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SUMMARY

Convex and concave relaxations for the parametric solutions of ordinary differential equations (ODEs) are
central to deterministic global optimization methods for nonconvex dynamic optimization and open-loop
optimal control problems with control parametrization. Given a general system of ODEs with parameter
dependence in the initial conditions and right-hand sides,this work derives sufficient conditions under which
an auxiliary system of ODEs describes convex and concave relaxations of the parametric solutions, point-
wise in the independent variable. Convergence results for these relaxations are also established. A fully
automatable procedure for constructing an appropriate auxiliary system has been developed previously by
the authors. Thus, the developments here lead to an efficient, automatic method for computing convex and
concave relaxations for the parametric solutions of a very general class nonlinear ODEs. The proposed
method is presented in detail for a simple example problem. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The purpose of this work is to present a theoretical result which enables convex and concave

relaxations of the solutions of parametric ordinary differential equations (ODEs) to be constructed.

In particular, a general system of ODEs is considered where both the initial conditions and the right-

hand side functions depend on a real parameter vector. Givensuch a system, an auxiliary system of

ODEs is derived which describes convex underestimators andconcave overestimators for each of

the state variables with respect to the parameters, pointwise in the independent variable.

The primary motivation for this construction is its application in algorithms for the deterministic

global optimization of physical systems which are described by systems of ODEs, typically

referred to as dynamic optimization or optimal control problems [1, 2, 3]. A standard approach
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2 J. K. SCOTT AND P. I. BARTON

to computational optimal control is to apply control parametrization, which replaces the control

functions by an approximate representation in terms of a finite number of real parameters, such

as piecewise constant or piecewise linear controls [4, 5]. Time optimal control problems can also

be transformed into fixed time problems through the introduction of a real scaling parameter [6].

These reformulations replace the original control system with a nonlinear system of parametric

ODEs of the type considered in this article. Furthermore, inthe case where the solution of these

ODEs is unique for any fixed parameter vector and initial condition, this reformulation yields

a Euclidean optimization problem, i.e., an optimization problem in which the feasible set is a

subset of a Euclidean space as opposed to a function space. Thus, control parametrization yields an

approximation to the original optimal control problem which is amenable to computational methods

and practical implementation because it can be representedby finite data. For a detailed discussion

of the convergence properties of such approximations and a precise description of the wide class of

optimal control problems for which this methodology can be applied, the reader is referred to [4].

As is the case with more standard Euclidean optimization problems, the global solution of an

optimal control problem reformulated through control parametrization can be obtained by solving

a sequence of convex underestimating programs within a branch-and-bound algorithm [7, 8].

Convex underestimating programs are also used in global optimization algorithms for mixed-integer

nonlinear programs based on outer approximation techniques [9], and the extension to mixed-integer

dynamic optimization problems has been developed [10]. However, the presence of embedded

differential equations precludes the use of standard techniques [8, 11, 12] for generating these

convex underestimating programs. The primary complication is exactly the task addressed in this

work; the generation of convex underestimators and concaveoverestimators for the solutions of the

ODEs themselves.

In recent years, a few authors have proposed methods for generating convex and concave

relaxations for the solutions of ODEs. The first method was proposed by Esposito and Floudas

[13] using a dynamic extension of theαBB convexification theory described in [12]. This method

relies on a finite sampling step to bound the second-order sensitivities of the ODEs, and therefore

cannot guarantee that the resulting relaxations are convex. In [3], bounds on these sensitivities

are computed, resulting in guaranteed convex relaxations,yet these relaxations are typically very

weak and the second-order sensitivities are costly to evaluate. Singer and Barton [14] presented

a theory for generating overestimators and underestimators for the solutions of ODEs which, by

construction, are affine in the parameters, and so are trivially convex and concave. These affine

relaxations are computed as the solutions of a auxiliary system of linear time-varying ODEs which

can be automatically constructed using McCormick’s relaxation technique and outer-linearization

[15]. Because these auxiliary ODEs can be solved using standard numerical integration codes,

these relaxations can be evaluated relatively efficiently;i.e., at a cost comparable to integration

of the original ODE model. Moreover, these affine relaxations prove to be much stronger than the

relaxations described in [3]. However, affine relaxations are often unsatisfactory for underestimating

(overestimating) ODE solutions which are highly nonlinearin the parameters. Furthermore,

constructing these relaxations requires the specificationof a reference trajectory which typically

has a large impact on the quality of the resulting relaxations. More recently, two related approaches

have been developed in which McCormick’s relaxation technique is applied to a characterization of

the ODE solution by a Taylor expansion with a rigorous enclosure of the truncation error [16, 17].
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These methods extend interval bounding techniques based ona similar analysis [18] and appear

capable of providing very tight relaxations when a sufficiently high-order expansion is used. On

the other hand, computing relaxations of a high-order Taylor expansion is very expensive for

high dimensional problems, and the existence an appropriate compromise in the context of global

optimization remains an open question. On the whole, globaldynamic optimization solvers can

presently only solve relatively small problems in reasonable computational time due to the lack of

an efficient method for computing tight convex and concave relaxations [2, 3, 13, 18].

In this article, we present a method for computing nonlinearconvex and concave relaxations

through the solution of an auxiliary system of nonlinear ODEs. The initial conditions and right-

hand side functions of this auxiliary system are constructed automatically by an application of

the generalized McCormick relaxation technique developedby the authors [19]. Like the affine

relaxation theory in [14], evaluating these relaxations involves a single numerical integration, so the

cost is comparable to a single integration of the original ODEs. However, the resulting relaxations

are potentially non-affine, and hence provide better relaxations for highly nonlinear ODE solutions.

Moreover, they do not requirea priori knowledge of an appropriate reference trajectory.

Several other seemingly related notions of convexity and relaxation appear in the literature on

optimal control and ODE theory which are relevant to this work in varying degrees. In [20],

sufficient conditions are given under which an optimal control problem on a general Hilbert space is

convex, based on classical results on the composition of convex functions. If this Hilbert space

is taken as a finite-dimensional real vector space, as would result from reformulation through

control parametrization [4], this notion of convexity is equivalent to that in the work presented

here. However, the conditions in [20] are extremely restrictive, and no constructive procedure is

given for generating convex and concave relaxations of nonconvex problems. In more classical

results regarding sufficient optimality conditions for optimal control problems [1, 21], convexity

of the Hamiltonian is assumed with respect to the state variables and the controls. Convexity

in this sense treats the states and controls as unrelated, whereas the purpose of this work is to

approximate the parametric dependence of the state variables by convex and concave functions, so

these notions are distinct. The article [22] (and the references therein) details conditions for the

reachable set of a system of ODEs beginning from a ball of initial conditions to be convex. Again,

this is an unrelated notion because a convex set in state space does not imply convex dependence

on the initial conditions for each state variable, nor the converse. Finally, the term relaxation is

often applied to optimal control and variational problems where the set of admissible controls is

enlarged or embedded in a larger space (i.e., measure-valued controls), and/or the cost functional is

underestimated by a lower semicontinuous functional [23, 24]. Though similar in spirit, the type of

relaxations considered here are fundamentally different (see Definition 2.1).

