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SUMMARY

Convex and concave relaxations for the parametric solsitifrordinary differential equations (ODES) are

central to deterministic global optimization methods fonoonvex dynamic optimization and open-loop

optimal control problems with control parametrizationv&i a general system of ODEs with parameter
dependence in the initial conditions and right-hand sittes work derives sufficient conditions under which

an auxiliary system of ODEs describes convex and concaegatbns of the parametric solutions, point-

wise in the independent variable. Convergence resultshieset relaxations are also established. A fully
automatable procedure for constructing an appropriat@iayxsystem has been developed previously by
the authors. Thus, the developments here lead to an effieietdmatic method for computing convex and

concave relaxations for the parametric solutions of a venyegal class nonlinear ODEs. The proposed
method is presented in detail for a simple example probleopy@ght © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The purpose of this work is to present a theoretical resulichvienables convex and concave
relaxations of the solutions of parametric ordinary défatial equations (ODES) to be constructed.
In particular, a general system of ODEs is considered whattethe initial conditions and the right-
hand side functions depend on a real parameter vector. Gixg@na system, an auxiliary system of
ODEs is derived which describes convex underestimatorsandave overestimators for each of
the state variables with respect to the parameters, paatinithe independent variable.

The primary motivation for this construction is its apptica in algorithms for the deterministic
global optimization of physical systems which are desctily systems of ODEs, typically
referred to as dynamic optimization or optimal control peohs [1, 2, 3]. A standard approach
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2 J. K. SCOTT AND P. I. BARTON

to computational optimal control is to apply control paramzation, which replaces the control
functions by an approximate representation in terms of aefimumber of real parameters, such
as piecewise constant or piecewise linear controls [4, isjeToptimal control problems can also
be transformed into fixed time problems through the intréidncof a real scaling parameter [6].
These reformulations replace the original control systeith @ nonlinear system of parametric
ODEs of the type considered in this article. Furthermoreh& case where the solution of these
ODEs is unique for any fixed parameter vector and initial éowl this reformulation yields
a Euclidean optimization problem, i.e., an optimizatioolgem in which the feasible set is a
subset of a Euclidean space as opposed to a function spacg.cdmtrol parametrization yields an
approximation to the original optimal control problem whis amenable to computational methods
and practical implementation because it can be represéntédite data. For a detailed discussion
of the convergence properties of such approximations amdadge description of the wide class of
optimal control problems for which this methodology can pplad, the reader is referred to [4].

As is the case with more standard Euclidean optimizatiomblpros, the global solution of an
optimal control problem reformulated through control paedrization can be obtained by solving
a sequence of convex underestimating programs within achfand-bound algorithm [7, 8].
Convex underestimating programs are also used in globmhgaition algorithms for mixed-integer
nonlinear programs based on outer approximation techai@lieand the extension to mixed-integer
dynamic optimization problems has been developed [10]. é¥ew the presence of embedded
differential equations precludes the use of standard tqubs [8, 11, 12] for generating these
convex underestimating programs. The primary complicaoexactly the task addressed in this
work; the generation of convex underestimators and conoeaeestimators for the solutions of the
ODEs themselves.

In recent years, a few authors have proposed methods forajame convex and concave
relaxations for the solutions of ODEs. The first method wasppsed by Esposito and Floudas
[13] using a dynamic extension of theB B convexification theory described in [12]. This method
relies on a finite sampling step to bound the second-ordesitgéties of the ODEs, and therefore
cannot guarantee that the resulting relaxations are cormeld], bounds on these sensitivities
are computed, resulting in guaranteed convex relaxatimtshese relaxations are typically very
weak and the second-order sensitivities are costly to aetallBinger and Barton [14] presented
a theory for generating overestimators and underestimaborthe solutions of ODEs which, by
construction, are affine in the parameters, and so arellyidanvex and concave. These affine
relaxations are computed as the solutions of a auxiliariegy®f linear time-varying ODEs which
can be automatically constructed using McCormick’s reliaxatechnique and outer-linearization
[15]. Because these auxiliary ODEs can be solved using atdnaumerical integration codes,
these relaxations can be evaluated relatively efficienity; at a cost comparable to integration
of the original ODE model. Moreover, these affine relaxaiprove to be much stronger than the
relaxations described in [3]. However, affine relaxatiomsaiten unsatisfactory for underestimating
(overestimating) ODE solutions which are highly nonlinéarthe parameters. Furthermore,
constructing these relaxations requires the specificatfam reference trajectory which typically
has a large impact on the quality of the resulting relaxatidfore recently, two related approaches
have been developed in which McCormick’s relaxation teghaiis applied to a characterization of
the ODE solution by a Taylor expansion with a rigorous enale®f the truncation error [16, 17].
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 3

These methods extend interval bounding techniques basedsonilar analysis [18] and appear
capable of providing very tight relaxations when a suffithehigh-order expansion is used. On
the other hand, computing relaxations of a high-order Tagkpansion is very expensive for
high dimensional problems, and the existence an apprep@npromise in the context of global
optimization remains an open question. On the whole, gldgabmic optimization solvers can
presently only solve relatively small problems in reasda@omputational time due to the lack of
an efficient method for computing tight convex and concalexegions [2, 3, 13, 18].

In this article, we present a method for computing nonline@ivex and concave relaxations
through the solution of an auxiliary system of nonlinear GDEhe initial conditions and right-
hand side functions of this auxiliary system are constaieetomatically by an application of
the generalized McCormick relaxation technique develdpedhe authors [19]. Like the affine
relaxation theory in [14], evaluating these relaxation®ives a single numerical integration, so the
cost is comparable to a single integration of the originaESDHowever, the resulting relaxations
are potentially non-affine, and hence provide better rélama for highly nonlinear ODE solutions.
Moreover, they do not requite priori knowledge of an appropriate reference trajectory.

