
Prediction of Job Resource Requirements for
Deadline Schedulers to Manage High-Level SLAs

on the Cloud
Gemma Reig, Javier Alonso, and Jordi Guitart

Universitat Politècnica de Catalunya (UPC) and Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Email: {greig, alonso, jguitart}@ac.upc.edu

Abstract—For a non IT expert to use services in the Cloud is
more natural to negotiate the QoS with the provider in terms
of service-level metrics –e.g. job deadlines– instead of resource-
level metrics –e.g. CPU MHz. However, current infrastructures
only support resource-level metrics –e.g. CPU share and memory
allocation– and there is not a well-known mechanism to translate
from service-level metrics to resource-level metrics. Moreover,
the lack of precise information regarding the requirements of
the services leads to an inefficient resource allocation –usually,
providers allocate whole resources to prevent SLA violations.
According to this, we propose a novel mechanism to overcome
this translation problem using an online prediction system which
includes a fast analytical predictor and an adaptive machine
learning based predictor. We also show how a deadline scheduler
could use these predictions to help providers to make the most
of their resources. Our evaluation shows: i) that fast algorithms
are able to make predictions with an 11% and 17% of relative
error for the CPU and memory respectively; ii) the potential of
using accurate predictions in the scheduling compared to simple
yet well-known schedulers.

I. INTRODUCTION

Recently, the Cloud has suffered a huge expansion opening
the IT complex infrastructures to users with quite different IT
background. For these users to use the Cloud they are required
to negotiate a Service Level Agreement (SLA) with the Cloud
service provider specifying the conditions of the service.
Usually, these users know, for example, when they want their
submitted tasks to be completed. However, they tend to do not
know how many resources have to buy to achieve their target.
Thus, for a non IT expert to use services is more natural to
negotiate the SLA with the provider in high-level terms, repre-
senting the quality of their experience [1]. That is, expressing
the QoS with service-level metrics –e.g. job deadlines– instead
of resource-level metrics –e.g. CPU MHz–, which could
depend on the underlying architecture and thus, they are not
transferable from a Cloud provider to another. On the other
hand, dealing with service-level metrics is also an advantage
for the provider as it has more freedom deciding the resource
allotments to users’ applications whilst it fulfills their SLAs.

Moreover, the Cloud accommodates applications that ex-
hibit very heterogeneous behavior. This heterogeneity has dif-
ferent dimensions: the nature of the application –ranging from
HPC jobs to Web services–, the application’s use of resources
–e.g. CPU-bounded– and the workload as the arrival of jobs

is variable. In order to be profitable, service providers tend to
share their resources, by means of virtualization, among multi-
ple concurrent applications owned by different users. However,
because of applications heterogeneity, it is not assumable to
statically provision dedicated resources to the applications,
since this leads to an inefficient resource utilization. The
solution is dynamically allocating resources to the applications
depending on their needs, while guaranteeing that each of
them has always enough resources to meet the agreed service-
level metrics. In such an scenario, if the provider does not
have precise information regarding the requirements of the ser-
vices, this leads to an inefficient resource allocation –usually,
providers allocate whole resources to prevent SLA violations.

For this reason, although service-level metrics are preferred
by both users and providers, the latter require resource-
level information in order to allocate the adequate amount of
resources to the applications and charge for their execution.
Thus, the provider should translate somehow these service-
level metrics to resource requirements. However, there is not a
well-known mechanism to translate from service-level metrics
to resource-level metrics efficiently. That is, to decide the
resource requirements to fulfill the service-level metrics.

Our contribution targets virtualized software as a service
(SaaS) providers that handle heterogeneous workloads. These
providers dedicate part of their resources to execute web appli-
cations, and try to accommodate batch jobs in the remaining
resources. We propose a prediction system to determine the
minimum job resource requirements to be executed before its
deadline. One key innovation of the prediction system is the
usage of Machine Learning (ML) to enable the translation
from service-level metrics to resource requirements. In addi-
tion, we demonstrate how different scheduling policies can
take advantage of these predictions to do a more efficient
resource allocation. In particular, we devise the architecture
of a scheduler that enables the scheduling policies to discard
the execution of a job in advance if they predict that it will
not finalize before its deadline, according to the resources
available in the system in a specific moment.