The remainder of this article is organized as follows. Section 2 contains preliminary definitions

and results. In§3, the system of differential equations to be relaxed is defined and all necessary

assumptions are stated. Section 4 contains the main contributions of the article. The main result

is a set of sufficient conditions for an auxiliary system of differential equations to have solutions

which are the desired convex and concave state relaxations.Under further assumptions on this

auxiliary system, it is proven that the resulting relaxations may be used to construct lower bounding

problems for branch-and-bound procedures applied to global dynamic optimization problems, and

the resulting algorithm is finiteε-convergent. Section 5 discusses the automatic computation of
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4 J. K. SCOTT AND P. I. BARTON

an appropriate auxiliary system and other implementation issues. Finally,§6 demonstrates these

relaxations for a simple example problem, and it is shown that they approximate the parametric

solution well.

2. PRELIMINARIES

Throughout this article, vector quantities are denoted in bold, while scalar quantities are written

without emphasis. For anyv ∈ R
n, the standardp-norms are denoted by‖v‖p = (

∑n
i=1 |vi|

p)
1/p,

1 ≤ p <∞, and‖v‖∞ = maxi |vi|. Suppose thatw,u ∈ R
n as well. The order relationsv ≤ w and

v < w denote that these relations hold elementwise. Similarly,min(v,w) andmax(v,w) denote

the vectors with elementsmin(vi, wi) andmax(vi, wi), respectively, andmid(v,w,u) denotes the

vector where each element is the middle value ofvi,wi andui. Finally, if a vector function is referred

to as convex (concave), it is intended to mean that the scalarfunctions describing each element of

the vector are convex (concave).

This work involves the construction of convex and concave relaxations, defined as follows.

Definition 2.1

Let P be a convex set inRnp andg : P → R. A function gc : P → R is a convex relaxation, or

convex underestimator, of g onP if gc is convex onP andgc(p) ≤ g(p) for all p ∈ P . Similarly, a

functiongC : P → R is aconcave relaxation, or concave overestimator, of g onP if gC is concave

onP andgC(p) ≥ g(p) for all p ∈ P .

The following theorem from [2] is a key result which enables the construction of nonlinear convex

and concave relaxations for the solutions of parametric ODEs.

Theorem 2.1

Let I = [t0, tf ] ⊂ R, letP ⊂ R
np be convex, and letℓ : I × P → R. If ℓ(·,p) is Lebesgue integrable

onI for eachp ∈ P andℓ(t, ·) is convex onP (resp. concave onP ) for almost everyt ∈ I, then the

mapping

P ∋ p 7−→ L(p) ≡

∫ tf

t0

ℓ(t,p)dt

is convex onP (resp. concave onP ).

3. PROBLEM STATEMENT

The following definition describes the general form of the ordinary differential equations which may

be relaxed by the method described in this work. All necessary assumptions are subsequently stated.

Definition 3.1(I, P ,D, f , x0, x)

Let I = [t0, tf ] ⊂ R, P ⊂ R
np be a closed, boundednp-dimensional interval, andD ⊂ R

nx be an

open connected set. Further, consider the mappingsf : I × P ×D → R
nx andx0 : P → D and
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 5

define the initial-value problem in parametric ordinary differential equations:

ẋ(t,p) = f (t,p,x(t,p)) , x (t0,p) = x0 (p) , (1)

where a solution of (1) is any continuous mappingx : I × P → D such that, for anyp ∈ P , the

mappingx(·,p) is differentiable and satisfies (1) everywhere onI (with derivatives from the right

and left att0 andtf , respectively).

Assumption 3.1

The ODEs (1) satisfy the following conditions:

1. x0 is continuous onP ,

2. f is continuous onI × P ×D,

3. for any compactK ⊂ D, ∃LK ∈ R+ such that

‖f(t,p, z) − f(t,p, ẑ)‖1 ≤ LK‖z− ẑ‖1, ∀(t,p, z, ẑ) ∈ I × P ×K ×K.

For any compactK ⊂ D, a function satisfying the inequality of Condition 3 in Assumption 3.1

is said to be Lipschitz onK uniformly onI × P .

Remark 3.1

The parametersp in (1) are assumed to take values in annp-dimensional closed, bounded interval.

This is done primarily for computational reasons, though the theoretical developments to follow

could deal just as easily with a more general compact, convexset inR
np . In particular, McCormick’s

relaxation technique [11] requires that the parameter space be an interval.

Under Assumption 3.1, a standard proof demonstrates that, for small enoughd ∈ [0, tf − t0], there

exists a unique solution of (1) on[t0, t0 + d] × P (by simple parametric extension of, for example,

Theorem 3.1 in Ch.1 of [25] or Theorem 3.1 in [26]). However, this result is only local. Naturally,

we are only concerned with constructing relaxations of solutions where they exist and are unique.

Therefore, we make the following assumption.

Assumption 3.2

A unique solution of (1),x, exists on all ofI × P .

The objective of this work is to construct state relaxationsfor (1), defined as follows.

Definition 3.2

Two continuous functionsc,C : I × P → R
nx arestate relaxationsfor (1) onP if c(t, ·) andC(t, ·)

are, respectively, convex and concave relaxations ofx(t, ·) onP , for every fixedt ∈ I.

4. THEORETICAL DEVELOPMENT

In this section, sufficient conditions are given for the right-hand side functions and initial conditions

of an auxiliary system of ODEs to have solutions which are state relaxations for (1) onP . Consider

the following auxiliary ODEs.

Copyright c© 0000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(0000)
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6 J. K. SCOTT AND P. I. BARTON

Definition 4.1(u, o, c0, C0)

Let c0,C0 : P → R
nx andu,o : I × P × R

nx × R
nx → R

nx , and define the auxiliary initial value

problem in parametric ODEs:

ċ(t,p) = u(t,p, c(t,p),C(t,p)), c(t0,p) = c0(p),

Ċ(t,p) = o(t,p, c(t,p),C(t,p)), C(t0,p) = C0(p), (2)

for all (t,p) ∈ I × P .

Assumption 4.1

The ODEs (2) satisfy the following conditions:

1. c0 andC0 are continuous onP ,

2. u ando are continuous onI × P × R
nx × R

nx ,

3. ∃Luo ∈ R+ such that

‖u(t,p, z,y) − u(t,p, ẑ, ŷ)‖1 + ‖o(t,p, z,y) − o(t,p, ẑ, ŷ)‖1

≤ Luo(‖z − ẑ‖1 + ‖y − ŷ‖1)

for all (t,p, z,y, ẑ, ŷ) ∈ I × P × R
nx × R

nx × R
nx × R

nx .

The following definition gives sufficient conditions for thesolutions of (2) to describe the desired

convex and concave relaxations ofx (see Theorem 4.1). Functions satisfying these conditions,as

well as those of Assumption 4.1, can be constructed automatically using only knowledge of the

functionsf andx0. This construction is the subject of§5.

Definition 4.2

The auxiliary system of ODEs (2) is called aC-systemof (1) on P if, in addition to satisfying

Assumption 4.1, the following conditions hold:

1. c0 andC0 are, respectively, convex and concave relaxations ofx0 onP ,

2. for any continuous mappingsφ,ψ : I × P → R
nx and any fixedt ∈ I, the functions

u(t, ·,φ(t, ·),ψ(t, ·)) and o(t, ·,φ(t, ·),ψ(t, ·)) are, respectively, convex and concave

relaxations off(t, ·,x(t, ·)) on P , provided thatφ(t, ·) andψ(t, ·) are, respectively, convex

and concave relaxations ofx(t, ·) onP .