Several other seemingly related notions of convexity amakedion appear in the literature on
optimal control and ODE theory which are relevant to this kvor varying degrees. In [20],
sufficient conditions are given under which an optimal colrgroblem on a general Hilbert space is
convex, based on classical results on the composition ofesofunctions. If this Hilbert space
is taken as a finite-dimensional real vector space, as wasdltr from reformulation through
control parametrization [4], this notion of convexity isuiplent to that in the work presented
here. However, the conditions in [20] are extremely restés and no constructive procedure is
given for generating convex and concave relaxations of oivex problems. In more classical
results regarding sufficient optimality conditions for iopal control problems [1, 21], convexity
of the Hamiltonian is assumed with respect to the state bimsaand the controls. Convexity
in this sense treats the states and controls as unrelategteagthe purpose of this work is to
approximate the parametric dependence of the state vesialylconvex and concave functions, so
these notions are distinct. The article [22] (and the refees therein) details conditions for the
reachable set of a system of ODEs beginning from a ball airgbnditions to be convex. Again,
this is an unrelated notion because a convex set in state sjgas not imply convex dependence
on the initial conditions for each state variable, nor thevesse. Finally, the term relaxation is
often applied to optimal control and variational problemisere the set of admissible controls is
enlarged or embedded in a larger space (i.e., measuredvebmerols), and/or the cost functional is
underestimated by a lower semicontinuous functional [23, Phough similar in spirit, the type of
relaxations considered here are fundamentally differsag Definition 2.1).

The remainder of this article is organized as follows. $#cfl contains preliminary definitions
and results. I3, the system of differential equations to be relaxed is @efiand all necessary
assumptions are stated. Section 4 contains the main catdris of the article. The main result
is a set of sufficient conditions for an auxiliary system dfedential equations to have solutions
which are the desired convex and concave state relaxatidmder further assumptions on this
auxiliary system, it is proven that the resulting relaxasionay be used to construct lower bounding
problems for branch-and-bound procedures applied to bhmeamic optimization problems, and
the resulting algorithm is finite-convergent. Section 5 discusses the automatic compntafio
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4 J. K. SCOTT AND P. I. BARTON

an appropriate auxiliary system and other implementassoés. Finally§6 demonstrates these
relaxations for a simple example problem, and it is shown tiway approximate the parametric
solution well.

2. PRELIMINARIES

Throughout this article, vector quantities are denotedald bwhile scalar quantities are written
without emphasis. For any € R”, the standarg-norms are denoted by ||, = (31", o |P)',
1 < p < oo, and||v]|« = max; |v;|. Suppose that, u € R™ as well. The order relations < w and
v < w denote that these relations hold elementwise. Similatly,(v, w) andmax(v, w) denote
the vectors with elemenisin(v;, w;) andmax(v;, w;), respectively, anthid(v, w, u) denotes the
vector where each element is the middle value pfo; andu;. Finally, if a vector function is referred
to as convex (concave), it is intended to mean that the stialations describing each element of
the vector are convex (concave).

This work involves the construction of convex and concalexagions, defined as follows.

Definition 2.1

Let P be a convex set ifR"» andg : P — R. A function ¢¢ : P — R is a convex relaxationor

convex underestimatpof g on P if g¢ is convex onP andg“(p) < g(p) for all p € P. Similarly, a
functiong® : P — R is aconcave relaxatioyor concave overestimatpof g on P if ¢© is concave
on P andg®(p) > g(p) forall p € P.

The following theorem from [2] is a key result which enables tonstruction of nonlinear convex
and concave relaxations for the solutions of parametric QDE

Theorem 2.1
LetI = [to,ts] C R,letP C R"» be convex,andlet: I x P — R. If {(-, p) is Lebesgue integrable
onI for eachp € P and/{(t, ) is convex onP (resp. concave oR) for almost every € I, then the
mapping
ty
P>p—L(p) = / £(t, p)dt

to

is convex onP (resp. concave or).

3. PROBLEM STATEMENT

The following definition describes the general form of theinary differential equations which may
be relaxed by the method described in this work. All necgsassumptions are subsequently stated.

Definition 3.1(Z, P, D, f, x¢, x)
LetI = [to,tf] C R, P C R™ be a closed, bounded,-dimensional interval, and C R" be an
open connected set. Further, consider the mappingsx P x D — R"= andx, : P — D and
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 5

define the initial-value problem in parametric ordinaryfefiéntial equations:

X(tv p) =f (tv b, X(t, p)) y X (t07 p) = X0 (p) ) (1)

where a solution of (1) is any continuous mapping/ x P — D such that, for anyp € P, the
mappingx(-, p) is differentiable and satisfies (1) everywherelofwith derivatives from the right
and left att, andt s, respectively).

Assumption 3.1
The ODEs (1) satisfy the following conditions:

1. x¢ is continuous orP,
2. fis continuous od x P x D,
3. for any compacK C D, 3Lk € R, such that

Hf(tapaz)_f(tvpvi)nl < LK”Z_i”h V(t,p,z,i) €EIXPxKXxK.

For any compacK C D, a function satisfying the inequality of Condition 3 in Assption 3.1
is said to be Lipschitz ok uniformly onI x P.

Remark 3.1

The parameterp in (1) are assumed to take values inrgadimensional closed, bounded interval.
This is done primarily for computational reasons, though ttieoretical developments to follow
could deal just as easily with a more general compact, coseErR"». In particular, McCormick’s
relaxation technique [11] requires that the parameterespa@n interval.

Under Assumption 3.1, a standard proof demonstrates thatnfall enougld € [0,t; — o], there
exists a unique solution of (1) dry, to + d] x P (by simple parametric extension of, for example,
Theorem 3.1 in Ch.1 of [25] or Theorem 3.1 in [26]). Howevéistresult is only local. Naturally,
we are only concerned with constructing relaxations of tsmhs where they exist and are unique.
Therefore, we make the following assumption.

Assumption 3.2
A unique solution of (1)x, exists on all off x P.

The objective of this work is to construct state relaxatifong1), defined as follows.

Definition 3.2
Two continuous functions, C : I x P — R"= arestate relaxationfor (1) on P if ¢(¢,-) andC(t, -)
are, respectively, convex and concave relaxationg of) on P, for every fixed: € I.

4. THEORETICAL DEVELOPMENT
In this section, sufficient conditions are given for the tigand side functions and initial conditions

of an auxiliary system of ODEs to have solutions which areestlaxations for (1) o®. Consider
the following auxiliary ODEs.
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6 J. K. SCOTT AND P. I. BARTON

Definition 4.1(u, o, ¢y, Cq)
Letcy,Cy: P — R" andu,o: I x P x R"™ x R" — R"= and define the auxiliary initial value
problem in parametric ODEs:

u(t,p,c(t,p),C(t,p)), C(t07p) = Co(p),
O(Lp,c(t,p),C(t,p)), C(thp) = CO(p)a (2)

Q o
- =
CICH
([

forall (t,p) € I x P.

