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Abstract 
 
We report here the use of finite element simulation and experiments to further explore the 
operation of the wafer transducer. We have separately modeled the emission and 
detection processes. In particular, we have calculated the wave velocities and the received 
voltage signals due to A0 and S0 modes at an output transducer as a function of pulse 
center frequency. These calculations include the effects of finite pulse width, pulse 
dispersion, and the detailed interaction between the piezoelectric element and the 
transmitting medium. We show that the received signals for A0 and S0 modes have 
maxima near the frequencies predicted from the previously published point-force model.  
 

I. Introduction 
Many authors have considered the use of Lamb waves for non-destructive testing. Lamb 
waves can propagate for considerable distances in plates, making it possible to detect 
flaws over a considerable area with a single transducer. Complications that are 
encountered include the existence of multiple modes and the dispersive character of the 
modes. A partial solution to this complexity is the use of transducers that excite only a 
single mode, and various strategies have been employed in the past in order to achieve 
this. An angled prism can be used to convert a longitudinal mode into a particular plate 
mode by appropriate choice of the prism angle [1]. Alternatively, comb-type transducers 
[1,2,3] or linear arrays with time-delayed excitation [4,5] can be used. There has been 
recent interest in the use of single PZT wafers as transducers, in part because of the 
simplicity and potentially low cost of these transducers. Single PZT wafers have been 
explored with continuous sinusoidal [6,7] or pulsed [8,9] excitation for defect detection in 
composite panels and the influence of flaws on the Lamb waves has been modeled. In 
some [6,8] work the use of the A0 mode was recommended, in part because of lower 
attenuation. Selective excitation of the S0 mode using a PZT wafer bonded to the plate 
has also been proposed and demonstrated [9]. While a theoretical explanation for the 
mode selectivity of the PZT wafer transducer has been reported [9], that analysis is 
strictly applicable only to the sinusoidal steady state and makes numerous simplifying 
assumptions. In particular, the mechanical interactions between the PZT wafer and the 



plate are not included. In addition, this analysis only considered the emission of waves 
and not the reception, which will will show is physically distinct and that has a different 
dependence on pulse center frequency.  
 
In this paper, we use a combination of finite element simulation and experiments to 
further explore the operation of the wafer transducer. We have separately modeled the 
emission and detection processes. In particular, we have calculated the wave velocities 
and the received voltage signals due to A0 and S0 modes at an output transducer as a 
function of pulse center frequency. These calculations include the effects of finite pulse 
width, pulse dispersion, and the detailed interaction between the piezoelectric element 
and the transmitting medium. The results obtained provide more accurate predictions of 
the mode selectivity than have been previously reported using a simplified point-force 
model [9]. In addition, we are able to determine the optimum PZT wafer thickness. 
Finally, this approach is readily adapted to explore the interactions of waves with flaws 
and edge attachments.  
 
In the following section we report simulations of the emission of guided waves using 
both the point-source and PZT sources. We will show that a simplified model for the PZT 
wafer provides good accuracy and does not require a full multiphysics simulation. In 
Section III we simulate the detection of guided waves and combine these results with the 
emission model to determine the overall transfer function. Section IV compares the 
simulations with experiment, Section V presents guidelines for transducer design, and 
Section VI contains overall conclusions. 

II. Emission of ultrasonic waves 
Figure 1a shows a wafer-type transducer bonded to plate. The plate and wafer are 
assumed to be of infinite extent in the z direction (this is the plane strain condition in 
structural mechanics, that is, all strains out of the plane are assumed to be zero). We 
consider one half of a plate symmetric about the y-axis. The wafer is a piezoelectric 
material with the poling direction normal to the plate surface and metallized on the top 
and bottom surfaces. For emission an exciting signal is applied between the metallized 
surfaces of the plate. In the receive mode the transducer terminals are connected to a 
high-impedance load such as an oscilloscope.  
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Fig. 1. Geometry for modeling studies: (top) wafer-type transducer bonded to a plate with 

deformed state indicated in dashed lines; and (b) a point force Fx(t) as used in analytic 
modeling of the wafer-type transducer. 