Thus, our contribution’s aim is twofold: i) enabling the
Cloud to non-expert IT users by means of using service-level
metrics and ii) help providers to do a smart utilization of their
resources by using the resources left by web applications to

execute jobs in an efficient way –e.g. discard jobs in advance,
avoiding the risk of wasting resources in executing jobs that
will not meet their deadlines. An extended version of this paper
is presented in [2].

The rest of this paper is structured as follows: Section II
presents our assumptions, Section III describes our proposal’s
architecture, Sections IV and V present the scheduler and the
prediction system respectively, Section VI shows the results
obtained, Section VII presents the related work and finally,
Section VIII exposes our conclusions and future work.

II. ENVIRONMENT AND ASSUMPTIONS

For the scope of this paper, we make some assumptions:
i) although we envision a heterogeneous workload, this work
focus on providing resource predictions for repetitive CPU and
memory intensive single threaded batch jobs. We do not deal
with I/O intensive jobs because the virtualization mechanism
used in the experimentation does not provide an interface to
manage I/O allocation among VMs [3]. Predicting the resource
requirements for the web workload is part of our future work.
ii) SLAs for batch jobs have to specify the job to execute and
the deadline date. Also, this SLA should reflect rewards and
penalties to be applied when the job’s deadline is not met. We
consider the approach in which the penalties do not exceed
the reward to avoid malicious clients who would rather prefer
to receive indemnities than to execute jobs.

III. ARCHITECTURE

This section presents the logical architecture of the system
which is composed by two main components:
• The Scheduler accepts incoming jobs and web appli-

cations to be planned. It queries the Prediction System
and it decides, depending on the policy being used and
the resources’ status, how to allocate resources to the
incoming jobs and how to elastically size up and down
the resource allocation for web applications, in order to
fulfill their respective QoS.

• The Prediction System is in charge of predicting the
minimum resource requirements needed to meet SLAs.
It consists of an Analytical Predictor (AP) module and
a Self-Adjusting Predictor (SAP) module that predicts by
learning from previous job executions.

IV. SCHEDULER

This section describes the Scheduler, which uses the pre-
diction mechanisms to make the most of provider’s resources.
Once a job arrives at the system, the Scheduler queries the
Prediction System about the minimum resource requirements
of the job to meet its deadline. The Scheduler receives a
prediction from both the AP and the SAP. Initially, it only takes
into account the prediction made by the AP, as the SAP is not
trained yet. Once the SAP is trained and therefore, it performs
lower error than the other –as it is shown in the experimenta-
tion Section VI– the Scheduler starts to obey the SAP.

Using this prediction and the resource status information,
the Scheduler might decide (depending on which scheduling

policy it is being used): i) to discard the job if the amount of
resources predicted is not available and consequently the job
cannot be executed on time; ii) to run the job allocating to
it the required resources; iii) to delay this decision along the
lifetime of the job –e.g. the provider may accept a job, but
later on discard it if a new job with highest priority arrives at
the system and both SLAs cannot be fulfilled.

The Scheduler obtains from the Prediction System the
minimum amount of required resources to execute a job before
its deadline. However, if there are more resources available,
the Scheduler allocates them to the job. This way, jobs
potentially make more progress than the strictly required to
meet the deadline. For example, CPU-bounded jobs will make
more progress as more CPU they have allocated. However, a
greater allotment of memory does not imply a decrease in the
execution time –if the task working set already fits in memory,
increasing the allocated memory to the task will not decrease
its execution time. Thus, the provider gets ahead with the
work, by means of fully using the resources when the system
is underloaded in order to have more resources available for
future overload periods. Thanks to virtualization, changing
dynamically the resource allocation is straightforward [3].

Once a job is completed, the Scheduler stores the job’s
execution information –job, resource allotment and execution
time– in the Prediction System to be used to train the SAP.

V. PREDICTION SYSTEM

The Prediction System stores and manages information of
previous job executions in order to predict the amount of
required resources –CPU share and memory allocation– by
a job to be completed before its deadline. This prediction is
carried out by means of two components: the AP and the SAP.

A. Analytical Predictor (AP)

The aim of the AP is to predict job resource requirements
while the SAP is not trained.