Assumption 4.1
The ODEs (2) satisfy the following conditions:

1. co andC, are continuous oY,
2. u ando are continuous ol x P x R x R"=,
3. 3Lwo € R such that

||u(ta P, ZvY) - u(tvpviay)”l + HO(t, P, ZvY) - O(ta P, ivy)”l
< Luo(llz — 21 + [y — ¥ll1)

forall (¢,p,2,y,2,y) € I x P x R" x R x R x R"=,

The following definition gives sufficient conditions for tkelutions of (2) to describe the desired
convex and concave relaxationsxofsee Theorem 4.1). Functions satisfying these conditiass,
well as those of Assumption 4.1, can be constructed autogiigtiusing only knowledge of the
functionsf andxg. This construction is the subject ¢5.

Definition 4.2
The auxiliary system of ODEs (2) is calledGsystemof (1) on P if, in addition to satisfying
Assumption 4.1, the following conditions hold:

1. ¢ andCy are, respectively, convex and concave relaxationg afm P,

2. for any continuous mapping®,+ : I x P — R" and any fixedt € I, the functions
u(t,-, ¢(t,-),¥(t,-)) and ol(t,-, ¢(t, ), (t,-)) are, respectively, convex and concave
relaxations off (¢, -, x(¢,-)) on P, provided thaip(t,-) and(t,-) are, respectively, convex
and concave relaxations gft, -) on P.

The following theorem is the central result of this work. dtshown that if (2) is a C-system
of (1) on P, then the unique solution of (2) provides the desired seltexations for (1) on all of
I x P. The proof uses a standard construction in ODE theory kn@suacessive approximations
(or Picard iterates) [25]. In particular, Theorem A.1 in Amlix A is required.

Theorem 4.1
If the auxiliary system of ODEs (2) is a C-system of (1) &y thenc(¢,-) and C(¢,-) are,
respectively, convex and concave relaxationg(@f-) on P, for each fixed < I.

Proof
Choose any two vectors k"=, x andx?, such thak” < x(¢,p) < xY, V(¢,p) € I x P. Sincex
is continuous and x P is compact, such vectors certainly exist. ktt, p) = x* andC°(t,p) =
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 7

xY,VY(t,p) € I x P. Now consider the successive approximations defined rigely oy

t
(¢, p) = co(p) + / u(s, p, ¢ (s, p), C*(s, p))ds,
to

t
CH1(t,p) = Cofp) + [ o(s.p.(s,p). C*(s. p))ds. ®

to
Note thatu ando are defined o x P x R™ x R™= and Lipschitz on all ofR"= x R"= uniformly
on I x P by Assumption 4.1. Thus, Theorem A.1 in Appendix A may be iggpto (2), which
proves that the successive approximatiohsand C* in (3) exist and converge uniformly to the
unique solutions of (2); andC, onI x P.

Next, note thatc’(¢,-) and C°(t,-) are trivially convex and concave relaxationsxqf, ) on
P, respectively, for each fixed € I. Suppose that the same is true @f and C*. Then, by
Definition 4.2, u(t,-,c*(t,-),C*(t,-)) and o(t,-,c*(¢,-), C¥(t,-)) are, respectively, convex and
concave relaxations df(t, -, x(t,-)) on P, for every fixedt € I. Combining this with integral
monotonicity,

/u(s,p,ck(s,p),Ck(s,p))ds < /f(s,p,x(s,p))ds,

to to

t
< / o(s, p, ¢ (s, p), C*(s, p))ds,

to
forall (t,p) € I x P.Butsincecy(p) < xo(p) < Co(p) for all p € P, (3) shows that

t

(L, p) <xo(p) + [ f(s,p,x(s,p))ds < C*(t,p), V(t,p)elx P,
to

which, by the integral form of (1), gives
"t p) < x(t,p) < C*'(t,p), V(t,p)elxP.

Theorem 2.1 proves that

t

t
/ u(s,-,ck(s,-),C¥(s,-))ds and / o(s,-,c"(s,-), C¥(s,-))ds
to to
are, respectively, convex and concavelgrfor every fixedt € I. Sincecy andCy are respectively
convex and concave by hypothesis, (3) shows #at and C*+! are, respectively, convex and
concave onP for every fixedt € I. Therefore, by inductiong® (¢, -) andC*(¢, -) are, respectively,
convex and concave relaxationsxdf, -) on P, for each fixed € I and everyk € N.

It was shown above that, &s— oo, c¥ andC* converge uniformly to the unique solutions of (2)
onI x P.Then, taking limits, itis clear that(t, -) andC(t, -) are, respectively, convex and concave
relaxations of(t, -) on P, for each fixed € I. O

The preceding theorem shows that convex and concave rglagabdf the solutions of the
parametric ordinary differential equations (1) can be tmesed by simply integrating any C-system
of the form (2). Moreover, note that McCormick’s compogitiaule and factorable representation
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8 J. K. SCOTT AND P. I. BARTON

[11] may be used to generate relaxations of general fureidxx based orc and C, so that the
previous results can be used to generate convex and corelaxations for very general optimal
control problems.

4.1. Convergence properties

A major motivation for the construction of convex and coreaglaxations is their use in spatial
branch-and-bound algorithms for global optimization. #os application, convex and/or concave
relaxations valid on subintervals of the feasible set amdu® generate a convergent sequence
of upper and lower bounds on the minimum or maximum of a giverction. For a relaxation
scheme to be useful in this regard, it is necessary to enkatdtte relaxations being used lead to
a bounding operation which isonsisteni{see Definition IV.4, [7]). This property is required for
the resulting branch-and-bound algorithm to be firiteonvergent. Essentially, for a consistent
bounding operation to be possible, the relaxations musverge as the parameter sét is
partitioned, and must achieve the original function vatuthe limit asP tends toward degeneracy.
The first theorem below demonstrates these properties éarethxations: andC, and the second
establishes that this convergence is in fact monotonic. Astioned previously, McCormick’s
composition rule and factorable representation [11] maydes to generate relaxations of general
functions ofx usingc and C, so the results below can be used to establish consistenaeip
general optimal control problems.