 
The figure also illustrates qualitatively the effect of an applied voltage. The PZT is 
compressively (tensilely) strained in the y direction and expands (contracts) in the x 
direction. This results in a traction force on the surface of the plate. There is also a 
smaller force in the y direction on the plate. In the theoretical work by Giurgiutiu [9], it 
was assumed that the PZT plate exerts a force at a single point in the x direction only 
(Fig. 1b) and the steady-state response of the system was calculated. We have termed this 
model the point-force model to be consistent with the terminology in the publications of 
Giurgiutiu. Strictly speaking the force is a line load per unit length in the z direction. 
 
In the following, we will simulate the transient generation of plate waves in an infinitely 
wide plate. By using finite element simulation, we can model the PZT wafer and the plate 
together, and we can calculate the two-dimensional wave that is generated. We will first 
simulate the effect of a windowed sinusoidal force applied at a single point. These results 
will be compared with the results of Giurgiutiu [9]. We then simulate the interaction 
between a PZT wafer and the plate, which more accurately matches the actual physical 
configuration. 
 

Point source 
Figure 1b shows a single point source applied to the upper surface a distance a from the y 
axis. The x displacement was constrained to be zero at the origin and consequently we 
model one half of a symmetric domain. All other boundaries were free. Simulations were 
performed in the time dependent mode with output time steps typically equal to one 
eighth of a period. Mesh parameters were chosen so that the element sizes were 
substantially smaller than a wavelength.  Some calculations were performed with half the 
output time step and a smaller element size to verify that these parameters did not have a 
significant effect on the results. The time-dependent force was given by 
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This yields a smooth windowed sinusoid 5 cycles in length with center frequency ω.  
 
Emission simulations were performed using the time-stepping mode of the two-
dimensional plane strain mode of FEMLAB 2.3 (ode23s solver). In all simulations 
reported below, the plate was aluminum (E = 70 GPa, ρ = 2.7 gm/cm3, ν = 0.33, mass 
damping coefficient 0, stiffness damping coefficient = 0) 1.59 mm in thickness and the 
force was applied a distance a = 3.2 mm from the center point.  These dimensions were 
chosen to match the configuration used in experiments described later. 
  
We will report on simulations for frequencies in the range from 33 kHz to 800 kHz. 
Figure 2 shows the aluminum phase velocity of the A0 and S0 modes as a function of the 
frequency-thickness product. For an aluminum plate of thickness 1.59 mm, only these 
two modes exist at frequencies below 1 MHz. According to the simplified analytic model 
of Giurgiutiu [9], peak emission for a mode i occurs at a frequency nif ,

max  where the force 
baseline is exactly one half of an integral number of wavelengths, that is 
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where n is an integer greater than or equal to one. Similarly, a null in emission occurs at 

nif ,
min  such that the force baseline is an integral number of wavelengths, or 
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These frequencies can be determined by construction from the phase velocity plot (Fig. 
4). For an aluminum plate of 1.59 mm thickness we expect minima 1,0

min
Af = 283 kHz 

and 1,0
min
Sf = 816 kHz and maxima 1,0

max
Af  = 86 kHz, 2,0

max
Af  = 517 kHz and 1,0

max
Sf  = 419 kHz.   



  
Fig. 2. Calculated phase velocity for A0 and S0 Lamb waves in an aluminum plate as a 

function of frequency-thickness product. Based on the point-force model maximum 
emission amplitude is expected when a = λ/2 and minimum emission amplitude when a = 

λ/4. 
 
Figure 3 shows the results for time t = 4 × 10-5 sec from simulations at a range of 
frequencies. The wave is generated at the left edge and propagates to the right. The colors 
in this figure indicate the von Mises stress. The arrows indicate the vector particle 
displacements from the equilibrium position.  
 
The simulations show the expected two propagating modes with S0 and A0 character. 
The S0 mode has the highest group velocity and shows particle displacements mostly in 
the x direction, and the slower wave is the A0 mode, which shows particle displacements 
that are mostly in the y direction and are asymmetric about the center of the plate. 
Qualitatively, it appears that the relative magnitudes of the A0 and S0 modes vary, with a 
minimum magnitude for the A0 mode near 300 kHz. This agrees well with the frequency 
where the wavelength of the A0 mode is equal to the total length of the force baseline.  
 



