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Abstract
Rationale Mice with reduced dopamine activity following
neurotoxic doses of 3,4-methylenedioxymethamphetamine
(MDMA, ‘ecstasy’) consume more ethanol (EtOH) and
show greater preference for EtOH. In keeping with human
studies and other animal models where alcohol consump-
tion and preference are also high, MDMA treatment will
reduce sensitivity to certain physiological effects of EtOH.
Objective We have examined the sensitivity to the acute
effects of EtOH in MDMA-lesioned mice and the effects of
EtOH on striatal gamma-aminobutyric acid (GABA) accu-
mulation and expression of GABA subtype-1 transporter
(GAT-1).
Methods C57BL/6J mice were injected with neurotoxic
MDMA (30 mg/kg, three times, every 3 h, i.p.). Seven days
later, mice were given EtOH (3 g/kg, i.p.) to determine the
loss of righting response and the development of rapid
tolerance to the hypothermic effect of EtOH. The effect of
EtOH on the striatal accumulation of GABA after inhibiting
GABA transaminase and on GAT-1 immunoreactivity was
also determined.
Results Mice pre-treated with a neurotoxic dose of MDMA
were less sensitive to the sedative-hypnotic effect of acute

EtOH and exhibited alterations in the development of rapid
tolerance to the hypothermic effect of EtOH. These animals
showed an increase in striatal GAT-1 immunoreactivity. EtOH
reduced GABA concentration in the striatum of non-lesioned
mice, an effect not observed in MDMA-lesioned mice.
Conclusion These findings indicate that mice with a
MDMA-induced dopaminergic lesion show increased ex-
pression of striatal GAT-1 that may contribute to the lower
sensitivity to EtOH-induced sedative effects and the
resistance to the development of rapid tolerance to
hypothermia produced by EtOH.

Keywords Ethanol . Ecstasy . Neurotoxicity .

Hypothermia . Sedation . GABA accumulation .

GABA transporter

Introduction

3,4-Methylenedioxymethamphetamine (MDMA, ‘ecstasy’)
is widely used as a recreational drug by young people
despite having been shown to be a potent neurotoxin in the
brain of rodents and non-human primates (Green et al.
2003). In mice, MDMA produces relatively selective long-
term neurotoxic damage to dopaminergic pathways, having
little effect on 5-HT containing neurons (Stone et al. 1987;
Logan et al. 1988; O’Callaghan and Miller 1994; Colado et
al. 2001). This neurotoxicity is reflected by a sustained loss
in the concentration of dopamine and its metabolites and in
the density of dopamine transporters principally in the
striatum (Mann et al. 1997; O’Shea et al. 2001; Escobedo et
al. 2005, Granado et al. 2008a, b).

Recently, it has been shown that exposure to a neurotoxic
dose of MDMA critically influences the regulation of ethanol
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(EtOH) drinking behaviour. Thus, mice pre-exposed to
neurotoxic doses of MDMA exhibit a higher consumption
of and preference for EtOH compared with saline-treated
animals (Izco et al. 2007). Administration of the full D1
agonist, SKF81297, is sufficient to reduce EtOH consump-
tion in MDMA-lesioned mice, suggesting that the impair-
ment is caused by the reduced D1 receptor stimulation
subsequent to a deficit in dopamine neurotransmission (Izco
et al. 2007). There is strong evidence indicating that EtOH
intake in humans and rodents can be negatively correlated
with the initial sensitivity to EtOH and that, in consequence,
high levels of EtOH drinking might be associated with
resistance to the physiological effects produced by this
substance (Harris et al. 1995; Hodge et al. 1999; Schuckit
1986, 1988, 1994; Schuckit and Smith 1996; Thiele et al.
2000). Thus, protein kinase A mutant mice exhibit high
EtOH intake and low sensitivity to EtOH-induced sedation
(Thiele et al. 2000). nNOS knockout mice as well as those
lacking adenosine A2A receptors were found to be less
sensitive to the sedative effects of EtOH and consumed more
EtOH than wild-type mice (Naassila et al. 2002; Spanagel et
al. 2002). In contrast, CB1 receptor gene knockout mice
show decreased EtOH self-administration and increased
alcohol sensitivity and withdrawal symptoms (Naassila et
al. 2004).