In this section, closed,,-dimensional subintervals df are denoted by* (sometimesP*), and
for anyp € P, the intervalp, p] denotes the singletofp} and is called aegeneraténterval. Note
that the results of the previous sections all remain truerie subintervaP’ c P is considered in
place of P. Thus, it is sensible to define the functiatfsandC* as the relaxations of constructed
over some subintervaP’. Analogously, it is sensible to refer to the initial conditifunctionscf
andC§, and the right-hand sidea! ando?, all defined as before witk¢ in place of P. Using this
notation, consider the auxiliary system of ODEs

éé(tv p) - ué(tv p, Cz(tv p)v Cé(tv p))a Cé(th p) = Cg(p),
Cé(t,p) = Oz(t,p,cz(t,p),cé(t,p)), Cé(t07p) = Cg(p)v (4)

for any P* ¢ P. In the remainder of this section, we consider a procedurhytgiven any
subintervalP’ c P, furnishes a C-system of (1) aR’ of the form (4). The following properties
of the state relaxations’ andC* are of primary interest.

Definition 4.3

A procedure for generating state relaxations of ¢f)and C?, is partition convergentf, for any
nested sequence of subintervglB’} — P*, {c’} — c¢* and {C*} — C* uniformly on I x P*.
Furthermore, a procedure for generating state relaxafmdggenerate perfedf the condition
P* = [p, p|] for somep € P implies thatc* (-, p) = x(-,p) = C*(-, p).

Definition 4.4
A procedure for generating state relaxations of ¢f)and C?, is partition monotonidf, for any
subintervals”? ¢ P! c P, c¢?(t,p) > c!(¢,p) andC?(¢,p) < Ci(¢t,p) for all (t,p) € I x P2.
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 9

The following two definitions define properties of C-systembich are analogous to the
properties of state relaxations described in DefinitioBsahd 4.4. In fact, the main results of this
section show that if a procedure for generating C-systentiseoform (4) satisfies these properties,
then generating the state relaxatiarisand C* as the solutions of (4) is a partition convergent,
degenerate perfect and partition monotonic procedureiniAfactions satisfying these conditions
can be constructed automatically by the procedure destiifib.

Definition 4.5
A procedure for generating C-systems of (1p&tition convergentf, for any nested sequence of
subintervalg P‘} — P*, the C-systems (4) satisfy

1. {cf} — ¢ and{C§} — Cj uniformly on P*, and
2. {u’} — u* and{o’} — o* uniformly on7 x P* x R"+ x R"=,

Furthermore, a procedure for generating C-systendegenerate perfedf the condition P* =
[p, p] for somep € P implies that

1. ¢j(p) = xo(p) = C{(p), and
2. u*(t,p,z,y) =f(t,p,x(t,p)) = 0*(t,p,2,y), V(t,2z,y) € X R" x R,

Definition 4.6
A procedure for generating C-systems of (1pétition monotonidf, for any P? ¢ P c P, the
C-systems (4) satisfy

1. ¢j(p) < cj(p) andC3(p) < Ci(p), Vp € P?, and
2. forany(t,p,z', y', 2%, y?) € I x P? x R*"=, the inequalities

u'(t,p,z',y") <v’(t,p,z°,y*) and o’(t,p,z°,y°) <o'(t,p,z',y")

hold, provided that! < z2 < x(t,p) <y? <y

Theorem 4.2

If the C-systems (4) are generated by a procedure whichtigipaiconvergent, then generating state
relaxations of (1)c’ andC*, as the solutions of (4) is a partition convergent procedtmethermore,

if the C-systems (4) are generated by a procedure which smdegte perfect, then generating state
relaxations of (1)’ andC¥, as the solutions of (4) is a degenerate perfect procedure.

Proof
Consider any nested and convergent sequence of subistestaP, {P‘} — P*. Using the
conditions of Definition 4.5, the uniform convergence{ef} and{C*} to c* andC*, respectively,
onl x P*is given by Lemma A.1 in Appendix A.

With P* = [p,p], the above argument shows that‘} and {C*} converge uniformly on
I x [p, p], and the limiting functions are* andC*. But, in this case,

t
C(tp) = cilp)+ [ wlspe(5.p).C (s, p))ds,
to
t
= xol®)+ [ £(s.p.x(5,p))ds = x(t.p),
to
Copyright© 0000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(0000)
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10 J. K. SCOTT AND P. I. BARTON
for all ¢t € I. Of course, an analogous argument holds@o6r O

Theorem 4.3
If the C-systems (4) are generated by a procedure which tgiparmonotonic, then generating
state relaxations of (1};‘ andC¥, as the solutions of (4) is a partition monotonic procedure.

Proof
Consider anyP? ¢ P! ¢ P. Combining Condition 1 of Definition 4.6 with the fact thaf) 4 a
C-system of (1) orP* for ¢ = 2, the following inequalities hold:

co(p) < c(p) < xo(p) < Ci(p) < Ci(p), Vp e P2 5)

Further,c3 andC? are, respectively, convex and concave relaxationsafn P2. It will be shown
that

c'(t,p) < c*(t,p) < x(t,p) < C*(t,p) < C'(t,p), V(t,p)elx P> (6)

This inequality is shown by comparing the successive apprations forc’ andC*, ¢ € {1,2}.
These are defined analogously to (3) and denoted*fyand C*-*, respectively. As in the proof
of Theorem 4.1, we may choose two vectars andxV such that” < x(¢,p) < xY, V(t,p) €
I x P!, and letc®(¢t,p) = x* andC%*(t,p) = xY, V¥(¢,p) € I x P*, ¢ € {1,2}. As shown in the
proof of Theorem 4.1, the successive approximations off¢t)both ¢ =1 and/¢ = 2, exist and
converge uniformly to the unique solutions dix P2,

With these definitions, it is clear that-(¢,-) andC%(t, -) are, respectively, convex relaxations
of x(t,-) on P* for eacht € I and both € {1, 2}, and that

cP(t,p) < (¢, p) < x(t,p) < C**(t,p) < C*'(t,p), Y(tp)elxP?

for k = 0. Assume that these observations hold for some arbitraryN. Then the definition of the
successive approximations, Conditions 1 and 2 of Defindi@n and integral monotonicity ensure
thatck 11 (¢, p) < cF*+12(¢, p) andCFF12(¢, p) < CFHL(¢, p) for all (t,p) € T x P2. Similarly,
Condition 2 of Definition 4.2 implies that**1:2(¢,) and C*+1:2(¢,.) are, respectively, convex
and concave relaxations &ft,-) on P2, for each fixedt € I. Thus, the desired inequalities and
relaxation properties have been recovered for (the- 1) successive approximations, so that
induction overk and the uniform convergence of the successive approxinmtarantees (6).
O

5. COMPUTING STATE RELAXATIONS

According to Theorem 4.1, state relaxations for (1)/on P can be computed by constructing any
C-system of (1) and solving it numerically. In [19], the amthdeveloped a method for automatically
generating C-system using only the computational graphbtefunctionsf andx,. Combined,

these developments provide a means to compute guaranteezkand concave relaxations for the
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 11

parametric solutions of arbitrary nonlinear ODEs. For ctatgness, the automatic generation of C-
systems is described #%.2 below. This procedure makes use of McCormick’s relaxet&chnique,
which is described in the following section.

