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Abstract 

Least squares support vector machine (LS-SVM), as a 

variant of the standard support vector machine (SVM) 

operates directly on patterns represented by vector and 

obtains an analytical solution directly from solving a set 

of linear equations instead of quadratic programming (QP). 

Tensor representation is useful to reduce the overfitting 

problem in vector-based learning, and tensor-based algo-

rithm requires a smaller set of decision variables as com-

pared to vector-based approaches. Above properties make 

the tensor learning specially suited for small-sample-size 

(S3) problems. In this paper, we generalize the vector-

based learning algorithm least squares support vector ma-

chine to the tensor-based method least squares support 

tensor machine (LS-STM), which accepts tensors as input. 

Similar to LS-SVM, the classifier is obtained also by solv-

ing a system of linear equations rather than a QP. LS-STM 

is based on the tensor space, with tensor representation, 

the number of parameters estimated by LS-STM is less 

than the number of parameters estimated by LS-SVM, and 

avoids discarding a great deal of useful structural infor-

mation. Experimental results on some benchmark datasets 

indicate that the performance of LS-STM is competitive in 

classification performance compared to LS-SVM. 

1 Introduction 

Support vector machine (SVM) is a general learning 

method which is based on statistical learning theory (SLT) 

[1, 2], and has been proven to be more powerful than ex-

isting methods in many aspects. As a least squares version 

of SVM, least squares support vector machine (LS-SVM) 

proposed by Suykens and Vandewalle [3, 4] finds the op-

timal hyperplane by solving a set of linear equations rather 

than a quadratic programming (QP), which leads to lower 

computational cost.  

In the machine learning community, high dimensional 

data with many attributes are often encountered in the real 

applications. How to represent the data is one of the cores 

of machine learning. Most of the traditional learning algo-

rithms are based on the vector space model, such as SVM 

and LS-SVM [5]. But in many computer vision applica-

tions, many objects are naturally represented by multidi-

mensional arrays, i.e., tensors [6]. For example, gray image 

and gray image sequence can be regarded as 2nd and 3rd 

tensor (the examples of them can be seen in Figure 1.(a) 

and Figure 2.(b), respectively). 

Figure 1. (a)  A gray face image is a 2nd order tensor, 

which is also a matrix. (b) The 3rd order tensor represen-

tation of a gait sequence.  

It is reasonable to consider that pixels close to each oth-

er are correlated to some extent. But the traditional meth-

ods for solving the problem with tensor data in machine 

learning were always to scan the tensor into vector, thus it 

is easy to destroy the data structure and generate high di-

mensional vectors. In recent years, the machine learning 

based on tensor space has attracted significant interest 

from the research community. Several algorithms have 

been extended to deal with tensors, such as support tensor 

machine (STM) [7-17], multi-linear principal component 

analysis (MPCA) [18], multi-linear discriminant analysis 

(MDA) [19], canonical analysis correlation of tensor 

(CAC) [20] and non-negative tensor factorization (NTF) 

[21].  

With utilizing the tensor representation, the number of 

parameters estimated by the tensor-based learning can be 

greatly reduced. Therefore, the tensor-based learning algo-

rithms are especially suitable for solving the small-

sample-size (S3) problem, which the number of samples 

available for training is small and the number of input 

features used to represent the data is large. At the same 

time, involving high-dimensional data can also reduce the 

computational complexity observed in problems.  

In this paper, we propose a novel method called least 

squares support tensor machine (LS-STM), which is a 

tensor version of LS-SVM or a least squares version of 

STM. LS-STM is based on the tensor space, which direct-

ly accepts tensor as inputs, without vectorization. Obtain-

ing a classifier in the tensor space not only retains the data 

structure information, but also helps overcome the overfit-

ting problem encountered mostly in vector-based learning. 

Compared with STM, LS-STM solves a system of learn-

ing equations in every iterative rather than a QP, which 
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eventually converges to an optimal solution after a few 

iterations. 

To examine the effectiveness of the proposed LS-STM, 

we employ LS-STM as a classifier to two benchmark da-

tasets. The final experimental results indicate that the per-

formance of the LS-STM is competitive compared to LS-

SVM. 

The rest of the paper is organized as follows. An over-

view of LS-SVM and STM are provided in Section 2, 

which prepare well for introducing LS-STM. Section 3 

provides the model and the algorithm of LS-STM. Section 

4 demonstrates experimental results. The conclusion and 

future work are drawn in Section 5. 