We have now examined whether or not mice injected
with neurotoxic doses of MDMA differ in terms of
sensitivity to the sedative-hypnotic effect of EtOH and/or
exhibit alterations in the development of rapid tolerance to
the hypothermic effect of EtOH. The GABAergic system
has been reported to be involved in EtOH-induced
impairments of motor function and behavioural changes,
and the gamma-aminobutyric acid (GABA) subtype-1
transporter (GAT-1) plays a role in EtOH tolerance and
sensitivity (Hu et al. 2004). Therefore, a second purpose
of the current studies was to investigate whether GAT-1
immunoreactivity and GABA accumulation following
GABA transaminase inhibition are modified in striatum
of MDMA-treated mice and whether these changes are
altered by EtOH administration.

Materials and methods

Animals, drug administration and experimental protocol

Adult male C57BL/6J mice (Harlan Iberica, Barcelona,
Spain) initially weighing 20–25 g were housed in groups of
ten in standard cages, in conditions of constant temperature
(21±2°C) and a 12 h light/dark cycle (lights on at 0700
hours) and given free access to food and water. Mice (n=
155) were randomly assigned to two treatment groups.
Group I was injected with saline (referred to as non-

lesioned), while group II received MDMA (30 mg/kg, i.p.,
three times with a 3-h interval, referred to as MDMA-
lesioned). Seven days later, mice were injected with EtOH
or saline. The protocol of MDMA administration used in
this study induces neurotoxicity in dopamine nerve termi-
nals 7 days later (O’Shea et al. 2001; Camarero et al. 2002;
Escobedo et al. 2005). Behavioural experiments were
performed by an experimenter blinded to the treatment
administered to mice. Separate groups of animals were used
for each study.

(±)-MDMA.HCl was obtained from Lipomed (Arle-
sheim, Switzerland), dissolved in 0.9% w/v NaCl (saline)
and injected in a volume of 10 ml/kg. Doses are quoted in
terms of the base.

For injections, absolute EtOH was diluted with 0.9%
saline to a 20% w/v solution. [3H]-WIN 35,428 was
purchased from Perkin Elmer (Spain).

All experimental procedures were carried out at a room
temperature of 21±2°C and performed in accordance with
the guidelines of the Animal Welfare Committee of the
Universidad Complutense de Madrid (following European
Council Directives 86/609/CEE and 2003/65/CE).

Measurement of sensitivity to the hypnotic effects of EtOH

The evaluation of sensitivity to the sedative/hypnotic
effects of EtOH was performed by measuring the duration
of the loss of the righting response following a procedure
similar to that used by Harris et al. (1995). Non- and
MDMA-lesioned mice received an i.p. injection of EtOH
2.5 or 3 g/kg. Once the animals had become ataxic, each
mouse was placed on its back in a plastic U-shaped trough.
The time (in minutes) that elapsed between the onset of
EtOH-induced sedation and the moment when the mice
could right themselves onto all four paws three times within
a 30-s interval was used as an index of time to regain the
righting reflex.

Measurement of tolerance to EtOH-induced hypothermia

The procedure followed for the measurement of rapid
tolerance to EtOH-induced hypothermia was similar to that
previously described by Crabbe et al. (1979) in terms of
injection schedule and dosing. Briefly, non- and MDMA-
lesioned mice were randomly separated into three groups.
On day1, the first two groups received saline, and the
remaining group received EtOH (3 g/kg, i.p.). On day2,
basal body temperature was measured for all animals, and
then group 1 received saline and groups 2 and 3 received
EtOH (3 g/kg, i.p.). Rectal temperature was monitored
starting 30 min after injection and up to 3 h later. A digital
readout thermocouple (BAT-12 thermometer, Physitemp
Instruments, Clifton, NJ, USA) with a resolution of 0.1°C
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and accuracy of ± 0.1°C attached to a RET-3 rodent sensor
was inserted 2.0 cm into the rectum of the mouse, the
animal being lightly restrained by holding it in the hand. A
steady readout was obtained within 10 s of probe insertion.

Measurement of dopamine and metabolites in the striatum

Striatal catechol concentration was evaluated 7 days after
MDMA injection in order to check the long-term depletion
of dopamine concentration exerted by MDMA. The mice
were killed by cervical dislocation and decapitation, the
brains rapidly removed and the striatum dissected out on
ice. The striatum was chosen because the nigrostriatal
dopaminergic pathway is selectively damaged by MDMA
(Granado et al. 2008a, b).