The following theorem is the central result of this work. It is shown that if (2) is a C-system

of (1) onP , then the unique solution of (2) provides the desired state relaxations for (1) on all of

I × P . The proof uses a standard construction in ODE theory known as successive approximations

(or Picard iterates) [25]. In particular, Theorem A.1 in Appendix A is required.

Theorem 4.1

If the auxiliary system of ODEs (2) is a C-system of (1) onP , then c(t, ·) and C(t, ·) are,

respectively, convex and concave relaxations ofx(t, ·) onP , for each fixedt ∈ I.

Proof

Choose any two vectors inRnx , xL andxU , such thatxL ≤ x(t,p) ≤ xU , ∀(t,p) ∈ I × P . Sincex

is continuous andI × P is compact, such vectors certainly exist. Letc0(t,p) = xL andC0(t,p) =

Copyright c© 0000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(0000)
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 7

xU , ∀(t,p) ∈ I × P . Now consider the successive approximations defined recursively by

ck+1(t,p) = c0(p) +

∫ t

t0

u(s,p, ck(s,p),Ck(s,p))ds,

Ck+1(t,p) = C0(p) +

∫ t

t0

o(s,p, ck(s,p),Ck(s,p))ds. (3)

Note thatu ando are defined onI × P × R
nx × R

nx and Lipschitz on all ofRnx × R
nx uniformly

on I × P by Assumption 4.1. Thus, Theorem A.1 in Appendix A may be applied to (2), which

proves that the successive approximationsck andCk in (3) exist and converge uniformly to the

unique solutions of (2),c andC, onI × P .

Next, note thatc0(t, ·) and C0(t, ·) are trivially convex and concave relaxations ofx(t, ·) on

P , respectively, for each fixedt ∈ I. Suppose that the same is true ofck and Ck. Then, by

Definition 4.2, u(t, ·, ck(t, ·),Ck(t, ·)) and o(t, ·, ck(t, ·),Ck(t, ·)) are, respectively, convex and

concave relaxations off(t, ·,x(t, ·)) on P , for every fixedt ∈ I. Combining this with integral

monotonicity,

∫ t

t0

u(s,p, ck(s,p),Ck(s,p))ds ≤

∫ t

t0

f(s,p,x(s,p))ds,

≤

∫ t

t0

o(s,p, ck(s,p),Ck(s,p))ds,

for all (t,p) ∈ I × P . But sincec0(p) ≤ x0(p) ≤ C0(p) for all p ∈ P , (3) shows that

ck+1(t,p) ≤ x0(p) +

∫ t

t0

f(s,p,x(s,p))ds ≤ Ck+1(t,p), ∀(t,p) ∈ I × P,

which, by the integral form of (1), gives

ck+1(t,p) ≤ x(t,p) ≤ Ck+1(t,p), ∀(t,p) ∈ I × P.

Theorem 2.1 proves that

∫ t

t0

u(s, ·, ck(s, ·),Ck(s, ·))ds and

∫ t

t0

o(s, ·, ck(s, ·),Ck(s, ·))ds

are, respectively, convex and concave onP , for every fixedt ∈ I. Sincec0 andC0 are respectively

convex and concave by hypothesis, (3) shows thatck+1 andCk+1 are, respectively, convex and

concave onP for every fixedt ∈ I. Therefore, by induction,ck(t, ·) andCk(t, ·) are, respectively,

convex and concave relaxations ofx(t, ·) onP , for each fixedt ∈ I and everyk ∈ N.

It was shown above that, ask → ∞, ck andCk converge uniformly to the unique solutions of (2)

onI × P . Then, taking limits, it is clear thatc(t, ·) andC(t, ·) are, respectively, convex and concave

relaxations ofx(t, ·) onP , for each fixedt ∈ I.

The preceding theorem shows that convex and concave relaxations of the solutions of the

parametric ordinary differential equations (1) can be constructed by simply integrating any C-system

of the form (2). Moreover, note that McCormick’s composition rule and factorable representation
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8 J. K. SCOTT AND P. I. BARTON

[11] may be used to generate relaxations of general functions of x based onc andC, so that the

previous results can be used to generate convex and concave relaxations for very general optimal

control problems.

4.1. Convergence properties

A major motivation for the construction of convex and concave relaxations is their use in spatial

branch-and-bound algorithms for global optimization. Forthis application, convex and/or concave

relaxations valid on subintervals of the feasible set are used to generate a convergent sequence

of upper and lower bounds on the minimum or maximum of a given function. For a relaxation

scheme to be useful in this regard, it is necessary to ensure that the relaxations being used lead to

a bounding operation which isconsistent(see Definition IV.4, [7]). This property is required for

the resulting branch-and-bound algorithm to be finiteε-convergent. Essentially, for a consistent

bounding operation to be possible, the relaxations must converge as the parameter setP is

partitioned, and must achieve the original function value in the limit asP tends toward degeneracy.

The first theorem below demonstrates these properties for the relaxationsc andC, and the second

establishes that this convergence is in fact monotonic. As mentioned previously, McCormick’s

composition rule and factorable representation [11] may beused to generate relaxations of general

functions ofx usingc andC, so the results below can be used to establish consistency for very

general optimal control problems.

In this section, closednp-dimensional subintervals ofP are denoted byP ℓ (sometimesP ∗), and

for anyp ∈ P , the interval[p,p] denotes the singleton{p} and is called adegenerateinterval. Note

that the results of the previous sections all remain true if some subintervalP ℓ ⊂ P is considered in

place ofP . Thus, it is sensible to define the functionscℓ andCℓ as the relaxations ofx constructed

over some subintervalP ℓ. Analogously, it is sensible to refer to the initial condition functions,cℓ
0

andCℓ
0, and the right-hand sides,uℓ andoℓ, all defined as before withP ℓ in place ofP . Using this

notation, consider the auxiliary system of ODEs

ċℓ(t,p) = uℓ(t,p, cℓ(t,p),Cℓ(t,p)), cℓ(t0,p) = cℓ
0(p),

Ċℓ(t,p) = oℓ(t,p, cℓ(t,p),Cℓ(t,p)), Cℓ(t0,p) = Cℓ
0(p), (4)

for any P ℓ ⊂ P . In the remainder of this section, we consider a procedure which, given any

subintervalP ℓ ⊂ P , furnishes a C-system of (1) onP ℓ of the form (4). The following properties

of the state relaxationscℓ andCℓ are of primary interest.

Definition 4.3

A procedure for generating state relaxations of (1),cℓ andCℓ, is partition convergentif, for any

nested sequence of subintervals{P ℓ} → P ∗, {cℓ} → c∗ and {Cℓ} → C∗ uniformly on I × P ∗.

Furthermore, a procedure for generating state relaxationsis degenerate perfectif the condition

P ∗ = [p,p] for somep ∈ P implies thatc∗(·,p) = x(·,p) = C∗(·,p).