Regarding the prediction of CPU requirements, we approxi-
mate analytically Tcpu, which is the execution time of a CPU-
bounded job assuming that it has allocated a CPU share of
%CPU , by the following equation: Tcpu = Tref

%CPU , where
Tref is a reference of the execution time of the job weighted
by the CPU share that was allocated to that execution e
(Tref = Tcpu,e%CPUe). This data is obtained from the most
similar –in terms of execution time– past execution of the same
application with the same input data size.

Thus, the AP module can determine the minimum CPU
requirements as follows: %CPU = Tref

Deadline−Now , where
Deadline is the deadline for executing the job, and Now
is the current time. According to this, whenever the Deadline
is in the future (Deadline > Now), %CPU is a positive
number. Then, the deadline potentially can be accomplished
if %CPU ≤ 100.

Whereas the amount of CPU allocated to a job directly
determines its execution time, there are some differences when
we are considering memory. In particular, whilst the amount
of memory allocated to a job is greater or equal to the amount

of memory it requires, the execution time is always the same,
even if we allocate more memory to the job. Otherwise, if the
memory allocated is lower than the required one, the job starts
to use the swapping space and the lesser is the memory allo-
cated to the job the longer is its execution time. Besides, there
is a high variability of the execution time when the memory
allocated is lower than the job requirement, making the analyt-
ical prediction imprecise. However, we use the same idea dis-
cussed for the CPU to predict analytically the memory require-
ment because it might be useful while the SAP is not trained.

Thus, the AP is useful to make predictions for CPU or mem-
ory bounded jobs whilst the SAP is not trained. Nevertheless,
it is not able to predict the requirements of a job that uses
both memory and CPU.

B. Self-Adjusting Predictor (SAP)

The Self-Adjusting Predictor uses ML based models to
predict the CPU share and the amount of memory required
to execute a job before its deadline expires. The AP is non-
flexible to changes in the behavior of the jobs and it requires a
past execution of the same job with the same input data size to
predict the resources needed. But the SAP, thanks to the use
of ML, offers a more flexible behavior, allowing to predict
the resources needed by an application, without needing any
previous execution of the same job. Furthermore, the SAP
has the capability to learn from different jobs and predict the
resources needed from completely different jobs using a single
model. Furthermore, new job executions are continuously used
to build new models, which replace the used ones when higher
accuracy is achieved.

We have chosen some ML algorithms to build the models
that perform the predictions: Linear Regression, M5P [4],
REPTree and Bagging [5]. Basically because their prediction
accuracy is high and their computational complexity is low
–introducing a low overhead, which is important in an on-line
system. Through the experimentation in Section VI, we evalu-
ate which algorithm is more suitable to predict each resource.

VI. EXPERIMENTS

To evaluate our proposal, we first evaluate the accuracy of
the SAP. Then, we compare the two prediction modules and
estimate the learning curves for the SAP. Finally, we show that
the Prediction System is useful for discarding unfeasible jobs.

A. Experimental environment

We test our proposal by means of simulation. First, the
simulation of the SAP uses the implementation of the ML
algorithms provided by the WEKA toolkit [5] to build the
prediction models. In order to train and test these models,
we have used Euler, MolDyn, RayTracer, and Montecarlo
benchmarks from the Java Grande Benchmarks [6] and the
Mencoder application as CPU-bounded applications. Also,
a microbenchmark that allocates 1924 MB of memory and
access it randomly as a memory-bounded application, and
finally, another microbenchmark as a CPU and memory inten-
sive application with the following structure: its initialization

phase uses CPU and memory; the second phase is intensive
in memory; and finalizes with a CPU intensive phase. These
applications run in a Xen virtual machine with an Intel(R)
Xeon(TM) MP CPU 3.16GHz. In order to evaluate the perfor-
mance of the built models, we have used two different datasets:
one for training and one, totally different to validate the model.

Second, to evaluate the usefulness of the predictions for
scheduling jobs, we have developed a discrete time simulator
in Java, which uses the AP to perform its predictions. The input
workload of the simulator uses the workload of Grid’5000 [7],
completing it with the additional job information we need.
Specifically, it randomly sets the revenue for each job in the
range [0, 1) and generates a workload web assuming a sinus-
periodic occupation of the resources between 0 and 100% (to
simulate peak and off-peak hours). We also set to 20% the
minimum CPU share that can be allocated to a job.