Dopamine and the metabolites, 3,4-dihydroxyphenyl-
acetic acid (DOPAC) and homovanillic acid (HVA), were
measured by high-performance liquid chromatography
(HPLC) and electrochemical detection. The mobile phase
consisted of KH2PO4 (0.05 M), octanesulfonic acid
(0.4 mM), EDTA (0.1 mM) and methanol (16%) and was
adjusted to pH3 with phosphoric acid, filtered and
degassed. The flow rate was 1 ml/min. The HPLC system
consisted of a pump (Waters 510) linked to an automatic
sample injector (Loop 200μl, Waters 717 plus Autosam-
pler), a stainless steel reversed-phase column (Spherisorb
ODS2, 5μm, 150×4.6 mm; Waters, Spain) with a pre-
column and a coulometric detector (Coulochem II, Esa,
USA). The working electrode potential was set at 400 mV
with a gain of 1µA (for dopamine) and 500 nA (for the
metabolites). The current produced was monitored by
means of integration software (Unipoint, Gilson).

[3H]-WIN 35,428 binding in tissue homogenates

[3H]-WIN 35,428 binding was measured by modification of
the method described in detail by Segal et al. (2003). The
animals were killed, the brain rapidly removed and
dissected on ice within 2 min. Striata from individual
animals were sonicated in ice-cold sodium phosphate buffer
(20 mM; pH7.4) containing sucrose (0.32 M). The
homogenate was centrifuged at 30,000×g for 15 min at
4°C. The supernatant was discarded and the wash proce-
dure repeated twice more. The pellet was finally resus-
pended in 60 vol. of homogenisation buffer. The assay
solution (500µl) contained [3H]-WIN 35,428 (5 nM),
desipramine (300 nM) and 100µl tissue preparation
(approximately 80µg protein). Non-specific binding was
carried out in the presence of cocaine (30µM). The reaction
mixture was incubated for 90 min at 4°C. The assay was
terminated by rapid filtration, and radioactivity was counted
by scintillation spectrometry. Protein concentrations were
measured by the method of Lowry et al. (1951).

GABA accumulation following GABA transaminase
inhibition

The ability of acute EtOH administration to alter GABA
turnover was measured indirectly by determining the
accumulation of GABA in the striatum following the
administration of aminooxyacetic acid (AOAA), a GABA-
transaminase (GABA-T) inhibitor. For this, 7 days after
saline or MDMA administration, animals received AOAA
(12 mg/kg, i.p.) 10 min after EtOH (3 g/kg, i.p.; Bernasconi
et al. 1982; Hellewuo and Kiianmaa 1989). GABA
accumulation was determined 1 h after inhibition of
GABA-T by AOAA. To prevent non-specific postmortem
synthesis of GABA, 3-mercaptopropionic acid (100 mg/kg,
i.p.) was injected 3 min before decapitation (Gomes and
Trolin 1982). GABA was measured by HPLC with
electrochemical detector using a precolumn o-phthalde-
hyde/sulphite derivatisation method. The derivatisation
reagent was composed of o-phthaldehyde (110 mg), EtOH
(250μl), 1 M Na2SO3 (250μl) and 0.1 M Na2B4O7⋅10H2O
(pH=10.4, 4.5 ml). Aliquots of samples (10μl) were
incubated with derivatization reagent (25μl) and β-
aminobutyric acid as internal standard (5μg/ml) for
20 min at 35°C. The mobile phase consisted of KH2PO4

(0.1 M), octanesulfonic acid (0.4 mM), EDTA (0.5 mM)
and methanol (25%) and was adjusted to pH4.5 with
phosphoric acid, filtered and degassed. The flow rate was
0.3 ml/min. The HPLC system consisted of a pump (Waters
510) linked to an automatic sample injector (Loop 200μl,
Waters 717 plus Autosampler), a stainless steel reversed-
phase column (Spherisorb ODS2, 3μm, 150×2.1 mm;
Waters, Spain) with a precolumn and a coulometric detector
(Coulochem II, Esa, USA). The working electrode potential
was set at 500 mV with a gain of 2µA. The current
produced was monitored by means of integration software
(Unipoint, Gilson).