 
Fig. 3. Emission of A0 and S0 waves using a point-force source (t = 40 µs). The 

propagation velocity of the A0 mode increases with frequency and the emitted intensity 
reaches a minimum near 300 kHz.  For improved visibility the plate thickness has be 

exaggerated by a factor of two. 
 

To quantify the variation in the wave magnitudes with frequency, we have determined the 
maximum value of the x component of velocity vx for the S0 mode and the maximum 
value of vy for the A0 mode (calculated from the maximum particle velocity). These are 
plotted in Fig. 4 as a function of frequency (solid lines). We see a minimum in the A0 
mode amplitude at approximately 283 kHz as expected and peaks in the A0 and S0 
modes near the expected values of 86 kHz and 419 kHz respectively.  
 
The point-force excitation represents a highly idealized model. In the following we will 
present simulations of a PZT emitting element bonded to the aluminum plate.  



 
Fig. 4. Maximum particle velocity of generated waves as a function of frequency for A0 
and S0 modes, obtained with the point-force model (solid lines) and with the PZT model 

(dashed lines). The PZT data correspond to a driving voltage of 10 volts peak-to-peak 
and the point force model results are scaled to match at the S0 peak. 

 

PZT transducer as a source 
We now develop a more realistic model of the wafer transducer to include details of the 
PZT- plate interaction.  Stress, strain, electric field, and displacement in piezoelectric 
materials are described by a pair of coupled equations, and are conventionally expressed 
in matrix form representing the tensor quantities.  For Motorola 3203HD PZT material, 
poled in the 3-direction, we express the relations between stress T, strain S, electric field 
E, and electric displacement D by 
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where stress has units of Pa, electric field has units of V/m, electric displacement has 
units of C/m2, and ε0 is the dielectric permittivity of free space.  We extracted material 
properties from measurements reported in reference [10].   
 
The equations above are written in the conventional form for piezoelectricity, poled in the 
3-direction, whereas the two-dimensional (plane strain) geometry of the simulated system 
is shown in Fig. 1b.  We must adapt the equations so that the 1-direction corresponds to 
the x-axis, and the 3-direction corresponds to the y-axis.  Additionally, to impose the 
plane strain condition we require that strains S2, S23, and S12 equal zero and we apply an 
electric field Ey to the wafer electrodes (along the poling direction) and set E1 and E2 to 
zero.  Under the conditions these conditions, the first equation reduces to  
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For the most accurate results, we should perform a multiphysics simulation coupling the 
electrostatic solution with the structural mechanics solution, but multiphysics simulation 
is computationally burdensome. Instead, for wave generation, we chose a simplified 
approach where we approximately model the effect of the applied electric field by 
appropriate external forces applied to the PZT surfaces.  To see how this can be done, 
consider first a PZT wafer not bonded to a plate. If an electric field is applied in the y 
direction, we have 
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The strain will be the same as if external forces per unit area of 11.7·Ey are applied to act 
in compression on the right and left faces while external forces per unit area of 19.7·Ey 
are applied to act in tension on the top and bottom faces. We will assume that is 
approximately correct to use the same external forces when the PZT wafer is bonded to a 
plate, as shown in Fig. 5.  (As in Fig. 1b, the forces are line loads, per unit length, in the 
z-direction.)  We also assume perfect bonding between the PZT wafer and the plate. This 
model (referred to later as the PZT force model) results in considerably reduced 
simulation time and improved convergence, especially when no material damping is 
used.  
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Fig. 5. Wafer transducer showing forces exerted on the surfaces to model the effect of an 

electric field Ey.  
 
In order to confirm that this model is a good approximation to the real situation, we have 
also performed full multiphysics simulations at selected frequencies. These simulations 
were performed using FEMLAB 3.0 as discussed later. Figure 6 compares the full 
multiphysics simulations with the point force model and the PZT force model. In this 
figure the results from the point force model have been scaled to provide the same 
maximum displacement as the other models. We see that the agreement between the PZT 
force model and the full multiphysics calculation is excellent, both in the magnitude and 
detailed shape of the waves. There are significant differences between the point force 
model and the other two models even when the data are scaled to make the amplitude of 
the S0 waves the same.  
 