5.1. McCormick relaxations

McCormick’s relaxation technique applies to factorabladtions. Roughly speaking, a function
is factorable if it can be defined by the finite recursive aggilon of binary additions, binary
multiplications and composition with a pre-defined libras§ univariate functions, typically
including exponential and logarithmic functions, squao®ty odd and even integer powers,
trigonometric functions, etc. Lettin§ denote this collection of functions, we have the following
definition.

Definition 5.1
Let S c R™ andJ : S — R. F is factorableif it can be expressed in terms of a finite number of
factorsvy, ..., v, : S — R such that, givep € S, v;(p) =p; fori =1,...,n,, andvy is defined

for eachn, < k < m as either

(8) vi(p) = vi(p) + v (p), With 7, j < b, or
(b) vk (p) = vi(p)v;(p), with i, j <k, or
(©) vk(p) = w(vi(p)), withi < kandw € €,

andJ(p) = v, (p). A vector function is called factorable if each element tdaable.

Nearly every function with a known computational graph istéable. For any such function,
convex and concave relaxations can be obtaine® en[p”, pU] c S by McCormick’s relaxation
technique. The method associates with each fagtahe quantitiegvi, oY, v¢,v¢), which are,
respectively, lower and upper bounds fq@rand convex and concave relaxationsvpfon P. For
a givenp € P, the computation is initialized by letting 2, v, v¢(p), v$ (p)) = (%, pY, pr, P1),
for all £ < n,, and computing these values for the remaining factors saly using known rules
based on the definition af,, in Definition 5.1. Rules for addition, multiplication androposition
with many common univariate functions™( sin(z), 2™, —z, etc.), as well as a detailed definition
of McCormick’s relaxation technique can be found in [11,.19]

5.2. Automatic Construction of C-Systems

In this section, it is shown that McCormick’s relaxationtiaijue can be used to construct functions
co, Cop, u ando satisfying Definition 4.2. Clearly,, andC, can be constructed by directly applying
McCormick’s technique to the functiory. In order to construcia and o, a generalization of
McCormick’s technique is applied to the functiénThis requires state bounds, defined as follows.

Definition 5.2
Functionsx”,xV : I — R"= are calledstate bounds fox on I x P if x*(t) < x(t,p) < xY(t),
V(t,p) € I x P.

Assumption 5.1
State bounds forx on I x P are available which are continuous dnand satisfy X (¢) =
[xL(t),xY(t)] c D,vt e I.
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12 J. K. SCOTT AND P. I. BARTON

Numerical techniques for generating state bounds may bafou[30, 31, 14, 32, 33, 34]. When
n, > 1 there may exist no interval which both encloses the image ofhderx(¢, -) for somet € I
and is contained iD. However, this is rarely a problem in practical applicai@nd Assumption
5.1 is typically not difficult to satisfy.

Remark 5.1

Of course, the state bounad andxY are trivially state relaxations fat on I x P. However,
interval bounds can be quite crude and cannot capture tlaaneder dependence of the solution
x. Indeed, all known methods for relaxing the solutions oflimear ODESs use state bounds at an
intermediate stage in their computation.

Now consider the ODEs (1) and suppose that efcis factorable. In [19], it was observed
that McCormick’s rules can be used to construct relaxatafhsomposite functions of the form
fi(t, -, x(t,-)) from known bounds and relaxations feft, -). The construction is as follows. Choose
somei and letvy, ..., v, : I x P x D — R be a factorable representationf@f where

Ul(tapaz) = tv (7)
Uk+l(tapaz):pk7 Vk € {17"'7np}1
Vkpn,+1(6, P, 2) = 21, VEe{l,...,ng.}.

Define the functions;f/c, . ,vf/fmpﬂ : I x PxR"% x R* — R for any (¢, p, ¢,) by first

assigning

(v o7, 07, 97) = (8,11, 1), (8)
- ~C
(UngrlngJrlngJrlkaJrl) = (Pﬁapgapk,pk)a Vk € {17 R np}7
L U = ~C L U
(vk+np+la vk+np+17 Ug+np+1avk+np+1) = (xk (t)a T (t)a (bka wk)v vk € {17 ceey nw}a

where the argument lists have been omitted for brevity, s@&cmaking the assignments

vi(t, p, ¢, ) = mid(vy, vy, U5 (L, P, @, ), 9)
vf (t, p, @, %) = mid(vf, v, oF (¢, p, D, 9)),

forallk € {1,...,n, +n, + 1}, and finally, computingv’, vV, v¢, v¢) forn, + n, +1 <k <m
by recursive application of McCormick’s relaxation rules.
Now, define the functions;, o, : I x P x R"= x R"= — R for any (¢, p, ¢, ¢) by letting

ui(t,p, @, %) =5, (t,p. ¢, ) and o;(t,p, b, ¥) = v5,(t,p, D, 9).

Suppose thap(t,-) and¥(t, -) are convex and concave relaxations¢f, -) on P, respectively, for
somet € I. Recalling thak(t, p) € [xZ(t),xY (t)], Vp € P, this implies that

mid(x" (£), 7 (t), b(t, ) = max(x"(t), $(t, ),
mid(x" (¢), x7 (t), 9 (t,)) = min(x” (), (¢, )),
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 13

are also convex and concave relaxations(©f-) on P, respectively. Then, sinaeando are defined
by recursive application of McCormick’s relaxation rulésfollows by an inductive argument
[19] that w;(t, -, ¢(t, ), (L, ) and o;(t, -, @(t, ), (t,-)) are, respectively, convex and concave
relaxations off;(¢,-,x(¢,-)) on P. In general, this construction guarantees theind o satisfy
Condition 2 Definition 4.2. The reader is referred to [19]daietailed description of this procedure
and formal proofs (see in particular Theorem 14).