Western blot analysis of GAT-1 expression

To analyse striatal GAT-1 expression following MDMA
treatment and the effect of EtOH, non- and MDMA-
lesioned mice were separated into two groups, were given
either saline or ETOH (3 g/kg, i.p.) and killed 1 h later as
described above. The brain was rapidly removed and
dissected; the samples were frozen on dry ice and stored
at −80°C until the assay. Striata were homogenised in ice-
cold buffer (50 mM Tris–HCl, 0.32 M sucrose, 1 mM
dithiothreitol, pH7.4 containing protease inhibitors) in the
presence of 0.5% Nonidet P-40 and centrifuged at
27,000×g for 20 min at 4°C. Supernatant protein concen-
tration was measured using a DC protein assay kit (Bio-Rad
Laboratories, Madrid, Spain). Samples of total protein
(50μg) were subjected to 10% sodium dodecyl sulphate
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polyacrylamide gel electrophoresis under reducing condi-
tions and transferred to a nitrocellulose filter. Blots were
blocked for 1 h with 5% non-fat powdered milk in Tris-
buffered saline (TBS) buffer (10 mM Tris and 150 mM
NaCl) at room temperature and then incubated overnight at
4°C with rabbit anti-GAT-1 (Chemicon International,
Madrid, Spain) and mouse anti-β-actin (Sigma, Madrid,
Spain) antibodies diluted 1:200 and 1:6,000, respectively,
in TBST (TBS and 0.1% Tween-20) followed by donkey
anti-rabbit IgG and sheep anti-mouse IgG both conjugated
to horseradish peroxidase (1:2,000, GE Healthcare, Madrid,
Spain) for 1 h at room temperature. Chemiluminiscence
was measured using the ECL detection kit (GE Healthcare).
Different film exposure times were used to ensure that
bands were not saturated. Quantification of the film was
performed by Quantity One software (Bio-Rad Laborato-
ries). Equal protein sample loading was confirmed by
quantification of the β-actin signal.

Statistics

Neurotoxicity data were analysed using Student’s t test. The
rest of the results were analysed using two-way ANOVA
followed by Bonferroni post hoc comparisons.

Results

EtOH-induced sedation

Two-way ANOVA indicated that there was a significant
effect of treatment (F1,25=28.75, P<0.0001) and lesion
(F1,25=19.01, P=0.0002) but no interaction (F1,25=1.08,
P=0.31). Non-lesioned mice responded to the hypnotic
effects of EtOH in a dose-dependent manner, regaining the
righting reflex 24 and 42 min after administration of 2.5
and 3 g/kg of EtOH, respectively. MDMA-lesioned animals
were less sensitive to the sedative effects of EtOH,
regaining the righting reflex significantly sooner than the
control mice after injection of both 2.5 and 3 g/kg EtOH
doses (Fig. 1).

Tolerance to EtOH-induced hypothermia

Two-way ANOVA indicated that, in both non- and
MDMA-lesioned mice, there was a significant effect of
treatment (F2,133=80.39, P<0.0001; F2,119=158.7, P<
0.0001, respectively), time (F6,133=20.75, P<0.0001;
F6,119=27.12, P<0.0001, respectively) and interaction
(F12,133=5.58, P<0.0001; F12,119=9.07, P<0.0001, respec-
tively). EtOH markedly reduced rectal temperature in
MDMA- and non-lesioned mice for at least 3 h. Twenty-
four hours later, a second EtOH injection produced a less

pronounced hypothermic response in non-lesioned animals,
which resolved by 1.5 h (rapid tolerance; Fig. 2, upper
panel). However, in MDMA-lesioned mice, there was no
difference between changes induced by the first and second
EtOH administration since neither the extent of the
hypothermic response nor the duration is altered on second
exposure to EtOH (Fig. 2, lower panel).

Effects of EtOH on GABA turnover and GAT-1 expression

Two-way ANOVA indicated that there was a significant
effect of treatment (F1,18=8.84, P=0.0082) but not lesion
(F1,18=2.95, P=0.10) nor interaction (F1,18=2.02, P=0.17).
The AOAA-induced GABA accumulation in the striatum
was similar in non- and MDMA-lesioned mice. EtOH
reduced GABA concentration in the striatum of non-
lesioned mice, an effect which was not observed in
MDMA-lesioned mice (Fig. 3).

