C. In C#, the garbage collector was
not called directly, so the CLR managed
memory itself. We simply set the reference
to the full linked list (5,000 nodes) to null in
C#, then reused it for the new set of 5,000
nodes. No deletes are necessary in C#; the
delete keyword doesn’t even exist in C#.7

Figure 3 shows our results.
Figures 2 and 3 show C# floating point

performance to be virtually identical to C,
but .NET memory management requires
further tuning to reach C efficiency levels.

Memory footprint
During the memory management per-

formance tests, we took a sampling of the
machine’s committed bytes. This statistic of-
fers insight into the volume of memory con-
sumed during execution. Microsoft’s Perfor-
mance Manager defines committed memory
as follows:

Committed Bytes is the amount of committed
virtual memory, in bytes. (Committed memory is
physical memory for which space has been reserved
on the disk paging file in case it needs to be
written back to disk). This counter displays the
last observed value only; it is not an average.7

The Performance Manager’s resulting
metrics offer insight into C’s memory foot-
print versus C#’s. Figure 4a shows the ma-
chine’s committed bytes throughout three
sample test runs of the memory manage-
ment algorithm described previously in C.
The baseline committed bytes are about 150
Mbytes. Interestingly, memory consumption
appears to streamline over time. The second
and third runs appear to consume less mem-
ory than the first even though the executing
code and input were identical. The high wa-
termark for all three tests is approximately
280 Mbytes.

C# behaves quite differently (we only
executed two runs, see Figure 4b). It does
not appear that the .NET memory man-
agement infrastructure can streamline
memory use over time, although we need
more testing to verify this observation.
The baseline memory usage appears to be
equal to the C tests (150 Mbytes), al-
though obviously the high watermark is
greater. The C# high watermark is ap-
proximately 430 Mbytes, a 50-percent in-
crease over C.
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Figure 4. Memory footprint for a linked-list memory consumption test written in (a) C and (b) C#.
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These tests illustrate C’s ability to use
physical memory more efficiently. Partic-
ularly for embedded systems where effi-
cient resource consumption is para-
mount, C# appears to have significant
ground to cover before reaching C effi-
ciency levels.

C # and the .NET platform are not
currently appropriate for hard real-
time systems for several reasons. It

has unbounded execution of its garbage-col-
lected environment and lacks threading con-
structs to adequately support schedulability

and determinism, among other things. Our
experiments also showed that the thread in-
heritance didn’t work.

Provided that these shortcomings are not
critical, C# and .NET might be appropriate
for some soft and firm real-time systems. (See
the “Suggestions for Further Study” sidebar.)
For example, a single-threaded application
that can allocate memory entirely during pro-
gram initialization mitigates the issues of pri-
ority inversion and garbage collection execu-
tion. Indeed, C#’s ability to interact with
operating system APIs, shield developers
from complex memory management logic,
and floating-point performance approaching
C also helps. However, any real-time system
would require disciplined programming to
cope with the problems that this study has
uncovered.
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C# and the .NET Framework are not currently appropriate for hard
real-time systems. However, this article does uncover some characteristics
of C# and the .NET platform warranting further study for soft and firm
real-time systems. Recommended topics include

� Performance impact of object-oriented style versus procedural (C-style)
programming.1,2

� .NET performance comparisons on various Windows operating sys-
tems.

� .NET interrupt and thread-switching latency.
� .NET’s garbage-collection behavior under load.
� Adding real-time thread-scheduling application programming inter-

faces to .NET.
� Worst-case cost analysis for C# and .NET.
� The .NET Compact Framework for real-time systems.
� Enhancing the CLR (Common Language Runtime) for real-time systems,

potentially following the Real-Time Specification for Java.
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