It is also shown ing7.2 of [19] that the functions1 and o are continuous ol x P x R"= x
R”= and satisfy the global Lipschitz condition of Assumptiod,4provided that the factorable
representation of satisfies some mild conditions. It is worth noting that thesaditions do not
imply a global Lipschitz condition offi, but they do imply the local condition of Assumption 3.1.
Essentially, for fixedt, p) € I x P, the global Lipschitz condition on ando is made possible by
the state bound& (¢). As outlined above, the construction of these functionslves mapping any
argumentg ¢, 1) € R" x R™ into X (¢) x X (¢) in a Lipschitz manner (using theid function),
so that Lipschitz continuity ofi(¢, p, -, -) ando(t, p, -, -) need only hold on this compact interval
[19].

Finally, it is shown in§7.3 of [19] that constructing,, Cy, u ando as described above is a
partition convergent, degenerate perfect and partitionatanic procedure as per Definitions 4.5
and 4.6. It then follows from Theorems 4.2 and 4.3 that theltieg state relaxations are partition
convergent, degenerate perfect and partition monotonic.

5.3. Implementation

This section describes the computational implementatfahe nonlinear state relaxation theory
developed in this article. To compute state bounds, the adeit [30] is used, which describes
x andxY as the solutions of another auxiliary system of ODEs. Giizgnp) € I x P at which
the values:(¢;, p) andC(ty, p) are desired, the ODEs describing the state bounds are raaiheri
integrated simultaneously with the system (2 airom ¢, to ¢ ;. Numerical simulation of (2) is done
usingCVODE [29] with relative and absolute toleranceslof 10~8. To begin this computation, the
initial conditionscy (p) andCy(p) are computed by taking standard McCormick relaxationsgof
on P, evaluated ap. This is done using th€++ library MC++, which automatically computes
interval extensions and McCormick relaxations of factedhnctions using operator overloading
(http://wvww3.imperial.ac.uk/people/b.chachuat/reskp MC++ is the successor dfi bMC, which

is described in detail in [15]. Whenever it is required tolaa#e the right-hand side of (2), the
functionsu,; ando; are evaluated automatically usiMgC++, by initializing the computation of
McCormick relaxations as in (8) i§b.2.

6. SAMPLE PROBLEM

Example 6.1
Section 1.2.4 of [26] discusses a negative resistanceitconsisting of an inductor, a capacitor
and a resistive element in parallel. The circuit can be desdiby the nonlinear ODEs

. 1 1
T2, Ty = —6[961—&624-5963], (10)
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14 J. K. SCOTT AND P. I. BARTON

Inductor Current

Current

Figure 1. The parametric final time solution of the ODEs (19)¢¢, -), on the intervalP = [0.01, 0.5)2.

where L and C' are the inductance and capacitance respectivglys the current through the
inductor, andz,, is the voltage across the capacitor. It is assumed that timé,, z; andx, are
scaled so that the equations above are dimensionless aqdaaitities are of order one with the
possible exception oft /L) and(1/C'). Therefore, the initial value problem withy ; = 292 = 1,
to = 0 andt,; = 5is considered. Letting the parameterghe= (1/C) andp, = (1/L), the solution
z1(tg,-) on the setP = [pf, p¥] x [p%, pY] = [0.01,0.5] x [0.01,0.5] is shown in Figure 1. The
parametric final time solution is clearly nonconvex, withiregée maximum atp;, p2) = (0.01,0.5)
and two local minima, the global minimum@@t , p») = (0.5,0.5), and a suboptimal local minimum
at(py,p2) = (0.01,0.01).

Beginning from the functions

T
xo = [1, 1]Ta f= [flan]T = [p11172, —Pp2 (il?l — T2+ %x%)] ) (11)

we need to construct functions), Cp, u and o such that the auxiliary system (2) is a C-
system of (10) orP. Sincex, is constant, appropriate convex and concave relaxati@nsiaply
cop = Cy = xg.

Now, considerf;. Forany(t,p,z,y) € I x P x R™ x R"=, appropriate values for the functions
u; and o, at (t,p,z,y) can be computed by evaluating the McCormick convex and a@nca
relaxations [11] of fi(¢,-,-) over the intervalP x X (t), with values for convex and concave
relaxations of the state variables@specified asnid(x”(t),xY (t),z) andmid(x*(t),x" (t),y),
respectively. This is implemented by the factorizatiorypghown in Table | with factors;, lower
and upper bounds on each factof, andv?, computed through standard interval arithmetic [27],
and McCormick’s convex and concave relaxation for eactofact andv“. Note that the last two
columns of Table | define{ andu{’, whereas subsequent factors are defined in terms of thesvalue
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CONVEX RELAXATIONS FOR PARAMETRIC ODES 15

Table I. Factorization and computation gf(¢, -, -) at (p, x) andu (¢, -, -, -) andoy (¢, -, -, -) at(p, z,y).

) v; viL UZU s 172.0

1] p pt pY p1 p1

2 T2 x2L (t) xg (t) mid(x% (), xg (), 22) mld(ac2 (t), z5 U(t),y2)

3 | vive min{ max{ max{ min{
va%,v?vg, va%,v?vg, ¢35 +o¢2—v2Lv1L, Y1 —i—’yg—v%v?,
v1Lv2,v1v2} 01LU27U1 U2} 61"‘62_”2” } 51"‘52_”2 }

v¢ andvy. These quantities are related by the computations

vf = max(7f,vE) and vf = min(z{,vY),

which are omitted from Table | for simplicity. The quantgje:, 3, 5 and~ in the table are defined
as

ay = min{vlv§, viv¢} s = min{vlv§, vFul},
B = min{o¥v¢, v¥ v}, By = min{o¥v§, vV 0§},
y1 = max{viv§, vk}, 7o = max{vVvs, vV},
61 = max{vdv§, vJ v, 5o = max{viv§, v}

The factorization off»(, -, -) is more complicated due to the cubic term. The convex andax@nc
envelopes of the cubic function are known [35] and requiesftfiowing definitions. Let:, andz?
be, respectively, the solutions of