Definition 4.4

A procedure for generating state relaxations of (1),cℓ andCℓ, is partition monotonicif, for any

subintervalsP 2 ⊂ P 1 ⊂ P , c2(t,p) ≥ c1(t,p) andC2(t,p) ≤ C1(t,p) for all (t,p) ∈ I × P 2.

Copyright c© 0000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(0000)
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 9

The following two definitions define properties of C-systemswhich are analogous to the

properties of state relaxations described in Definitions 4.3 and 4.4. In fact, the main results of this

section show that if a procedure for generating C-systems ofthe form (4) satisfies these properties,

then generating the state relaxationscℓ andCℓ as the solutions of (4) is a partition convergent,

degenerate perfect and partition monotonic procedure. Again, functions satisfying these conditions

can be constructed automatically by the procedure described in §5.

Definition 4.5

A procedure for generating C-systems of (1) ispartition convergentif, for any nested sequence of

subintervals{P ℓ} → P ∗, the C-systems (4) satisfy

1. {cℓ
0} → c∗0 and{Cℓ

0} → C∗

0 uniformly onP ∗, and

2. {uℓ} → u∗ and{oℓ} → o∗ uniformly onI × P ∗ × R
nx × R

nx .

Furthermore, a procedure for generating C-systems isdegenerate perfectif the conditionP ∗ =

[p,p] for somep ∈ P implies that

1. c∗0(p) = x0(p) = C∗

0(p), and

2. u∗(t,p, z,y) = f(t,p,x(t,p)) = o∗(t,p, z,y), ∀(t, z,y) ∈ I × R
nx × R

nx .

Definition 4.6

A procedure for generating C-systems of (1) ispartition monotonicif, for any P 2 ⊂ P 1 ⊂ P , the

C-systems (4) satisfy

1. c1
0(p) ≤ c2

0(p) andC2
0(p) ≤ C1

0(p), ∀p ∈ P 2, and

2. for any(t,p, z1,y1, z2,y2) ∈ I × P 2 × R
4nx , the inequalities

u1(t,p, z1,y1) ≤ u2(t,p, z2,y2) and o2(t,p, z2,y2) ≤ o1(t,p, z1,y1)

hold, provided thatz1 ≤ z2 ≤ x(t,p) ≤ y2 ≤ y1.

Theorem 4.2

If the C-systems (4) are generated by a procedure which is partition convergent, then generating state

relaxations of (1),cℓ andCℓ, as the solutions of (4) is a partition convergent procedure. Furthermore,

if the C-systems (4) are generated by a procedure which is degenerate perfect, then generating state

relaxations of (1),cℓ andCℓ, as the solutions of (4) is a degenerate perfect procedure.

Proof

Consider any nested and convergent sequence of subintervals of P , {P ℓ} → P ∗. Using the

conditions of Definition 4.5, the uniform convergence of{cℓ} and{Cℓ} to c∗ andC∗, respectively,

onI × P ∗ is given by Lemma A.1 in Appendix A.

With P ∗ = [p,p], the above argument shows that{cℓ} and {Cℓ} converge uniformly on

I × [p,p], and the limiting functions arec∗ andC∗. But, in this case,

c∗(t,p) = c∗0(p) +

∫ t

t0

u∗(s,p, c∗(s,p),C∗(s,p))ds,

= x0(p) +

∫ t

t0

f(s,p,x(s,p))ds = x(t,p),

Copyright c© 0000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(0000)
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10 J. K. SCOTT AND P. I. BARTON

for all t ∈ I. Of course, an analogous argument holds forC∗.

Theorem 4.3

If the C-systems (4) are generated by a procedure which is partition monotonic, then generating

state relaxations of (1),cℓ andCℓ, as the solutions of (4) is a partition monotonic procedure.

Proof

Consider anyP 2 ⊂ P 1 ⊂ P . Combining Condition 1 of Definition 4.6 with the fact that (4) is a

C-system of (1) onP ℓ for ℓ = 2, the following inequalities hold:

c1
0(p) ≤ c2

0(p) ≤ x0(p) ≤ C2
0(p) ≤ C1

0(p), ∀p ∈ P 2. (5)

Further,c2
0 andC2

0 are, respectively, convex and concave relaxations ofx0 onP 2. It will be shown

that

c1(t,p) ≤ c2(t,p) ≤ x(t,p) ≤ C2(t,p) ≤ C1(t,p), ∀(t,p) ∈ I × P 2. (6)

This inequality is shown by comparing the successive approximations forcℓ andCℓ, ℓ ∈ {1, 2}.

These are defined analogously to (3) and denoted byck,ℓ andCk,ℓ, respectively. As in the proof

of Theorem 4.1, we may choose two vectorsxL andxU such thatxL ≤ x(t,p) ≤ xU , ∀(t,p) ∈

I × P 1, and letc0,ℓ(t,p) = xL andC0,ℓ(t,p) = xU , ∀(t,p) ∈ I × P ℓ, ℓ ∈ {1, 2}. As shown in the

proof of Theorem 4.1, the successive approximations of (4),for both ℓ = 1 andℓ = 2, exist and

converge uniformly to the unique solutions onI × P 2.

With these definitions, it is clear thatc0,ℓ(t, ·) andC0,ℓ(t, ·) are, respectively, convex relaxations

of x(t, ·) onP ℓ for eacht ∈ I and bothℓ ∈ {1, 2}, and that

ck,1(t,p) ≤ ck,2(t,p) ≤ x(t,p) ≤ Ck,2(t,p) ≤ Ck,1(t,p), ∀(t,p) ∈ I × P 2,

for k = 0. Assume that these observations hold for some arbitraryk ∈ N. Then the definition of the

successive approximations, Conditions 1 and 2 of Definition4.6, and integral monotonicity ensure

thatck+1,1(t,p) ≤ ck+1,2(t,p) andCk+1,2(t,p) ≤ Ck+1,1(t,p) for all (t,p) ∈ I × P 2. Similarly,

Condition 2 of Definition 4.2 implies thatck+1,2(t, ·) and Ck+1,2(t, ·) are, respectively, convex

and concave relaxations ofx(t, ·) on P 2, for each fixedt ∈ I. Thus, the desired inequalities and

relaxation properties have been recovered for the(k + 1)st successive approximations, so that

induction overk and the uniform convergence of the successive approximations guarantees (6).

5. COMPUTING STATE RELAXATIONS

According to Theorem 4.1, state relaxations for (1) onI × P can be computed by constructing any

C-system of (1) and solving it numerically. In [19], the authors developed a method for automatically

generating C-system using only the computational graphs ofthe functionsf andx0. Combined,

these developments provide a means to compute guaranteed convex and concave relaxations for the
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parametric solutions of arbitrary nonlinear ODEs. For completeness, the automatic generation of C-

systems is described in§5.2 below. This procedure makes use of McCormick’s relaxation technique,

which is described in the following section.

5.1. McCormick relaxations

McCormick’s relaxation technique applies to factorable functions. Roughly speaking, a function

is factorable if it can be defined by the finite recursive application of binary additions, binary

multiplications and composition with a pre-defined libraryof univariate functions, typically

including exponential and logarithmic functions, square root, odd and even integer powers,

trigonometric functions, etc. LettingE denote this collection of functions, we have the following

definition.