Two-way ANOVA indicated that there was a significant
effect of treatment (F1,26=6.68, P=0.02) and lesion (F1,26=
23.60, P<0.0001) but no interaction (F1,26=0.39, P=0.54).
Striatal GAT-1 immunoreactivity was higher in MDMA-
lesioned mice compared with the non-lesioned group.
EtOH tended to attenuate the rise in GAT-1 expression in
MDMA-lesioned animals, although the effect was not
significant. EtOH did not produce any effect on GAT-1
immunoreactivity in the striatum of non-lesioned mice
(Fig. 4).
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Fig. 1 Ethanol (EtOH)-induced loss of righting response in mice
exposed to MDMA or saline 7 days before. Mice received MDMA
(30 mg/kg, i.p.) three times with a 3-h interval. Time elapsed between
the appearance of sedation following EtOH (2.5 and 3 g/kg) injection
and righting of mice onto all four paws three times within a 30-s
interval was used as index of time to regain the righting reflex. Results
shown as mean±SEM, n=5 (MDMA + EtOH 3 g/kg), n=8 (remaining
groups). Different from the corresponding non-lesioned mice, *P<
0.05, ***P<0.001. Different from EtOH 2.5 g/kg in non-lesioned
mice, δδP<0.01. Different from MDMA-lesioned receiving EtOH
2.5 g/kg, ƒƒƒP<0.001
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Dopamine concentration and dopamine transporter density
in MDMA-pretreated mice

Seven days after MDMA (30 mg/kg, three times at three
hourly intervals), the time at which behavioural and neuro-
chemical assays were performed, there was a reduction of
62% in striatal dopamine content measured by HPLC and a
decrease of 50% in the density of dopamine transporters in the
striatum quantified by [3H]-WIN 34,428 radioligand binding.
DOPAC and HVA levels were reduced about 35% (Table 1).

Discussion

This study shows for the first time that mice exposed to a
neurotoxic dose of MDMA are less sensitive to the
sedative-hypnotic effect of acute EtOH and exhibit alter-

ations in the development of rapid tolerance to the
hypothermic effect of EtOH. In agreement with previous
data (O’Shea et al. 2001; Escobedo et al. 2005), 7 days after
the acute administration of repeated doses of MDMA, the
time at which EtOH was administered, mice showed a
decrease in striatal dopamine concentration and in the
density of dopamine uptake sites. The MDMA-induced loss
in the dopaminergic markers reflects a loss of dopaminergic
terminals in striatum and cell bodies in the substantia nigra
of mice (Granado et al. 2008a, b).

Repeated MDMA administration makes mice more
resistant to the impairing effects of acute EtOH injection,
as mice are less sensitive to acute EtOH-induced sedation.
Mice lesioned with MDMA recovered from the ataxic
effects of EtOH much faster than control animals. This
lower sensitivity to the acute effects of EtOH is also
associated with resistance to the development of rapid
tolerance to the hypothermic effects of EtOH. Results show
that there was a clear difference between MDMA- and non-
lesioned mice in hypothermic tolerance development after
repeated injections of EtOH over two consecutive days.
Hypothermia was less pronounced in non-lesioned animals,
which had received EtOH 24 h before with no hypothermia
being observed 1.5 h after the EtOH injection (rapid
tolerance). However, in MDMA-lesioned mice, there was
no difference between the changes induced by the first and
second EtOH administration. Development of rapid toler-
ance to the changes in temperature induced by EtOH is not
related to differences in the initial sensitivity to the
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Fig. 3 Effect of ethanol (EtOH) on GABA levels in the striatum of
mice treated 7 days before with MDMA or saline. Mice received
MDMA (30 mg/kg, i.p.) three times with a 3-h interval. GABA was
determined 1 h after inhibition of GABA transaminase (GABA-T).
Mice received aminooxyacetic acid (12 mg/kg, i.p.) 10 min after
ethanol (EtOH, 3 g/kg, i.p.) to inhibit GABA-T and 3-
mercaptopropionic acid (100 mg/kg, i.p.) 3 min before decapitation
to prevent non-specific postmortem synthesis of GABA. Results
shown as mean±SEM, n=5 (in each non-lesioned group), n=6–7 (in
each MDMA-lesioned group). Different from non-lesioned mice
injected with saline, *P<0.05
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Fig. 2 Development of rapid tolerance to ethanol (EtOH)-induced
hypothermia in non-lesioned but not in MDMA-lesioned mice. Mice
received MDMA (30 mg/kg, i.p.) three times with a 3-h interval
7 days before EtOH. Graphs represent the effect of a second EtOH
(3 g/kg) injection in mice that had received a first injection (3 g/kg)
the day before. Results shown as mean±SEM, n=10 (in each saline+
saline group). EtOH administration to mice treated with saline 24 h
before produced hypothermia in both non-lesioned (upper panel, n=6)
and MDMA-lesioned mice (lower panel, n=5). The hypothermic
response to the second EtOH injection was attenuated compared with
the first injection in non-lesioned (n=6) but not in MDMA-lesioned
mice (n=5). Different from saline, aP<0.05, bP<0.01, cP<0.001.
Different from first EtOH dose, dP<0.05, eP<0.01
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hypothermia by EtOH, since the initial reduction on rectal
temperature induced by EtOH was similar in non-lesioned
and MDMA-pretreated mice. Previous studies have shown
no differences in plasma EtOH concentration during 4.5 h
after 3 g/kg EtOH administration between non- and
MDMA-lesioned animals (Izco et al. 2007); thus, it is
unlikely that differences in clearance are an issue in the
observed hypothermic and sedative effects.