2 An Overview of LS-SVM and STM 

2.1 Least Squares Support Vector Machine 

Least squares support vector machine (LS-SVM) proposed 

by Suykens and Vandewalle [3, 4] is a variant of SVM, in 

which the inequality constraints in SVM are converted into 

equality constraints. Similar to SVM, LS-SVM aims at 

finding the optimal hyperplane that maximizes the margin 

between two classes. The training of the LS-SVM is done 

by solving a set of linear equations, instead of a quadratic 

programming problem. Hence, LS-SVM provides a valid 

reduction in the computational time and provides competi-

tive testing accuracy with that of SVM. 

For traditional two-class classification problem, the 

training set is 

1 1{( , ), , ( , )} ( ) ,n l

l lT x y x y  Y             

where  n

ix  is a training sample, { 1, 1}iy    Y is the 

class label of 
ix ( 1, , )i l and. 

The task is to find the decision function 
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to derive the value of y for any input x , where
i is a real 

constant and b is the bias term, ( , )iK x x is a kernel function. 

The LS-SVM is formulated as follows: 
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where C is a regularization constant which controls the 

trade-off between the two terms, w is the weight vector, 

 is a nonlinear mapping that maps vector x into the fea-

ture space and ( 1, , )i i l  are slack variables, which un-

like SVM, can be negative. 

For solving the optimization problem (3), we construct 

the Lagrangian function as follows: 
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where ( 1, , )i i l  are Lagrange multipliers. 

The necessary conditions for the optimality are: 
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By eliminating w and
i , the solution is given by: 
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here  
T

1, , lY y y , T( ) ( )ij i j i jH y y x x   and

 
T

1, ,1e  . 

Like the support vector machine, by setting 

T( ) ( ) ( , ).i j i jx x K x x                        

can be avoided the explicit treatment of variables in the 

feature space. 

2.2 Support Tensor Machine 

Because of the shortcomings of support vector machine, 

support tensor machine has been developing these years [8, 

11, 12]. It extends support vector machine to accept gen-

eral tensor as input. For two-class classification problem, 

the training set is 
1 2

1 1{( , ), ,( , )} ( ) .
n n l

l lX y X y   T Y               (8) 

where 1 2n n

iX  R R is a training sample and 

 1, 1iy    is the class label of 
iX . STM aims at finding 

a multilinear decision function 

   Tf X u Xv b                                     (9)                                                

such that the two classes can be separated with maximum 

margin, where 1n
uR , 2n

vR and bR  are unknown 

and can be solved through the primal problem defined be-
low: 
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where 0C  is a regularization parameter and i is a slack 

variable. It should be emphasized that the weights tensor 
Tuv is a rank-one matrix. 

The full algorithm of STM is stated below: 

Algorithm 1: Support tensor machine (STM). 

1.Initialization: Let T(1, ,1)u  ,
2

1 u  and 

T

i ix X u , 
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2. Computing v : v can be computed by solving the fol-

lowing problem: 

T
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3. Computing u : By step 2 ， let 
2
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i ix X v , u can be computed by solving the fol-

lowing problem: 

T

2
, ,

1

T

1
min   ,

2

 s.t.    ( ) 1 ,

0, 1, , .

l

i
u b

i

i i i

i

u u C

y u x b

i l


 









  

 



                    

4. Iteratively computing u  and v : By step 2 and step 3, 

we can iteratively compute u  and v  until they tend 

to converge. 

Note: The problems (11) and (12) are the standard SVM. 

Thus, any computational method for SVM can also be used 

here. 

It is easy to see that u  and v  are dependent on each 

other, and can not be solved independently. Alternating 

iterative algorithm is an effective method to solve the prob-

lem. The details of the algorithm of STM and the conver-

gence proof of it can be seen [11, 12]. 

3 Least Squares Support Tensor Machine 

As an extension of STM, we develop a least squares ver-

sion of STM or a tensor version of LS-SVM, which ac-

cepts tensors as inputs. By using a least squares error term 

in the objective function, the inequality constraints in 

STM are converted into equality constraints, therefore, we 

obtain the solution that only needs to solve a system of 

linear equations rather than a QP. Based on the character-

istic of optimization problem, we use alternating iterative 

algorithm, which requires the determination of a signifi-

cantly smaller set of decision variables as compared to 

vector-based approaches. The above properties make LS-

STM specially suited for small sample-size (S3) problems. 

The training set of LS-STM is the same as , the training 

sample iX  is a second order tensor (matrix). LS-STM 

aims at constructing a classifier with the decision function 

of the form (9).  