Definition 5.1

Let S ⊂ R
np andF : S → R. F is factorableif it can be expressed in terms of a finite number of

factorsv1, . . . , vm : S → R such that, givenp ∈ S, vi(p) = pi for i = 1, . . . , np, andvk is defined

for eachnp < k ≤ m as either

(a) vk(p) = vi(p) + vj(p), with i, j < k, or

(b) vk(p) = vi(p)vj(p), with i, j < k, or

(c) vk(p) = w(vi(p)), with i < k andw ∈ E,

andF(p) = vm(p). A vector function is called factorable if each element is factorable.

Nearly every function with a known computational graph is factorable. For any such function,

convex and concave relaxations can be obtained onP ≡ [pL,pU ] ⊂ S by McCormick’s relaxation

technique. The method associates with each factorvk the quantities(vL
k , v

U
k , v

c
k, v

C
k ), which are,

respectively, lower and upper bounds forvk and convex and concave relaxations ofvk on P . For

a givenp ∈ P , the computation is initialized by letting(vL
k , v

U
k , v

c
k(p), vC

k (p)) = (pL
k , p

U
k , pk, pk),

for all k ≤ np, and computing these values for the remaining factors recursively using known rules

based on the definition ofvk in Definition 5.1. Rules for addition, multiplication and composition

with many common univariate functions (ex, sin(x), xn, −x, etc.), as well as a detailed definition

of McCormick’s relaxation technique can be found in [11, 19].

5.2. Automatic Construction of C-Systems

In this section, it is shown that McCormick’s relaxation technique can be used to construct functions

c0, C0, u ando satisfying Definition 4.2. Clearly,c0 andC0 can be constructed by directly applying

McCormick’s technique to the functionx0. In order to constructu and o, a generalization of

McCormick’s technique is applied to the functionf . This requires state bounds, defined as follows.

Definition 5.2

FunctionsxL,xU : I → R
nx are calledstate bounds forx on I × P if xL(t) ≤ x(t,p) ≤ xU (t),

∀(t,p) ∈ I × P .

Assumption 5.1

State bounds forx on I × P are available which are continuous onI and satisfyX(t) ≡

[xL(t),xU (t)] ⊂ D, ∀t ∈ I.
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12 J. K. SCOTT AND P. I. BARTON

Numerical techniques for generating state bounds may be found in [30, 31, 14, 32, 33, 34]. When

nx > 1 there may exist no interval which both encloses the image ofP underx(t, ·) for somet ∈ I

and is contained inD. However, this is rarely a problem in practical applications and Assumption

5.1 is typically not difficult to satisfy.

Remark 5.1

Of course, the state boundsxL andxU are trivially state relaxations forx on I × P . However,

interval bounds can be quite crude and cannot capture the parameter dependence of the solution

x. Indeed, all known methods for relaxing the solutions of nonlinear ODEs use state bounds at an

intermediate stage in their computation.

Now consider the ODEs (1) and suppose that eachfi is factorable. In [19], it was observed

that McCormick’s rules can be used to construct relaxationsof composite functions of the form

fi(t, ·,x(t, ·)) from known bounds and relaxations forx(t, ·). The construction is as follows. Choose

somei and letv1, . . . , vm : I × P ×D → R be a factorable representation offi, where

v1(t,p, z) = t, (7)

vk+1(t,p, z) = pk, ∀k ∈ {1, . . . , np},

vk+np+1(t,p, z) = zk, ∀k ∈ {1, . . . , nx}.

Define the functionsvc/C
1 , . . . , v

c/C
nx+np+1 : I × P × R

nx × R
nx → R for any (t,p,φ,ψ) by first

assigning

(vL
1 , v

U
1 , v̄

c
1, v̄

C
1 ) = (t, t, t, t), (8)

(vL
k+1, v

U
k+1, v̄

c
k+1, v̄

C
k+1) = (pL

k , p
U
k , pk, pk), ∀k ∈ {1, . . . , np},

(vL
k+np+1, v

U
k+np+1, v̄

c
k+np+1, v̄

C
k+np+1) = (xL

k (t), xU
k (t), φk, ψk), ∀k ∈ {1, . . . , nx},

where the argument lists have been omitted for brevity, second, making the assignments

vc
k(t,p,φ,ψ) = mid(vL

k , v
U
k , v̄

c
k(t,p,φ,ψ)), (9)

vC
k (t,p,φ,ψ) = mid(vL

k , v
U
k , v̄

C
k (t,p,φ,ψ)),

for all k ∈ {1, . . . , nx + np + 1}, and finally, computing(vL
k , v

U
k , v

c
k, v

C
k ) for np + nx + 1 < k ≤ m

by recursive application of McCormick’s relaxation rules.

Now, define the functionsui, oi : I × P × R
nx × R

nx → R for any(t,p,φ,ψ) by letting

ui(t,p,φ,ψ) ≡ vc
m(t,p,φ,ψ) and oi(t,p,φ,ψ) ≡ vC

m(t,p,φ,ψ).

Suppose thatφ(t, ·) andψ(t, ·) are convex and concave relaxations ofx(t, ·) onP , respectively, for

somet ∈ I. Recalling thatx(t,p) ∈ [xL(t),xU (t)], ∀p ∈ P , this implies that

mid(xL(t),xU (t),φ(t, ·)) = max(xL(t),φ(t, ·)),

mid(xL(t),xU (t),ψ(t, ·)) = min(xU (t),ψ(t, ·)),

Copyright c© 0000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(0000)
Prepared usingocaauth.cls DOI: 10.1002/oca



CONVEX RELAXATIONS FOR PARAMETRIC ODES 13

are also convex and concave relaxations ofx(t, ·) onP , respectively. Then, sinceu ando are defined

by recursive application of McCormick’s relaxation rules,it follows by an inductive argument

[19] that ui(t, ·,φ(t, ·),ψ(t, ·)) and oi(t, ·,φ(t, ·),ψ(t, ·)) are, respectively, convex and concave

relaxations offi(t, ·,x(t, ·)) on P . In general, this construction guarantees thatu and o satisfy

Condition 2 Definition 4.2. The reader is referred to [19] fora detailed description of this procedure

and formal proofs (see in particular Theorem 14).

It is also shown in§7.2 of [19] that the functionsu ando are continuous onI × P × R
nx ×

R
nx and satisfy the global Lipschitz condition of Assumption 4.1, provided that the factorable

representation off satisfies some mild conditions. It is worth noting that theseconditions do not

imply a global Lipschitz condition onf , but they do imply the local condition of Assumption 3.1.

Essentially, for fixed(t,p) ∈ I × P , the global Lipschitz condition onu ando is made possible by

the state boundsX(t). As outlined above, the construction of these functions involves mapping any

arguments(φ,ψ) ∈ R
nx × R

nx intoX(t) ×X(t) in a Lipschitz manner (using themid function),

so that Lipschitz continuity ofu(t,p, ·, ·) ando(t,p, ·, ·) need only hold on this compact interval

[19].

Finally, it is shown in§7.3 of [19] that constructingc0, C0, u ando as described above is a

partition convergent, degenerate perfect and partition monotonic procedure as per Definitions 4.5

and 4.6. It then follows from Theorems 4.2 and 4.3 that the resulting state relaxations are partition

convergent, degenerate perfect and partition monotonic.