The existence of a correlation between sensitivity to
EtOH-induced acute effects and acquired tolerance has

been shown previously (Tabakoff and Culp 1984; Crabbe
1994; Crabbe et al. 1996). Thus, the M520 strain of rats
that is initially more sensitive to acute alcohol incoordinat-
ing effects was found to develop tolerance at a faster rate
than those displaying greater resistance to the incoordinat-
ing effects of EtOH (Tabakoff and Culp 1984). The
neurochemical mechanism underlying this altered behav-
ioural response to EtOH is unknown.

GABA has been reported to be involved in EtOH-
induced alterations of motor function (Cott et al. 1976; Frye
et al. 1983) and behavioural changes (Liljequist and Engel
1982). For instance, the GABA receptor agonist muscimol
potentiates the sedative properties of EtOH, while antago-
nists of GABAA receptors such as picrotoxin or bicuculline
reduce EtOH-induced sleep time and antagonise the motor
impairment induced by EtOH (Frye and Breese 1982;
Liljequist and Engel 1982; Martz et al. 1983). In addition, it
has been proposed that EtOH tolerance and dependence
may be related to decreased sensitivity to GABA (Martz et
al. 1983). GABA seems also to be involved in the
regulation of body temperature (Allan and Harris 1989;
Biswas and Poddar 1988; Fukuda et al. 1997; Nakamura et
al. 2002), although there is no agreement on this point
(Liljequist and Engel 1982; Dar and Wooles 1985). In this
study, the effect of EtOH on GABA accumulation was
determined by measuring the accumulation of neurotrans-
mitter after specific inhibition of GABA transaminase. The
AOAA-induced GABA accumulation in the striatum was
similar in non- and MDMA-lesioned mice. EtOH reduces
striatal GABA concentration in non-lesioned mice, a result
that is in agreement with previous studies using similar
EtOH doses and measuring GABA accumulation after
AOAA (Supavilai and Karobath 1980; Wixon and Hunt
1980; Dar and Wooles 1985; Hellewuo and Kiianmaa
1989). However, EtOH does not significantly modify
GABA content in the striatum of MDMA-lesioned mice.
GABA is metabolised almost exclusively into succinic
semialdehyde (SSA) by GABA-T, and therefore, the
amount of GABA accumulated after inhibition of GABA-
T should be equal to the amount of GABA synthesised
(Iversen 1978). In addition, it has been shown that AOAA
at a dose of around 15 mg/kg hardly inhibits glutamate
decarboxylase in vivo in mouse brain and, therefore, can be
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Fig. 4 Effect of ethanol (EtOH, 3 g/kg, i.p.) on GAT-1 protein levels
in the striatum of mice treated with MDMA or saline 7 days before.
Mice received MDMA (30 mg/kg, i.p.) three times with a 3-h interval.
Data expressed as arbitrary units (AU). Results shown as mean±SEM,
n=10 (in each non-lesioned group), n=5 (in each MDMA-lesioned
group). Different from non-lesioned mice injected with saline, **P<
0.01. Different from non-lesioned mice injected with EtOH, ΔP<0.05.
GAT-1 immunoreactivity in the striatum of non-lesioned mice injected
with saline (1) or EtOH (3) and MDMA-lesioned mice injected with
saline (2) or EtOH (4)

Table 1 Concentration (ng/g tissue) of dopamine, DOPAC and HVA and density (fmol/mg protein) of dopamine transporter in the striatum of
mice pre-treated with MDMA or saline 1 week before

Treatment Dopamine DOPAC HVA [3H]-WIN 35,428 binding

Saline 10,238±393 (10) 677±25 (9) 1,373±49 (10) 115±10 (8)