The optimization problem of  LS-STM is given by: 
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where C  is a trade-off parameter between the margin 

maximization and empirical error minimization, i  is a 

slack variable. 

For solving LS-STM (13), we consider its Lagrangian 

function as: 
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The Lagrangian function (14) can be rewritten as follows: 
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Consider KKT conditions, we get: 
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From equations (17) and (18), it is obviously that u and 

v rely on each other, and cannot be solved with traditional 

methods. Like STM, we use alternating iterative algorithm. 

Algorithm 2: Least Squares Support tensor machine 
(LS-STM). 

1. Initialization: Let 
T(1, ,1)u  ,

2

1 u  and 

T

i ix X u . 

2. Computing v : v can be computed by solving the op-

timization problem. 
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3. Computing u : Let 
2

2 v   and i ix X v , u can 

be computed by solving the optimization problem . 
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4. Iteratively computing u  and v : From step 2 and 

step 3, we cannot stop iteratively compute u  and v  

until the below conditions are satisfy 

1k ku u   , 
1k kv v   .                   (23) 

Note: The problems (21) and (22) are both LS-SVM. 
Thus, the method for solving LS-SVM in Part II can be 
used here. The convergence proof of Algorithm 2 is similar 
to Algorithm 1. 

4 Experimental Results 

In this section, we will present experimental results and 

compare the results of LS-STM with the vector-based 

classification method LS-SVM and tensor-based classifi-

cation method STM. These experiments are conducted on 

the benchmark datasets including both that in a vector 

representation, for example, the Lung Cancer dataset 

(56attributes/3classes/32instances), and that in a second 

order tensor (matrix) representation: Letter Reco-gnition 

dataset (16attributes/26classes/20000instances). 

For each classification problem, ten independent runs 

are performed and their classification accuracies on the 

sets are averaged. The sample points we used in the exper-

iment are selected randomly. The parameter C is obtained 

by cross validation, and the range of the regularization 

constant C is from 62  to 62 with each step by multiply-

ing 2 . We initialize both u and v are vectors of ones of 

appropriate dimensions. At the same time, the kernel func-

tion between LS-SVM and LS-STM both choose the line-

ar kernel, i.e., T( , )i iK x x x x with respect to ( )x x  . 

4.1 Lung Cancer [22] 

This dataset has 32 instances of 3 classes, each class has 9, 

13, 10 instances, respectively, and each instance has 56 

attributes. It is a small-sample-size (S3) dataset. The mod-

el we proposed is to dispose two classification problem, so 

the data we used is processed as follows: we set the points 

of second class to be the positive class points, and then we 

set the other two classes into negative class. 

In fact, on the Lung Cancer dataset, we must transform 

a vector data into a matrix. The process of transfer a vec-

tor with n attributes to a matrix with the size of 

1 2n n where 
1 2n n n  is described below. For each sam-

ple point we let the vector of the previous 
2n  elements to 

be the first column of the new matrix. Then let 
2 1n  to 

22n elements as the second column of the new matrix. By 

parity of reasoning, we can obtain a second order tensor 

with the scale of 
1 2n n . 

   Here, we use two kinds of matrixization: 7 8 and 8 7 , 

and the average classification accuracy as shown in Table 

1. 

Table 1. The comparison between matricization 7 8  and 

8 7 . 

Number of 

samples 

Accuracy (%) 

Matricization 

( 7 8 ) 

Matricization 

( 8 7 ) 

1 46.0 55.3 

2 35.7 60.7 

3 45.8 59.2 

4 50.0 62.5 

5 55.5 62.7 

 

From Table 1, it is obviously that the different matrici-

zation methods resulted in different test accuracy. When 

the training set have only two samples (including two pos-

itive points and one negative points), the gap of  the clas-

sification accuracy of LS-STM between on 8 7 matrix 

pattern outperforms that on 7 8  matrix pattern is the 

largest, reaching 25%. The main reason of this phenome-

non is that the matrix of different size will have different 

internal structure after matrix transformation. To cite a 

simple example, we get a vector A 123456   , then 

transfer it into the matrix of size 2 3  and size 3 2 . We 

express them with 
1A  and

2A  respectively. Through the 

matricization method we proposed above, we can obtain 

1A 135;246    and 2A 14;25;36   . Obviously, matrix 

1A  and 
2A  have different inner structures. It is quite rea-

sonable that different inner structures lead to different 

results. 