5.3. Implementation

This section describes the computational implementation of the nonlinear state relaxation theory

developed in this article. To compute state bounds, the method in [30] is used, which describes

xL andxU as the solutions of another auxiliary system of ODEs. Given(tf ,p) ∈ I × P at which

the valuesc(tf ,p) andC(tf ,p) are desired, the ODEs describing the state bounds are numerically

integrated simultaneously with the system (2) atp, from t0 to tf . Numerical simulation of (2) is done

usingCVODE [29] with relative and absolute tolerances of1 × 10−8. To begin this computation, the

initial conditionsc0(p) andC0(p) are computed by taking standard McCormick relaxations ofx0

on P , evaluated atp. This is done using theC++ library MC++, which automatically computes

interval extensions and McCormick relaxations of factorable functions using operator overloading

(http://www3.imperial.ac.uk/people/b.chachuat/research).MC++ is the successor oflibMC, which

is described in detail in [15]. Whenever it is required to evaluate the right-hand side of (2), the

functionsui and oi are evaluated automatically usingMC++, by initializing the computation of

McCormick relaxations as in (8) in§5.2.

6. SAMPLE PROBLEM

Example 6.1

Section 1.2.4 of [26] discusses a negative resistance circuit consisting of an inductor, a capacitor

and a resistive element in parallel. The circuit can be described by the nonlinear ODEs

ẋ1 =
1

L
x2, ẋ2 = −

1

C
[x1 − x2 +

1

3
x3

2], (10)
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Figure 1. The parametric final time solution of the ODEs (10),x1(tf , ·), on the intervalP = [0.01, 0.5]2.

whereL andC are the inductance and capacitance respectively,x1 is the current through the

inductor, andx2 is the voltage across the capacitor. It is assumed that time,C, L, x1 andx2 are

scaled so that the equations above are dimensionless and allquantities are of order one with the

possible exception of(1/L) and(1/C). Therefore, the initial value problem withx0,1 = x0,2 = 1,

t0 = 0 andtf = 5 is considered. Letting the parameters bep1 = (1/C) andp2 = (1/L), the solution

x1(tf , ·) on the setP = [pL
1 , p

U
1 ] × [pL

2 , p
U
2 ] = [0.01, 0.5]× [0.01, 0.5] is shown in Figure 1. The

parametric final time solution is clearly nonconvex, with a single maximum at(p1, p2) = (0.01, 0.5)

and two local minima, the global minimum at(p1, p2) = (0.5, 0.5), and a suboptimal local minimum

at (p1, p2) = (0.01, 0.01).

Beginning from the functions

x0 = [1, 1]T, f = [f1, f2]
T

=

[

p1x2, −p2

(

x1 − x2 +
1

3
x3

2

)]T

, (11)

we need to construct functionsc0, C0, u and o such that the auxiliary system (2) is a C-

system of (10) onP . Sincex0 is constant, appropriate convex and concave relaxations are simply

c0 = C0 = x0.

Now, considerf1. For any(t,p, z,y) ∈ I × P × R
nx × R

nx , appropriate values for the functions

u1 and o1 at (t,p, z,y) can be computed by evaluating the McCormick convex and concave

relaxations [11] off1(t, ·, ·) over the intervalP ×X(t), with values for convex and concave

relaxations of the state variables atp specified asmid(xL(t),xU (t), z) andmid(xL(t),xU (t),y),

respectively. This is implemented by the factorization off1 shown in Table I with factorsvi, lower

and upper bounds on each factor,vL
i andvU

i , computed through standard interval arithmetic [27],

and McCormick’s convex and concave relaxation for each factor, vc andvC . Note that the last two

columns of Table I definēvc
k andv̄C

k , whereas subsequent factors are defined in terms of the values
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Table I. Factorization and computation off1(t, ·, ·) at (p,x) andu1(t, ·, ·, ·) ando1(t, ·, ·, ·) at (p, z, y).

i vi vL
i vU

i v̄c
i v̄C

i

1 p1 pL
1

pU
1

p1 p1

2 x2 xL
2
(t) xU

2
(t) mid(xL

2
(t), xU

2
(t), z2) mid(xL

2
(t), xU

2
(t), y2)

3 v1v2 min{ max{ max{ min{
vL
1

vL
2

, vU
1

vU
2

, vL
1

vL
2

, vU
1

vU
2

, α1 + α2 − vL
2

vL
1

, γ1 + γ2 − vL
2

vU
1

,
vL
1

vU
2

, vU
1

vL
2
} vL

1
vU
2

, vU
1

vL
2
} β1 + β2 − vU

2
vU
1
} δ1 + δ2 − vU

2
vL
1
}

vc
k andvC

k . These quantities are related by the computations

vc
k = max(v̄c

k, v
L
k ) and vC

k = min(v̄C
k , v

U
k ),

which are omitted from Table I for simplicity. The quantities,α, β, δ andγ in the table are defined

as

α1 = min{vL
2 v

c
1, v

L
2 v

C
1 }, α2 = min{vL

1 v
c
2, v

L
1 v

C
2 },

β1 = min{vU
2 v

c
1, v

U
2 v

C
1 }, β2 = min{vU

1 v
c
2, v

U
1 v

C
2 },

γ1 = max{vL
2 v

c
1, v

L
2 v

C
1 }, γ2 = max{vU

1 v
c
2, v

U
1 v

C
2 },

δ1 = max{vU
2 v

c
1, v

U
2 v

C
1 }, δ2 = max{vL

1 v
c
2, v

L
1 v

C
2 }.

The factorization off2(t, ·, ·) is more complicated due to the cubic term. The convex and concave

envelopes of the cubic function are known [35] and require the following definitions. Letx′2 andx′′2
be, respectively, the solutions of

2(x′2)
3 − 3xL

2 (t)(x′2)
2 + (xL

2 (t))3 = 0 and 2(x′′2 )3 − 3xU
2 (t)(x′′2 )2 + (xU

2 (t))3 = 0,

and define

x∗2 =











xU
2 (t) if xU

2 (t) ≤ 0

xL
2 (t) if xL

2 (t) ≥ 0

x′2 otherwise

, x∗∗2 =











xU
2 (t) if xU

2 (t) ≤ 0

xL
2 (t) if xL

2 (t) ≥ 0

x′′2 otherwise

.

Further, define the functions

e(z) =

{

z3 if z ∈ [x∗2, x
U
2 (t)]

(xL
2 (t))3 +

(x∗
2
)3−(xL

2
(t))3

x∗
2
−xL

2
(t)

(z − xL
2 (t)) otherwise

and

E(z) =

{

z3 if z ∈ [xL
2 (t), x∗∗2 ]

(x∗∗2 )3 +
(xU

2
(t))3−(x∗∗

2
)3

xU
2

(t)−x∗∗
2

(z − x∗∗2 ) otherwise
.