2(w3)® — 323 (H)(25)* + (23 (1))* =0 and  2(x%)* — 325 (t)(25)* + (25 (1))* =0,

and define
25 (t) if 2Y(t) <0 25 () if 25 (t) <0
wy=9q 2x(t) i wy(t)=0 , x3"=q ax(t) if 2x(t) =0
xh otherwise xl otherwise

Further, define the functions

B 23 if ze€ a5, 25 (t)]
T (x5 (t))® + %( —zL(t) otherwise
2 2
and
% itz e [2h(t),a57
Bl = (w5*)3 + (5 (123" (z —a5) otherwise
2 mg(t)—w;* 2

Now the factorization and McCormick relaxation ¢f is given in Table Il, again with values for
convex and concave relaxations of the state variablgs secified asnid(x*(¢),xY (¢),z) and
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Table Il. Factorization and computation ff(¢, -, -) at (p, x) andus/(¢, -, -, -) andoz(t, -, -, ) at(p, z,y)-

J. K. SCOTT AND P. I. BARTON

) v, viL vZU s 1’)19

1 P2 pL Py p2 P2

2 1 =l (t) 27 (1) mid(zf (¢), 2V (t), z1) | mid(=L(t), 2V (), y1)

3 T2 0 =5 (1) mid(zZ (t), 25 (1), z2) | mid(zl (1), 25 (1), y2)

4 vl (k)3 (wY)? e(mid(v§, v§, vl)) E(mid(v§, v§, vY))

5 (R | (/3% (/307 | (/3)mid(vf. o7, vf) | (1/3)mid(vg, v, o))

6 —v3 —vs —vf —mid(v§, v{, oY) —mid(v§, v{, vE)

7 v2 + vg sz —I—UGL vg + vg vg-‘rvg UQC"'UGC

8 v7 + vs U%’—i—v%’ U? +Ug vE + vg v?—i—vé’

9 —v1 —o¥ —ol —mid(v§, v{, vY) —mid(v§, v{, vl)

10 vg Vg min{ max{ max{ min{
UL’l)_L,UUUg, vaL,vUvg, a8+a9—vé“v§, 'yg+79—v§v§7,
Vg Vg , Vg Vg Vg Vg , Vg Vg ﬁg—i—ﬁg—vgvg} 08 + d9 — vg vg

mid(xX(t),xY (t),y), respectively. Again, the quantities, 3, § and~ are defined as

L, C

Lof a9 = min{vfvs, vivl'},

ag = min{vfvs, v},
Bs = min{v§ vs, v vS}, By = min{v{ vs, v v§'},
78 = max{v§v§, vy vg }, 7o = max{vf v, v5'v§'},
g = max{vi v, v¥ v}, 8o = max{vivs, vfv§'}.

Now wy(t,p,z,y) and oi(t,p,z,y) evaluate tovS and +§ in Table I, respectively, and
us(t, p,z,y) andos(t, p, z, y) evaluate ta§, andv$; in Table II, respectively.

Given the functiong,, Cy, u ando as described above, convex and concave relaxations for the
parametric solution of (10) were generated by applicatforh@orem 4.1. The resulting relaxations
are shown in Figure 2. Clearly, the minimum of the convexxaimn underestimates the global
minimum ofz4 (¢, ). Figure 3 shows a second pair of convex and concave relasatiotted with
the first, constructed in exactly the same way over the sehiatP! = [0.3,0.5)? (the solution of
(10) has been omitted for clarity). Clearly, the relaxasim@come much tighter when taken over a

subinterval of the original parameter intenval

7. CONCLUSION

Given a nonlinear system of ODEs (1), sufficient conditioagehbeen established for a system of
auxiliary differential equations of the form (2) to des&itonvex and concave relaxations of each
state variable with respect to the ODE parameters, poietimishe independent variable. Further,
conditions have also been established under which suchiayxsystems lead to a consistent
bounding operation in the sense of [7]. Thus, the state aéilaxxs described here may be employed
in spatial branch-and-bound global optimization proceduand the resulting algorithms are finite
g-convergent. In a separate article [19], the authors ptedea generalization of McCormick’s

relaxation technique which provides a computationallxpensive and easily automatable method
for generating auxiliary differential equations satisfyithe sufficient conditions established in
this article. Taken in conjunction with this work, the twoopide a constructive procedure for

automatically generating and evaluating convex and canoalaxations of the solutions of a very
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Inductor Current Convex and Concave Relaxations

-

Current

Figure 2. Nonlinear convex and concave relaxations;¢f, -), the solution of the ODEs (10), constructed
over the intervalP = [0.01, 0.5]°.

Inductor Current Relaxations on a Subinterval

(1)

Figure 3. Nonlinear convex and concave relaxations;¢f, -), the solution of the ODEs (10), constructed
over the intervalP = [0.01, 0.5]% and the subintervaP® = [0.3,0.5]°.

general class of nonlinear ODEs. Future work is under wapdorporate these relaxations into a
deterministic global optimization algorithm for a genegkass of optimal control problems.

As discussed in detail ifi1, this work considered ODEs influenced by a real parametdoge
as opposed to control functions, primarily due to the immace of such ODEs in algorithms for
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18 J. K. SCOTT AND P. I. BARTON

computational optimal control using control parametiaat However, owing to the central role
played by convexity in the theory of optimal control and tlaécalus of variations [36, 1], there are
potentially many other reasons, both theoretically andmatationally, why it would be of interest

to establish an analogous relaxation theory for ODEs infladiby? control functions o, taking
values in the closed, bounded interyalindeed, the main convexity arguments used throughout this
work are valid in more general vector spaces. This extensioarrently under investigation by the
authors.
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A. SUPPORTING MATERIAL

This section contains some standard results in ODE the&y $2itably modified for the purposes of this
article. The statements of the results below differ fronsthim [25] (in fact from any presentation the authors
are aware of) in the way that parameter dependence is in@tgaband in the focus of Theorem A.1 on the
existence of the successive approximations themselvbgrrénan on the existence and uniqueness result
they are typically used to prove. For completeness, praefgiesented in full.

Theorem A.1
Consider a system of ODEs of the form (1), satisfying Assiomp8.1, and suppose th&a = R"™= and
3L € R4 such that

If(t, p,z) — £(t,p,2)|l1 < Ll|z— 2|1, VY(t,p,z,2) € x P xR"™ x R",

Given any continuous functior” : I x P — R™=, the successive approximations defined recursively by

t
(1 p) = xo(p) + /t £(s, p, x* (s, p))ds (12)

exist as continuous functions dnx P and converge uniformly to a solution of (1) there. Furthemnehis
solution is unique.