B. Self-Adjusting Predictor accuracy

In this section, we show the accuracy of the predictions
performed using the ML algorithms mentioned in Section
V-B. We test these algorithms in four different scenarios: i) to
predict the amount of CPU for a job; ii) to predict the amount
of CPU for a job taking into account the size of its input data;
iii) to predict the amount of memory allocated to a job; iv) to
predict both CPU or memory.

1) Predicting CPU: In Section V-A, we have explained that
the relation between the CPU allocated to a job and its execu-
tion time varies as Tref

Tcpu
. Thus, if we transform the examples

into sets of CPU allocation, the inverse of the execution time
and the application’s name, we would have a linear relation
between the CPU share and the execution time. With this trans-
formation we help the models to deduce the relation between
CPU and execution time. Thus, we train the aforementioned
ML algorithms with these transformed examples.

The accuracy of these models in terms of mean absolute
errors (MAE) is shown in Table I. M5P is the algorithm that
performs better predictions on average –2.35 units of CPU
percentage in absolute terms, or 5% of relative error– followed
by Bagging with M5P.

TABLE I
MEAN ABSOLUTE ERROR (UNITS OF %CPU) PREDICTING CPU.

LR M5P REPTree Bagging
M5P

Bagging
REPTree

10.78 2.35 5.04 3.04 4.18

We also have studied the possibility of predicting each
application separately instead of using a single model for all
of them. That is, train the algorithms first with the examples
of Montecarlo executions to build a model for the Montecarlo
application and so forth for each application. Although having
one application per model leads to improved accuracy we
prefer to build a single model to avoid handling with unlimited
models as the amount of applications might grow. Also, this
way we could try to predict unseen applications using the
information learned with the ones we know.

-40

-30

-20

-10

 0

 10

 20

 25 35 45 55 65 75 85

A
b
s
o
lu

t
e
rr

o
r

(%
C

P
U

)

Real CPU Percentage

Bagging(M5P)

Fig. 1. CPU prediction accuracy taking into account input data size.

2) Predicting CPU regarding input size: In this section,
we consider the same problem but now considering that the
applications have different input data sizes. For the Mencoder
and the Java Grande applications, we consider 5 sizes for
training and 4 sizes for testing purposes. In this case, we also
have applied a transformation to the examples. It consists of
deriving a new attribute that represents that CPU requirements
are proportional to the size of the input data and inversely
proportional to the execution time (input data size

execution time). Table II
shows the MAEs of the models built using each of the ML
algorithms. We can observe that Bagging with M5P is the best
algorithm to make this kind of predictions –11% of relative
error. Figure1 shows the distribution of the differences between
the real CPU percentage required to meet the deadline with the
predicted CPU percentage for the Bagging with M5P model.
It shows 5, 25, 50, 75 and 95 percentiles. The horizontal
line in the figure separates those predictions that surpass
the strictly required CPU percentage from those where the
predicted CPU is lower than the required one. We make this
distinction because the second case is more problematic for
the provider as it leads to a deadline omission violating the
SLA. As opposite, if the predicted amount of CPU is greater
than the required one, we are over-provisioning the application
with resources, though the job would probably use this CPU
surplus to finish its execution earlier. In this case, the greater
the amount of CPU to predict the worst predictions. The
knowledge of the error tendency could help us in designing
scheduling policies that deal with these errors.

TABLE II
MEAN ABSOLUTE ERROR (UNITS OF %CPU) PREDICTING CPU TAKING

INTO ACCOUNT INPUT DATA SIZE.