 
 

Fig. 6.  Simulated x displacement for 350 kHz, t = 53 µs for three models: (top) point 
force model and (bottom, solid line) PZT force model and (bottom, dashed line) full 

multiphysics simulation. The results from the point force model are significantly different 
from the other two models. 

 
Figure 7 shows complex motions in the vicinity of the PZT wafer when the PZT force 
model is used. The isolated PZT undergoes expansion primarily in the x direction with a 
much smaller contraction in the y direction. At t = 5.71 µs (corresponding to zero electric 



field) there is little stress in the PZT and as a result of the previous cycle the 
displacements in the aluminum are in the –x, –y directions.  At t = 6.43 µs (corresponding 
to a positive peak in the applied electric field) the PZT is under high compression in the y 
direction and expands in the x direction, resulting in a displacement of the surface of the 
aluminum in the same direction. Extending the aluminum in the x direction results in a 
contraction in the y direction by the Poisson effect. Consequently between t = 6.43 µs and 
t = 7.14 µs the displacement in the x direction becomes smaller, eventually reversing sign 
at t = 7.14 µs. The following plots show the remaining half cycle. It is apparent that there 
are significant displacements in both the x and y directions. The y displacement in 
particular is more pronounced than predicted by the point-force model (not shown).  
 

 
Fig. 7. Motion in the vicinity of the PZT wafer for excitation at 350 kHz (additional 

details in text). The outline indicates the distorted shape of the PZT and plate (greatly 
exaggerated for visibility). The color indicates the von Mises stress and arrows indicate 

the vector displacement. 
 
Figure 8 shows the results of simulations with the PZT force model which show the 
propagation and separation of the wave modes with increasing time.  In this diagram the 
thickness of the aluminum plate has been exaggerated by a factor of 3 so that the waves 
can be clearly seen. The A0 and S0 modes exhibit the expected behavior, including 



propagation velocities which are in good agreement with the group velocities calculated 
from Fig. 1 (2.55 × 105 and 5.37 × 105 cm/sec for the A0 and S0 modes, respectively).  
 
From PZT force model simulations over a range of frequency we can extract the 
amplitudes of the emitted waves. These results are also shown in Fig. 4. For comparison 
purposes the results of the point force model simulation results have been normalized to 
the same velocity at the S0 mode peak. The results of the PZT force model simulation are 
qualitatively similar but not identical to the point-force results. Qualitatively the 
important differences are (1) a shift of the peaks and minima to somewhat higher 
frequencies and (2) relatively stronger emission of waves at high frequencies than 
observed with point-force excitation. We continue to observe an optimum frequency at 
which the S0 mode is predominantly emitted.  
 

 
Figure 8. Propagation of A0 and S0 modes at 200 kHz. The thickness of the plate has 

been exaggerated by a factor of 3 for improved visibility. Color is proportional to the von 
Mises stress and the arrows indicate the x and y particle displacement. 

III. Detection of Lamb waves 
We will now consider the detection of Lamb waves. As this is the inverse process of 
wave generation, it may appear at first sight that the wave generation and wave detection 
curves should be the same. However, this is not the case. During emission the motion of 
the plate and PZT are symmetric about the y axis and undergo complex motions which 
later resolve into S0 and A0 modes. During detection the transducer interacts with a 
single mode which is propagating unidirectionally. Consequently the displacements of 
the PZT will not be the same as during emission. 
 
In order to analyze the detection of Lamb waves we used a full electro-mechanical 
(multiphysics) simulation. These simulations were performed using the multiphysics 
(electrostatics plus plane-strain structural mechanics) time-dependent mode of FEMLAB 



3.0 (Direct (UMFPACK) linear solver in the weak mode). The response of a receiving 
PZT 6.4 mm long and 0.64 mm thick was calculated separately for S0 and A0 modes. A 
particular mode was selectively generated by two point forces on the top and bottom of 
the aluminum plate. When these two sources are driven in phase (out of phase), the S0 
(A0) mode is selectively launched. The bottom surface of the PZT was electrically 
grounded (V = 0) and an equipotential boundary condition was set on the top surface. The 
simulation yields the time-dependent mechanical displacements and also the time-
dependent potential of the PZT top surface. The sensitivity for each mode was calculated 
by dividing the maximum top surface potential by the particle velocity for each wave.  
 