Proof
By hypothesisx" is defined and continuous on all 6f« P. Supposing this is true of* and noting that
x"(t, p) is trivially an element of> for all (¢, p) € I x P, (12) definesx**! on all of I x P and continuity
follows from the continuity ofxg andf. Thus, induction shows that eaefi is defined and continuous on
allof I x P.

Now define

= £(t,p,x'(t,p)) — £(t, p,x"(t, .
7y (t’;?g§xpll (t,p,x (t,p)) — £, p,x (t,pP))l1

It will be shown that

YLF(t — to)*

k+1 k
I (1p) - X )l < T

(13)
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forall (¢t,p) € I x P and everyk € N. Fork = 1, (12) directly gives

t
Ix*(t,p) — x'(t,p)l1 < /t I£(s,p,x" (5, p)) — £(5, P, x"(5,P))[l1ds < ¥(t — to),

for all (¢, p) € I x P. Supposing that (13) holds for some arbitraryit must also hold fok + 1 since

t
Ix**2(t,p) —x""(t,p)|1 < /t I£(s, p.x" ! (s,p)) — £(5, P, x" (5, p)) |15,
0
t

<L <" (s,p) — x"(s,p)ll1ds,

to

k+1 t
L k
[ — —1t9)"d
= Tk /to(s 0) S,

'yLk-’_l(t _ to)k-i—l
=T Lk

for all (¢,p) € I x P. Thus, induction proves (13). Now, for anym € N with m > n, Equation (13) and
the triangle inequality give

Ix™(t,p) — x"(t,p) L < X" T (t,p) = x" (&, P) I + ... + X" (t,p) —x" (¢, p)I1,
YL (ty —to)" R YLty —tg)™ !

- Ln! o L(m —1)! ’
o] k k
Z ~vL (tf - tO)

- Lk! ’
k=n

forall (¢t,p) € I x P.But
tf - tO Y L(tf—to)
Z o = re < 00,

and hencéim, oo > re,, W = 0, which implies that the sequen¢g®} is uniformly Cauchy on

I x P, and hence converges uniformly to a continuous limit fuorcthere.
Next it is shown that this limit function, denoted is a solution of (1) or/ x P. From the Lipschitz
condition onf,

t

t t
| [ fsp.x"(sp))ds = [ £(spx(s,p)dsly < L [ I (.p) = x(s.p) s,
to to

to

for all (t,p) eI x P, so that the uniform convergence dik*} to x on I x P implies that
limy,_, o fti £(s,p,x"(s,p))ds = fti f(s,p,x(s,p))ds, for all (¢t,p) € I x P. Then, taking limits on both
sides of (12) gives

t
x(t,p) = x0(p) + / £(s,p.x(s,p))ds, Y(t,p) €I x P,

which, by the fundamental theorem of calculus and contyrfithe integrand, implies thatis a solution of
(2). Uniqueness ot now follows (for each fixegb € P), by a standard application of Gronwall’s inequality
(Theorem 1.1, Ch. lll, [37]). O

The notation in the following Lemma is frof#.1.
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LemmaA.l
If {u’} - u* and {0’} — o* uniformly on I x P x R™ x R™ and {c§} — ¢} and {C§} — C};
uniformly on P, then{c’} — ¢* and{C*} — C* uniformly onI x P.

Proof
From the uniform convergence of, C/, u’ ando’, given anye,§ > 0, there exists a positive integéf
such that, for > N,

co(p) — co(@)ll1 + 1Co(p) — Co(p)[l1 <&

and

[u‘(t,p,c"(t,p), C (t,p)) — u*(t,p, ¢ (t,p), C“(t,p)) |l +
o’ (t,p,c" (t,p), C'(t,p)) — 0 (t,p,c (t,p), C'(t,p))|l <&,

for all (¢, p) € I x P. Integrating both sides of the second inequality frnto ¢ gives

t
(£, p) — cb(p) — /t u*(s, p, (s, ), C(s, p) s 1+
0

t
IC (¢, p) — Ch(p) — / 0" (5,p, ¢ (s, p), C'(s, p))dsll1 < e(t — to).

Noting that

t
le* (t.p) — ch(p) — / u* (s, p, € (s, p), C* (s, p) s +
to

t
HC*(tvp) - CS(P) _/ 0*(57p7 C*(87p), C*(Svp))df””l =0,
to

forall (¢, p) € I x P, the identity[|a — B[1 + [lv = dl[1 < lleells + [[Bll1 + [[vll1 + (|91 gives

(<" (£, p) — ¢*(t,p)) — (c6(p) — ci(P)) —
t
[ [ 5p e (5.0, 50) = w5 (5.), € 5,)) sy +
I(C (¢, p) — C*(t,p)) — (CH(P) — C5(p)) —

t
| [o"pef (5.1, (5:0)) 0" (50 (50, € (50D sy

<e(t—to).

Let r(t,p) = ||c(¢, p) — ¢* (¢, p)|[1 and q(t,p) = ||C*(t,p) — C*(t,p)|:. Substituting these definitions
into the previous inequality and noting that||; — [|3]1 < |la — 81,

t
r(tp) + q(t.p) < 6+ /t lu* (s, p.c (5, p), C*(s, )

—u’(s,p,¢"(5,p),C"(s,p))l1ds
t

)/ lo* (s, p,c’(5,p), C (5, p))
0

—0"(s,p,c"(s,p), C"(s,p))|l1ds + &(t — to),
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and becausea* (¢, p, -, -) ando* (¢, p, -, -) are Lipschitz orR?*"= uniformly onI x P,

t
r(t,p) + q(t:p) < (5 + £(ts — t0)) + Luo /t (r(s,p) + q(s,))ds, (14)

for all (t,p) € I x P. Now Gronwall's inequality (Theorem 1.1, Ch. lll, [37]) gis

r(t,p) + q(t,p) < (5+(ty —tg)) eXe)  v(,p) eI x P.

Substitutingt = ¢ in the right-hand side gives a uniform upper boundlon P, and since: andé can be
made arbitrarily small aé — oo, (¢, p) — 0 andq(t, p) — 0 uniformly on I x P. Therefore {c‘} — c¢*
and{C’} — C* uniformly onI x P. O

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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