Application LR M5P REPTree Bagging
M5P

Bagging
REPTree

all 15.39 8.69 8.92 6.77 7.11

3) Predicting memory: To study how well the amount of
memory required by an application may be predicted, we use

-600

-400

-200

 0

 200

 400

 600

 800

 512 640 896 1152 1408 1664 1920

A
b
s
o
lu

t
e
rr

o
r

(M
B

)

Real memory allocation (MB)

Bagging(REPTree)

Fig. 2. Memory prediction accuracy evaluation

the same applications as in the case of CPU plus a memory
intensive microbenchmark. We train and test the models with
real executions using several memory allotments. The behavior
of the applications is the following: if allocated with the
required memory or greater the execution time does not vary
–only varies lightly if the application is implemented in Java
because the garbage collector is executed more often with
lower allotments– and thus, the memory allotment and the
execution time are not correlated, making impossible to predict
accurately. For this reason, we preprocess automatically the
dataset changing the amount of memory of a sample if there
is a similar sample –in terms of execution time– with less
memory. As opposite, when the memory allotment is lower
than the required the application begins to use the swap
area increasing the variability of executions with the same
allocation and thus, reducing the prediction accuracy with
respect to the CPU case, as shown in Table III, which shows
how accurate are the predictions made by the algorithms
selected, and Figure 2, which shows the error distribution for
the more accurate algorithm –i.e. Bagging with REPTree with
17% of relative error. As a result of the preprocess, there are
not the same number of examples for each allotment. For
instance, 512MB has 17% of the examples as most of the
examples corresponding to CPU intensive applications have
collapsed in the minimum memory allotment. As opposite,
1920MB only has 4% of the examples –see pondered results
in Table III.

TABLE III
MEAN ABSOLUTE ERROR (MB) PREDICTING MEMORY.

Application LR M5P REPTree Bagging
M5P

Bagging
REPTree

all 190.67 200.45 178.06 179.45 158.35

4) Predicting CPU and memory: Although we can combine
both resources in a single model, we can only predict a
resource at once –because there are several possible combina-
tions of CPU and memory allotments for a job to be finished

before its deadline. In order to overcome this difficulty, we
offer different solutions: one possibility is to predict the
execution time of the job assuming that it has allocated all the
available resources. This way, if the predicted time is lower
than the time remaining to the deadline, the provider could
accept the job. A similar solution consists of fixing the amount
of one resource and predicting the other. And the last proposal
is to combine two predictions, but we discourage this approach
as its total error accumulates the error of the two individual
predictions.

Table IV shows the accuracy of the models predicting each
resource. These models are trained and tested with all the
applications used before to test memory and CPU separately,
plus a CPU and memory intensive microbenchmark. The
model with highest accuracy to predict CPU is Bagging with
M5P with a 14% of relative error. Predicting memory is less
accurate –for the reasons explained in Section VI-B3– with
a relative error ranging from 36 to 43%. Finally, to predict
execution time Bagging with M5P has a 15% of relative error.

TABLE IV
MEAN ABSOLUTE ERROR PREDICTING CPU AND MEMORY.

Prediction LR M5P REPTree Bagging
M5P

Bagging
REPTree

%CPU 18.55 9.20 10.69 7.35 9.66
MEM MB 542.56 508.50 542.60 500.89 506.97
TIME sec 29.43 5.10 10.46 3.97 8.81

C. Predictors comparison

Regarding the accuracy of the AP with respect to the SAP,
we use the same set of data used in Section VI-B1 to train
and test both predictors. We have obtained that the AP is able
to make a prediction with an absolute error of 6.26 units
of CPU percentage on average. In contrast, with the SAP,
when using Linear Regression, the average absolute error is
much lesser, 1.62 units of CPU percentage. Nevertheless, we
consider acceptable the AP results while the SAP module is
being trained.

This comparison has assumed one model per application
and the input data size fixed. The rest of scenarios are not
comparable because the AP cannot take into account data input
sizes or derive a single model for all the applications. The AP
deals each data input size as a different application. Thus, its
usage is only useful while the SAP is not enough trained.

D. Learning curves

Although a provider has the AP to make predictions whilst
the SAP is learning, a main concern is the learning speed of
the built models.

Figure 3 shows MAE as a function of the number of
examples used to build the models to predict the amount of
CPU required by a job taking into account the input data
size. It shows that with about 500 examples the MAE of the
models are near to the results obtained with a larger amount of
examples. Similar, in the case of memory only 100 examples

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600

M
e
a
n
 a

b
s
o
lu

t
e
rr

o
r

(%
C

P
U

)

Number of examples for training

Bagging(M5P)

Fig. 3. Learning curve for CPU prediction.