Figure 9 shows the measured sensitivities as a function of frequency. At low frequencies 
the sensitivity of the PZT to the S0 mode is practically constant. In this frequency range 
the half-wavelength of the acoustic wave is longer than the PZT and the PZT functions as 
an ideal strain sensor. At higher frequencies the PZT is more than a wavelength long and 
the strain reverses sign along the transducer, leading to a decrease in sensitivity. The 
behavior of the A0 sensitivity is much different. This is because strain is related to 
particle velocity through the expression 
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where S is the strain, u is the particle displacement, and cp is the phase velocity. The 
phase velocity of the A0 mode is strongly frequency-dependent and decreases toward 
zero at low frequencies. Consequently the A0 sensitivity increases strongly with 
decreasing frequency. We do see evidence for the expected minimum in sensitivity near 
400 kHz where the transducer is exactly one wavelength long and a maximum near 600 
kHz where it is exactly 1.5 wavelengths long.   
 

 
Figure 9. Simulated receiver sensitivity as a function of frequency: (circles) A0 mode and 

(squares) S0 mode. 
 



In order to obtain the received signal amplitude for a given input pulse it is necessary to 
multiply the particle velocity per volt (from Fig. 4) with the receive sensitivity in volts 
per unit particle velocity (Fig. 9). This is the overall system transfer function vout/vin 
[volts/volt] and is shown in Fig. 10 as a function of the pulse center frequency. Overall 
the S0 and A0 peak locations are near to the predictions of eq. (1) and (2) with the S0 
peak lower in frequency and the A0 peak somewhat higher. For this geometry generation 
of the S0 is predicted to be strongly dominant near 325 kHz. 
 
Also shown in Fig. 10 is the predicted vout/vin when both transmitter and receiver are 
simulated using a full multiphysics calculation. These calculations are substantially more 
time-consuming, particularly at the extremes of high and low frequencies and 
onsequently we have performed these simulations only at a few selected frequencies. The 
results are in very good agreement with those obtained by simulating the receiver and 
transmitter separately. This further supports the accuracy of the PZT force model for 
more efficient simulation of wave emission.  
 

 
Fig. 10. Overall system transfer function vout/vin as a function of pulse center frequency: 

( , ) S0 mode and ( , ) A0 mode. The solid points are the results from the full 
multiphysics simulation. 

 

IV. Comparison with experiment  
Measurements of the A0 and S0 wave amplitudes have been performed for comparison 
with the simulations. These measurements used an aluminum plate 0.159 cm in thickness 
and two PZT transducers (Motorola 3203) 0.64 cm × 1.92 cm × 0.064 cm in size. The 
transducers were mounted using silver epoxy (Epotek E4110-LV) approximately 20 cm 
apart with the long sides parallel. The transducers were far from any edges of the 
aluminum plate (> 50 cm) so that pulses from edge reflections were delayed by a 



sufficiently long time to avoid interference with the first received A0 pulse. Data was 
taken by driving one transducer with a National Instruments PCI-5411 board 
programmed to produce the windowed sinusoidal pulse with 10 V peak amplitude. The 
receiving transducer was connected to a National Instruments PCI-5112 100 MHz 
bandwidth analog input board and 5000-10000 samples were collected using Labview. 
Some typical data are shown in Fig. 11. The first pulse arrival is the S0 mode and as 
expected the amplitude of this mode reaches a maximum near 350 kHz. The A0 mode 
pulse arrives later with a minimum near 400 kHz.  
 

 
Fig. 11. Received signals as a function of frequency (20 cm separation). The arrow marks 

the center of the transmitter pulse train. 
 