MDMA 3,882±301* (9) 418±22* (8) 904±41* (9) 57±7 (8)*

Mice received MDMA (30 mg/kg, i.p.) three times with a 3-h interval. Results shown as mean±SEM (n). Different from the corresponding saline-
pretreated mice, *P<0.001
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used for studies of GABA synthesis (Gomes and Trolin
1982). On this basis, the effect of EtOH in the striatum of
the non-lesioned group could be interpreted as a conse-
quence of the ability of EtOH to increase GABA release
from the presynaptic GABAergic terminals and produce, on
the one hand, a reduction in GABA synthesis through
presynaptic interactions (Ariwodola and Weiner 2004;
Roberto et al. 2004; Carta et al. 2004; Criswell and Breese
2005) and, on the other hand, to facilitate the opening of
chloride channels modulated by GABAA receptors by an
allosteric postsynaptic mechanism (Koob 2004). In
MDMA-lesioned mice, EtOH did not modify striatal
GABA accumulation, supporting the hypothesis that the
regulation of GABAergic neurons in the brain of lesioned
mice is not sensitive to or is, at least, less sensitive to the
effects of EtOH than that of the non-lesioned mice. Similar
results have been obtained in electrophysiological and in
vitro slice studies, where EtOH reduces GABAergic
activity more in the brain of the EtOH-sensitive long sleep
than EtOH-insensitive short—sleep mice (Sorensen et al.
1980; Howerton and Collins 1984).

Although differences in the effect of EtOH on GABA
neurotransmission in non- and MDMA-lesioned mice are
not easily explained, it is worth pointing out that dopamine
D1 receptors stimulate GABA neurotransmission in stria-
tonigral pathways (Ferre et al. 1996; Yamamoto and
Soghomonian 2008) via a cyclic AMP/protein kinase A
(PKA) pathway (Arias-Montaño et al. 2007) and that
MDMA-lesioned mice show an increase in the density of
D1 receptors (Izco et al. 2007), an effect that can be
interpreted as a compensatory up-regulation of post-
synaptic D1 receptors in response to decreased dopamine
content. Therefore, it does not seem unreasonable to
propose that the MDMA-induced dopamine damage could
result in an increased expression of proteins involved in the
modulation of GABA-mediated signalling, and as a
consequence, the inhibitory effect of EtOH on GABA
turnover would be abolished. In addition, this would be in
agreement with PKA-knockout mice being resistant to
EtOH sedation (Thiele et al. 2000).

GAT-1 is the predominant GABA transporter; it is
responsible for the rapid transport of synaptically released
GABA as well as for regulating basal GABA levels in the
extracellular space (Radian et al. 1990; Richerson and Wu
2003) and, therefore, is another important modulator in
mediating the action of EtOH in vivo. Interestingly,
MDMA-lesioned mice showed increased GAT-1 immu-
noreactivity in striatum compared with non-lesioned
mice. Therefore, it seems reasonable to propose that, in
MDMA-lesioned mice, the extracellular concentration of
GABA following EtOH administration would be lower
than that in non-lesioned mice, thus also reducing GABA
accumulation in lesioned animals. Lower extracellular

GABA concentrations could explain the less pronounced
sedative effects of EtOH. These findings are in agree-
ment with those showing that mice pre-injected with a
competitive or a non-competitive antagonist of GAT-1
showed high sensitivity to the sedative/hypnotic effects
of EtOH (Hu et al. 2004). In this line, it has been shown
that transgenic mice overexpressing GAT-1 displayed low
sensitivity to EtOH, as shown by the righting reflex test
(Cai et al. 2006). All of these data indicate that differences
in GABA accumulation and in sensitivity to the effects of
EtOH seem to be related to changes in striatal GAT-1
expression.

In summary, this study indicates for the first time that
mice with a long-lasting MDMA-induced dopaminergic
lesion exhibit reduced sensitivity to the hypnotic effects of
EtOH and a decreased development of tolerance to its
hypothermic effects. Both effects could be due to a higher
expression of GAT-1 in the striatum of MDMA-lesioned
mice and to the inability of EtOH to reduce GABA
accumulation in these mice. The resistance to the acute
effects of EtOH observed in MDMA-lesioned mice prob-
ably contributes to the higher consumption of and prefer-
ence for EtOH exhibited by these animals compared with
non-lesioned mice (Izco et al. 2007).
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