 0

 5000

 10000

 15000

 20000

FCFS SJF EDF LSTF HV HD HRU

N
um

be
r

of
 jo

bs

Scheduling Policy

#Discards_Prediction_Preemptive
#Violations_Prediction_Preemptive
#Discards_NoPrediction_Preemptive
#Violations_NoPrediction_Preemptive
#Discards_Prediction_NoPreemptive
#Violations_Prediction_NoPreemptive
#Discards_NoPrediction_NoPreemptive
#Violations_NoPrediction_NoPreemptive

Fig. 4. Jobs discarded and SLA violations with and without using prediction.
Policies used: FCFS (First Come First Serve), SJF (Shortest Job First), EDF
(Earliest Deadline First) , LSTF (Least Slack Time First), HV (Highest Value),
HD (Highest Density), HRU (Highest Reward and Urgency) [8]

are required. Thus, the provider requires few examples to make
predictions, which is a desirable characteristic for the system.

E. Prediction usefulness for scheduling

The aim of this test is to demonstrate empirically that hav-
ing predictions on required resources can help schedulers to
efficiently allocate resources to jobs whatever the policy used
is. For demonstration purposes, we assume full accuracy on
the predictions. According to this, we configure our simulator
to simulate 10 CPUs and to run 25000 jobs.

Figure 4 shows the number of jobs being discarded and the
number of jobs being violated for each policy. Notice that with
prediction, providers do not violate any SLA, thus they charge
for all the jobs they execute without suffering any penalty.
They discard the jobs if they realize that SLA cannot be
accomplished. Policies without using prediction only discard
jobs when its deadline is in the past, leading to a potentially
waste of resources –the job might be executed partially.

VII. RELATED WORK

Predictive systems which consider a fine-grain management
include [9], which predicts CPU and memory requirements to
maintain the response time for web servers, and [10], which
search for a suboptimal solution in a finite space of possible
allocations thus, they do not consider all the possible solutions.

The most similar system to our proposal is Gridbus [11].
It uses a user provided estimation of the job execution time
to calculate the number of nodes required for a job to be
completed before its deadline. To compute this, the estimation
plus the time of staging is divided by the time remaining to the
deadline and multiplied by an aggression factor to denote that
the system preference is to execute the job as quick as possible.
Our system also predicts the requirements to not violate jobs’
deadlines. However, our granularity is finest –CPU share and
memory allocation– instead of whole nodes and we do not
need any user’s estimation of the job’s execution time.

Many systems instead of predicting the amount of resources
focus on predicting the job’s execution time. On the one hand,
[12], [13] require that the user provides a good approximation
of the execution time, then based on the prior CPU load, they
predict the job execution time. On the other hand, there are
several techniques that do not need any user information in
order to perform the execution time prediction, as occurs in
[14], which uses historical information from similar tasks –
same user, same executable, etc.– to perform the prediction
using means and regressions. A locally-weighted learning
technique is used in [15] to predict the execution time by
means of constructing a database of experiences that include
who submitted the job, the number of CPU requested, etc. and
which data is the most relevant to perform predictions using
a distance function. Our solution, also does not need user’s
information to perform predictions and our Scheduler exploits
the elasticity of virtual machines by using the predicted
information to make the most of provider’s resources.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have contributed with an architecture to
help providers to deal with the heterogeneity naturally present
in the Cloud, making the most of their virtualized resources.
This architecture includes a dual-purpose predictor that i)
allows users to negotiate with providers in service-level terms
and ii) provides a mean for the Scheduler to perform smart
resource allocation using these predictions

We have introduced ML techniques in a Self-Adjusting
Predictor that predicts the required resources to fulfill a given
service-level metric using the results from previous executions.
Regarding the CPU prediction, we achieve high prediction
accuracy (11% of relative error) using the Bagging with M5P
algorithm. Regarding memory prediction, a 17% of relative
error is achieved using Bagging with REPTree. Moreover,
the learning curves of the built models achieve high accuracy
with few examples. This characteristic, in conjunction with the
low overhead incurred, makes our system suitable for making
decisions online. Besides, we have proposed an Analytical

Predictor that is used to predict the resource requirements
whilst the Self-Adjusting Predictor is not enough trained.