Figure 12 plots the ratio of the exciting pulse amplitude to the maximum received pulse 
amplitude as a function of frequency.  Results are shown for three different transducer 
pairs, all separated by 20 cm. The results obtained for different transducer pairs are quite 
similar for the S0 mode in both amplitude and frequency dependence, while the A0 
results are significantly different. 
 
For the S0 mode, we observe good agreement between experiment and theory with 
respect to the peak position and the frequency dependence. Experimentally the peak S0 
response is at 300-325 kHz kHz compared to the simulated peak at 350 kHz. Note that 
eq. (2) predicted a peak S0 response at 419 kHz, which is close to but somewhat higher 
than the experimental results.  
 
The agreement between experiment and simulations for the A0 mode is poor, with the 
simulations predicting a higher peak amplitude than actually observed and also a peak at 
a substantially lower frequency. Note that the simulated peak position is approximately at 
100 kHz, which is in good agreement with eq. (3) and also in good agreement with the 
measurements reported by Giurgiutiu [9] for a transducer of almost the same length (0.7 
cm compared to 0.64 cm in our experiments.) 



 
We have ruled out instrumental artifacts as an explanation for the discrepancy between 
simulations and experiment. Measurements with several different transducer pairs 
consistently show the same S0 peak position and also approximately the same S0 
amplitude. The A0 data exhibits significant variability between transducer pairs.  
 
We are attributing the poor agreement between the A0 experiment and simulation to 
nonideal bonding between the PZT wafer and the aluminum sheet. This is supported by 
our observations of some differences in the measured impedance spectrum for different 
transducers which are consistent with imperfect bonding (not shown). Apparently the A0 
mode is more sensitive to the bonding conditions than the S0 mode. It is important to 
note that the published measurements by Giurgiutiu [9] show that with appropriate 
bonding conditions results in better agreement with simulations can be obtained. Also 
note that the S0 mode may be preferable in applications as it can be generated selectively 
and also because it exhibits little dispersion over a wide frequency range.  
 

 
Figure 12. Measurements of the ratio of the peak output signal to the peak of the exciting 

pulse for three transducer pairs.  
 

V. Transducer design guidelines 
We will now determine the optimum PZT thickness for the case in which the exciting 
voltage is fixed. We first discuss qualitatively the effect of varying the PZT thickness. If 
the PZT is very thick, the strain in the aluminum beneath the PZT should be roughly 
equal to that in an unbonded PZT. Since the strain in an unbonded PZT is proportional to 
the applied electric field, we expect 
 



t
VES zx =∝  

 
and as a result the emitted S0 wave amplitude increases with decreasing thickness. As the 
PZT becomes thinner, the field-induced strain is shared between the aluminum and the 
PZT. For very thin PZT there is essentially no strain in the PZT. Consequently, we expect 
an optimum at an intermediate thickness. Figure 13a shows the emitted velocities as a 
function of PZT thickness at 350 kHz. This optimum occurs for a PZT thickness less that 
the aluminum thickness because the stiffness of the PZT at constant electric field is 
approximately a factor of three greater than the aluminum stiffness. Figure 13b shows a 
similar calculation for the dependence of receive sensitivity on PZT thickness at 350 kHz. 
Again there is an optimum PZT thickness near 0.5 mm. These results show that near-
optimum overall performance can be obtained by using the same PZT transducer for 
transmit and receive. 
 

     
 

 
 

Figure 13. Effect of transducer thickness: (top) emitted A0 (circles) and S0 (squares) 
wave amplitudes as a function of PZT thickness at 350 kHz;  (bottom) A0 (circles) and 

S0 (squares) receive sensitivity as a function of PZT thickness at 350 kHz. 
 



These results can be used to draw some general conclusions about the preferred 
transducer dimensions and operating frequency. We assume that pulse dispersion is 
undesirable and that selective generation of a single mode is preferred. Selective 
generation of the S0 with respect to the A0 mode is easily achieved in the low-frequency 
region where the S0 and A0 phase velocities are appreciably different. We have seen that 
equations (1) and (2) derived from the point-force model provide a rough estimate of the 
frequencies of maximum and minimum response. In general one should choose the 
transducer length and center frequency so that the S0 mode is near its peak frequency and 
the A0 mode near its minimum. To first order, one should locate the f d product 
corresponding to vphase(S0) = 2 vphase(A0). For a given plate thickness d this determines 
the center frequency f. Then the transducer length is determined from a = vphase(S0)/4f.  
 