Now the factorization and McCormick relaxation off2 is given in Table II, again with values for

convex and concave relaxations of the state variables atp specified asmid(xL(t),xU (t), z) and
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Table II. Factorization and computation off2(t, ·, ·) at (p,x) andu2(t, ·, ·, ·) ando2(t, ·, ·, ·) at (p, z, y).

i vi vL
i vU

i v̄c
i v̄C

i

1 p2 pL
2

pU
2

p2 p2

2 x1 xL
1
(t) xU

1
(t) mid(xL

1
(t), xU

1
(t), z1) mid(xL

1
(t), xU

1
(t), y1)

3 x2 xL
2
(t) xU

2
(t) mid(xL

2
(t), xU

2
(t), z2) mid(xL

2
(t), xU

2
(t), y2)

4 v3

3
(vL

3
)3 (vU

3
)3 e(mid(vc

3
, vC

3
, vL

3
)) E(mid(vc

3
, vC

3
, vU

3
))

5 (1/3)v4 (1/3)vL
4

(1/3)vU
4

(1/3)mid(vc
4
, vC

4
, vL

4
) (1/3)mid(vc

4
, vC

4
, vU

4
)

6 −v3 −vU
3

−vL
3

−mid(vc
3
, vC

3
, vU

3
) −mid(vc

3
, vC

3
, vL

3
)

7 v2 + v6 vL
2

+ vL
6

vU
2

+ vU
6

vc
2

+ vc
6

vC
2

+ vC
6

8 v7 + v5 vL
7

+ vL
5

vU
7

+ vU
5

vc
7

+ vc
5

vC
7

+ vC
5

9 −v1 −vU
1

−vL
1

−mid(vc
1
, vC

1
, vU

1
) −mid(vc

1
, vC

1
, vL

1
)

10 v8v9 min{ max{ max{ min{
vL
8

vL
9

, vU
8

vU
9

, vL
8

vL
9

, vU
8

vU
9

, α8 + α9 − vL
9

vL
8

, γ8 + γ9 − vL
9

vU
8

,
vL
8

vU
9

, vU
8

vL
9
} vL

8
vU
9

, vU
8

vL
9
} β8 + β9 − vU

9
vU
8
} δ8 + δ9 − vU

9
vL
8
}

mid(xL(t),xU (t),y), respectively. Again, the quantities,α, β, δ andγ are defined as

α8 = min{vL
9 v

c
8, v

L
9 v

C
8 }, α9 = min{vL

8 v
c
9, v

L
8 v

C
9 },

β8 = min{vU
9 v

c
8, v

U
9 v

C
8 }, β9 = min{vU

8 v
c
9, v

U
8 v

C
9 },

γ8 = max{vL
9 v

c
8, v

L
9 v

C
8 }, γ9 = max{vU

8 v
c
9, v

U
8 v

C
9 },

δ8 = max{vU
9 v

c
8, v

U
9 v

C
8 }, δ9 = max{vL

8 v
c
9, v

L
8 v

C
9 }.

Now u1(t,p, z,y) and o1(t,p, z,y) evaluate tovc
3 and vC

3 in Table I, respectively, and

u2(t,p, z,y) ando2(t,p, z,y) evaluate tovc
10 andvC

10 in Table II, respectively.

Given the functionsc0, C0, u ando as described above, convex and concave relaxations for the

parametric solution of (10) were generated by application of Theorem 4.1. The resulting relaxations

are shown in Figure 2. Clearly, the minimum of the convex relaxation underestimates the global

minimum ofx1(tf , ·). Figure 3 shows a second pair of convex and concave relaxations, plotted with

the first, constructed in exactly the same way over the subintervalP 1 = [0.3, 0.5]2 (the solution of

(10) has been omitted for clarity). Clearly, the relaxations become much tighter when taken over a

subinterval of the original parameter intervalP .

7. CONCLUSION

Given a nonlinear system of ODEs (1), sufficient conditions have been established for a system of

auxiliary differential equations of the form (2) to describe convex and concave relaxations of each

state variable with respect to the ODE parameters, pointwise in the independent variable. Further,

conditions have also been established under which such auxiliary systems lead to a consistent

bounding operation in the sense of [7]. Thus, the state relaxations described here may be employed

in spatial branch-and-bound global optimization procedures, and the resulting algorithms are finite

ε-convergent. In a separate article [19], the authors presented a generalization of McCormick’s

relaxation technique which provides a computationally inexpensive and easily automatable method

for generating auxiliary differential equations satisfying the sufficient conditions established in

this article. Taken in conjunction with this work, the two provide a constructive procedure for

automatically generating and evaluating convex and concave relaxations of the solutions of a very
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Figure 2. Nonlinear convex and concave relaxations ofx1(tf , ·), the solution of the ODEs (10), constructed
over the intervalP = [0.01, 0.5]2.
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Figure 3. Nonlinear convex and concave relaxations ofx1(tf , ·), the solution of the ODEs (10), constructed
over the intervalP = [0.01, 0.5]2 and the subintervalP 1 = [0.3, 0.5]2.

general class of nonlinear ODEs. Future work is under way to incorporate these relaxations into a

deterministic global optimization algorithm for a generalclass of optimal control problems.

As discussed in detail in§1, this work considered ODEs influenced by a real parameter vector,

as opposed to control functions, primarily due to the importance of such ODEs in algorithms for
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computational optimal control using control parametrization. However, owing to the central role

played by convexity in the theory of optimal control and the calculus of variations [36, 1], there are

potentially many other reasons, both theoretically and computationally, why it would be of interest

to establish an analogous relaxation theory for ODEs influenced byLp control functions onI, taking

values in the closed, bounded intervalP . Indeed, the main convexity arguments used throughout this

work are valid in more general vector spaces. This extensionis currently under investigation by the

authors.
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A. SUPPORTING MATERIAL

This section contains some standard results in ODE theory [25], suitably modified for the purposes of this
article. The statements of the results below differ from those in [25] (in fact from any presentation the authors
are aware of) in the way that parameter dependence is incorporated and in the focus of Theorem A.1 on the
existence of the successive approximations themselves, rather than on the existence and uniqueness result
they are typically used to prove. For completeness, proofs are presented in full.

Theorem A.1
Consider a system of ODEs of the form (1), satisfying Assumption 3.1, and suppose thatD = R

nx and
∃L ∈ R+ such that

‖f(t, p, z) − f(t,p, ẑ)‖1 ≤ L‖z − ẑ‖1, ∀(t,p, z, ẑ) ∈ I × P × R
nx × R

nx .

Given any continuous functionx0 : I × P → R
nx , the successive approximations defined recursively by

x
k+1(t,p) = x0(p) +

Z t

t0

f(s,p, x
k(s,p))ds (12)

exist as continuous functions onI × P and converge uniformly to a solution of (1) there. Furthermore, this
solution is unique.

Proof
By hypothesis,x0 is defined and continuous on all ofI × P . Supposing this is true ofxk and noting that
xk(t,p) is trivially an element ofD for all (t,p) ∈ I × P , (12) definesxk+1 on all of I × P and continuity
follows from the continuity ofx0 andf . Thus, induction shows that eachxk is defined and continuous on
all of I × P .

Now define

γ ≡ max
(t,p)∈I×P

‖f(t, p,x
1(t,p)) − f(t, p,x

0(t,p))‖1.