Regarding our future work, we are going to build a real
prototype of the system by means of integrating the Prediction
System and the EMOTIVE (Elastic Management Of Tasks
In Virtualized Environments) Cloud middleware [16]. On a
second place, our research is going to be focused on the
resource prediction for web applications and how to predict the
requirements of jobs’ phases. Finally, we are going to focus
on new scheduling policies aware of the predictions.

ACKNOWLEDGMENT

This work is supported by the Ministry of Science and
Technology of Spain and the European Union (FEDER
funds) under contract TIN2007-60625, by the Generalitat de
Catalunya (2009-SGR-980) and by the Univeristat Politècnica
de Catalunya (UPC) under grant UPC-RECERCA.

REFERENCES

[1] A. Van Moorsel, “Metrics for the Internet Age: Quality of Experience
and Quality of Business,” in Fifth International Workshop on Performa-
bility Modeling of Computer and Communication Systems, Arbeits-
berichte des Instituts für Informatik, Universität Erlangen-Nürnberg,
Germany, vol. 34, no. 13, September 2001, pp. 26–31.

[2] G. Reig, J. Alonso, and J. Guitart, “Deadline Constrained Prediction
of Job Resource Requirements to Manage High-Level SLAs for SaaS
Cloud Providers,” Dept. d’Arquitectura de Computadors, Universitat
Politècnica de Catalunya, Barcelona, Spain, Tech. Rep. UPC-DAC-RR-
2010-9, April 2010.

[3] (2009) Xen api. [Online]. Available: http://wiki.xensource.com/xenwiki/
XenApi

[4] Y. Wang and I. Witten, “Induction of Model Trees for Predicting
Continuous Classes,” Technical report 96/23. Hamilton, New Zealand:
University of Waikato, Department of Computer Science, 1996.

[5] H. Witten Ian and F. Eibe, “Data Mining: Practical Machine Learning
Tools and Techniques,” Morgan Kaufmann, San Francisco, 2005.

[6] (2009) The java grande forum benchmark suite. [Online]. Available:
http://www2.epcc.ed.ac.uk/computing/research activities/java grande/

[7] (2009) The grid workloads archive. [Online]. Available: http:
//gwa.ewi.tudelft.nl/pmwiki/

[8] S. Tseng, Y. Chin, and W. Yang, “Scheduling Real-time Transactions
with Dynamic Values: a Performance Evaluation,” in 2nd International
Workshop on Real-Time Computing Systems and Applications. Tokyo,
Japan, October 1995, pp. 60–67.

[9] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “SLA Decomposi-
tion: Translating Service Level Objectives to System Level Thresholds,”
in 4th IEEE International Conference on Autonomic Computing. Jack-
sonville, Florida, USA, June 2007, p. 3.

[10] D. Menasce and M. Bennani, “Autonomic Virtualized Environments,” in
International Conference on Autonomic and Autonomous Systems, 2006.
ICAS’06. Silicon Valley, California, vol. 6, July 2006, pp. 28–28.

[11] S. Venugopal, X. Chu, and R. Buyya, “A Negotiation Mechanism for
Advance Resource Reservations using the Alternate Offers Protocol,” in
16th International Workshop on Quality of Service, 2008. IWQoS 2008.
University of Twente, Enschede, The Netherlands, June 2008, pp. 40–49.

[12] J. Padgett, K. Djemame, and P. Dew, “Predictive Run-time Adaptation
for Service Level Agreements on the Grid,” in 21st UK Performance
Engineering Workshop. Nottingham, July 2005.

[13] P. Dinda, “Online Prediction of the Running Time of Tasks,” Cluster
Computing, vol. 5, no. 3, pp. 225–236, 2002.

[14] W. Smith, I. Foster, and V. Taylor, “Predicting Application Run Times
Using Historical Information,” Lecture Notes in Computer Science, vol.
1459, no. 122, p. 183, 1998.

[15] W. Smith, “Improving Resource Selection and Scheduling Using Pre-
dictions,” Grid resource management: state of the art and future trends,
Norwell, MA, USA, pp. 237–253, 2004.

[16] (2009) Elastic Management of Tasks in Virtualized Environments
(EMOTIVE). [Online]. Available: http://www.emotivecloud.net/