While this approach can be used for initial calculations, finite element simulations will 
yield more precise values for the peak and minimum frequencies and the mode 
selectivity. In addition, finite element simulations make it possible to determine the 
optimum transducer thickness, which cannot be calculated using the point-force model. 
While the optimum transducer thickness is different for emission and reception, for the 
case examined here the optimum occurs nearly at the same thickness.  
 

VI. Conclusions 
In this paper, the operation of a PZT wafer transducer was analyzed for the generation 
and detection of guided acoustic waves using a combination of finite element simulation 
and experiments. The simulations account for the detailed mechanical interactions 
between the transducer and the transmitting medium, and in addition include a full 
multiphysics representation of the pulse reception.  
 
The simulations and the experimental results demonstrate that a piezoelectric wafer 
transducer can be used for selective excitation of the S0 mode. The point-force model has 
proven to be a useful tool to analyze the qualitative behavior of the transducer. A more 
advanced PZT force model and a full piezo finite element model were introduced that are 
a closer representation of the real system. For the wave generation there is very little 
difference between the PZT force model and the full piezo model. For the wave detection 
only the piezo model can be used. A comparison of finite element simulations with 
experimental results showed that the more advanced models show a better match and 
demonstrated these models can be used for a quantitative analysis of the piezo wafer 
transducer. 
 



Acknowledgements 
The authors wish to acknowledge support from the Bosch Research and Technology 
Center North America, Pittsburgh, PA, USA and from the National Science Foundation 
under grant CMS-0329880. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views 
of the National Science Foundation.  

 



References 
 

1 J.L. Rose, “Guided Wave Nuances for Ultrasonic Nondestructive Evaluation,” IEEE 
Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, 575-583 (May, 2000) 
2 M.J. Quarry and J.L. Rose, “Multimode guided wave inspection of piping using comb 
transducers,” Mater. Eval. 57, 1089-1090 (1999).  
3 J.L. Rose, S. Pelts, and M. Quarry, “A comb transducer model for guided wave NDE,” 
Ultrasonics 36, 163-168 (1998). 
4 W. Zhu and R.L. Rose,  “Lamb wave generation and reception with time-delay periodic 
linear arrays: A BEM simulation and experimental study,” IEEE Trans. Ultrasonics, 
Ferroelectrics, and Frequency Control 46, 654-664 (1999). 
5 J. Li and J.L. Rose, “Implementing guided wave mode control by use of a phased 
transducer array,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 48, 
761-768 (2001). 
6 Kessler S.S., Spearing S.M., Atalla M.J., Cesnik C.E.S. and C. Soutis. “Damage 
Detection in Composite Materials using Frequency Response Methods.” Proceedings of 
the SPIE’s 8th International Symposium on Smart Structures and Materials, 4-8 March 
2001, Newport Beach, CA. 
7 V. Giurgiutiu and A.N. Zagrai, “Characterization of piezoelectric wafer active sensors,” 
Journal of Intelligent Material Systems and Structures 11, 959-975 (2000). 
8 Kessler S.S., Spearing S.M. and C. Soutis. “Structural Health Monitoring of Built-up 
Composite Structures using Lamb Wave Methods.” Submitted for publication to Journal 
of Intelligent Material Systems and Structures. 
9 V. Giurgiutiu, “Lamb Wave Generation with Piezoelectric Wafer Active Sensors for 
Structural Health Monitoring,” Smart Structures and Materials 2003: Smart Structures 
and Integrated Systems, 111 
10 S. Sherrit, H. D. Wiederick, B. K. Mukherjee, “A complete characterization of the 
piezoelectric, dielectric, and elastic properties of Motorola PZT 3203 HD including 
losses and dispersion,” Proc. SPIE Medical Imaging Conf., SPIE 3037, 158-169 (1997). 
 

  