It will be shown that

‖xk+1(t,p) − x
k(t,p)‖1 ≤

γLk(t − t0)
k

Lk!
, (13)
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for all (t,p) ∈ I × P and everyk ∈ N. Fork = 1, (12) directly gives

‖x2(t,p) − x
1(t,p)‖1 ≤

Z t

t0

‖f(s,p, x
1(s,p)) − f(s,p,x

0(s,p))‖1ds ≤ γ(t − t0),

for all (t,p) ∈ I × P . Supposing that (13) holds for some arbitraryk, it must also hold fork + 1 since

‖xk+2(t,p) − x
k+1(t,p)‖1 ≤

Z t

t0

‖f(s, p,x
k+1(s,p)) − f(s,p,x

k(s,p))‖1ds,

≤ L

Z t

t0

‖xk+1(s,p) − x
k(s,p)‖1ds,

≤
γLk+1

Lk!

Z t

t0

(s − t0)
k
ds,

≤
γLk+1(t − t0)

k+1

L(k + 1)!
,

for all (t,p) ∈ I × P . Thus, induction proves (13). Now, for anyn, m ∈ N with m > n, Equation (13) and
the triangle inequality give

‖xn(t,p) − x
m(t,p)‖1 ≤ ‖xn+1(t,p) − x

n(t,p)‖1 + . . . + ‖xm(t,p) − x
m−1(t,p)‖1,

≤
γLn(tf − t0)

n

Ln!
+ . . . +

γLm−1(tf − t0)
m−1

L(m − 1)!
,

≤
∞

X

k=n

γLk(tf − t0)
k

Lk!
,

for all (t,p) ∈ I × P . But

∞
X

k=0

γLk(tf − t0)
k

Lk!
=

γ

L
e
L(tf−t0) < ∞,

and hencelimn→∞

P

∞

k=n
γLk(tf−t0)k

Lk! = 0, which implies that the sequence{xk} is uniformly Cauchy on
I × P , and hence converges uniformly to a continuous limit function there.

Next it is shown that this limit function, denotedx, is a solution of (1) onI × P . From the Lipschitz
condition onf ,

‖

Z t

t0

f(s,p,x
k(s,p))ds −

Z t

t0

f(s,p,x(s,p))ds‖1 ≤ L

Z t

t0

‖xk(s,p) − x(s,p)‖1ds,

for all (t,p) ∈ I × P , so that the uniform convergence of{xk} to x on I × P implies that
limk→∞

R t
t0

f(s,p,xk(s,p))ds =
R t
t0

f(s,p, x(s,p))ds, for all (t,p) ∈ I × P . Then, taking limits on both
sides of (12) gives

x(t,p) = x0(p) +

Z t

t0

f(s,p, x(s,p))ds, ∀(t,p) ∈ I × P,

which, by the fundamental theorem of calculus and continuity of the integrand, implies thatx is a solution of
(1). Uniqueness ofx now follows (for each fixedp ∈ P ), by a standard application of Gronwall’s inequality
(Theorem 1.1, Ch. III, [37]).

The notation in the following Lemma is from§4.1.
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Lemma A.1
If {uℓ} → u∗ and {oℓ} → o∗ uniformly on I × P × R

nx × R
nx and {cℓ

0} → c∗0 and {Cℓ
0} → C∗

0

uniformly onP , then{cℓ} → c∗ and{Cℓ} → C∗ uniformly onI × P .

Proof
From the uniform convergence ofcℓ, Cℓ, uℓ andoℓ, given anyε, δ > 0, there exists a positive integerN

such that, forℓ ≥ N ,

‖cℓ
0(p) − c

∗

0(p)‖1 + ‖Cℓ
0(p) − C

∗

0(p)‖1 ≤ δ

and

‖uℓ(t,p, c
ℓ(t,p),Cℓ(t,p)) − u

∗(t,p, c
ℓ(t,p),Cℓ(t,p))‖1+

‖oℓ(t,p, c
ℓ(t,p),Cℓ(t,p)) − o

∗(t,p, c
ℓ(t,p),Cℓ(t,p))‖1 ≤ ε,

for all (t,p) ∈ I × P . Integrating both sides of the second inequality fromt0 to t gives

‖cℓ(t,p) − c
ℓ
0(p) −

Z t

t0

u
∗(s,p, c

ℓ(s,p),Cℓ(s,p))ds‖1+

‖Cℓ(t,p) − C
ℓ
0(p) −

Z t

t0

o
∗(s,p, c

ℓ(s,p),Cℓ(s,p))ds‖1 ≤ ε(t − t0).

Noting that

‖c∗(t,p) − c
∗

0(p) −

Z t

t0

u
∗(s,p, c

∗(s,p),C∗(s,p))ds‖1+

‖C∗(t,p) −C
∗

0(p) −

Z t

t0

o
∗(s,p, c

∗(s,p),C∗(s,p))ds‖1 = 0,

for all (t,p) ∈ I × P , the identity‖α − β‖1 + ‖γ − δ‖1 ≤ ‖α‖1 + ‖β‖1 + ‖γ‖1 + ‖δ‖1 gives

‖(cℓ(t,p) − c
∗(t,p)) − (cℓ

0(p) − c
∗

0(p)) −
Z t

t0

h

u
∗(s,p, c

ℓ(s,p),Cℓ(s,p)) − u
∗(s,p, c

∗(s,p),C∗(s,p))
i

ds‖1 +

‖(Cℓ(t,p) − C
∗(t,p)) − (Cℓ

0(p) − C
∗

0(p)) −
Z t

t0

h

o
∗(s,p, c

ℓ(s,p),Cℓ(s,p)) − o
∗(s,p, c

∗(s,p),C∗(s,p))
i

ds‖1

≤ ε(t − t0).

Let r(t,p) ≡ ‖cℓ(t,p) − c∗(t,p)‖1 and q(t,p) ≡ ‖Cℓ(t,p) − C∗(t,p)‖1. Substituting these definitions
into the previous inequality and noting that‖α‖1 − ‖β‖1 ≤ ‖α − β‖1,

r(t,p) + q(t,p) ≤ δ +

Z t

t0

‖u∗(s,p,c
ℓ(s,p),Cℓ(s,p))

− u
∗(s,p, c

∗(s,p),C∗(s,p))‖1ds

+

Z t

t0

‖o∗(s,p,c
ℓ(s,p),Cℓ(s,p))

− o
∗(s,p, c

∗(s,p),C∗(s,p))‖1ds + ε(t − t0),
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and becauseu∗(t,p, ·, ·) ando∗(t,p, ·, ·) are Lipschitz onR2nx uniformly onI × P ,

r(t,p) + q(t,p) ≤
`

δ + ε(tf − t0)
´

+ Luo

Z t

t0

(r(s,p) + q(s,p))ds, (14)

for all (t,p) ∈ I × P . Now Gronwall’s inequality (Theorem 1.1, Ch. III, [37]) gives

r(t,p) + q(t,p) ≤
`

δ + ε(tf − t0)
´

e
Luo(t−t0), ∀(t,p) ∈ I × P.

Substitutingt = tf in the right-hand side gives a uniform upper bound onI × P , and sinceε andδ can be
made arbitrarily small asℓ → ∞, r(t,p) → 0 andq(t,p) → 0 uniformly on I × P . Therefore,{cℓ} → c∗

and{Cℓ} → C∗ uniformly onI × P .
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