In order to directly see the superiority of LS-STM on 

8 7 matrix pattern, we also give the comparison between 

8 7 matrix pattern and  7 8  matrix pattern in Figure 2. 

In addition, the horizontal ordinate is the number of sam-

ples, the vertical ordinate is accuracy. The results were 

tested with accuracy calculate tests, but they were unsatis-

factory, just like most existing results, such as RDA: 

62.5%, KNN: 53.1%, Opt. Disc. Plane: 59.4% [22]. 

 

Figure 2.  The comparison between matricization 

7 8 and 8 7 . 
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The methods based on tensor space are suitable for 

small-sample-size (S3) problems. Least squares support 

tensor machine has great advantages in this aspect than 

some vector-based methods, such as least squares support 

vector machine. Here, the results of LS-STM and STM are 

both based on 8 7 matrix pattern. The comparison result 

between LS-SVM、LS-STM and STM are shown in Ta-

ble 2 and Figure 3.  

Table 2. The comparison between LS-SVM, LS-STM and 

STM. 

Number 

of sam-

ples 

Accuracy (%) 

LS-SVM LS-STM STM 

1 46.0 55.3 61.7 

2 47.1 60.7 57.5 

3 41.9 59.2 53.5 

4 28.3 62.5 52.5 

5 45.5 62.7 55.5 

6 34.5 62.5 59.0 

 

Figure 3.  The comparison between LS-SVM, LS-STM 

and STM. 

From both Table 2 and Figure 3, the classification accu-

racy of LS-STM is better than that of LS-SVM and STM. 

All accuracy values of LS-SVM are below 50%, and the 

maximum difference of the accuracy between LS-SVM 

and LS-STM is 34.17%. However, the maximum differ-

ence of the accuracy between STM and LS-STM is only 

10%. For the experimental data –Lung Cancer used in this 

article, there are 56 variables when we use LS-SVM to get 

a classifier, but only 15 variables by using LS-STM. Thus, 

we obtain that LS-STM is more suitable for small-sample-

size (S3) problems than LS-SVM.  

4.2 Letter Recognition [22] 

The Letter Recognition dataset has been widely used in 

the literature. It contains a large number of black-and-

white rectangular pixels, each of them displays as one of 

the 26 capital letters in the English alphabet. It has 20000 

instances, and each instance has 16 attributes. In this ex-

periment, we deal with the classification problem of capi-

tal letter “A” (789 instances) and “B” (766 instances). 

It should be noted that in this experiment the scale of 

the matricization is 4 4 . The comparison results between 

LS-SVM and LS-STM is shown in Figure 4 below. Here, 

the number of the training samples is 10 (A: 10 ; B: 10 ). 

 

 

Figure 4. The comparison between LS-SVM and LS-

STM on dataset Letter recognition(A&B). 

From Figure 4, we can see that the classification accu-

racies of LS-SVM are all better than that of LS-STM, ex-

cept the regularization constant C is 52 . It is mainly be-

cause of the fact that the superiority of LS-STM will be 

reflected obviously when solving the small-sample-size 

problem. However, the dataset letter recognition (A&B) 

used in this paper has 1555 sample points with 16 attrib-

utes. So it's not a small-sample-size problem. As a result, 

it is not necessarily that the performance of LS-STM is 

better than that of LS-SVM, which means LS-STM may 

show poor performance when solving the problem without 

high dimension and small sample. Additionally, similarly 

to the vector pattern dataset, for the image pattern image 

dataset, whether LS-STM can really increase performance 

or not depends on different matricization even for the 

same dataset. From different performance exhibitions for 

different matricizing patterns on the same datasets, we 

have that the matricization is the key step to use the meth-

ods based on tensor space. 

The above two numerical experiments show that the 

tensor-based methods have more advantages than vector-

based methods for small-sample-size (S3) problems. How 

to use the matricization to improve the classification accu-

racy is the important issue. 

5 Conclusion 

This paper reviews the learning algorithm--least squares 
support vector machine (LS-SVM) which based on vector 
space, and then we propose tensor-based method--least 
squares support tensor machine (LS-STM). For solving 
the small-sample-size (S3) problems, the tensor represen-
tation always performs better than the vector representa-
tion. Our numerical experiments of the two datasets pro-
vide the most powerful support. It is worth noting that the 
performance of LS-STM deeply depends on the different 
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matricization even for the same datasets. With the devel-
opment of machine learning, tensor learning has wide 
applicable range, it is worth further researching. 
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