
to appear in Neurocomputing, 2011

Recurrent Neural Networks for Solving Second-Order Cone
Programs

Chun-Hsu Ko 1

Department of Electrical Engineering,

I-Shou University

Kaohsiung County 840, Taiwan

Jein-Shan Chen 2

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

Ching-Yu Yang 3

Department of Mathematics

National Taiwan Normal University

Taipei, Taiwan 11677

January 5, 2011

(revised on June 1, 2011)

Abstract This paper proposes using the neural networks to efficiently solve the second-

order cone programs (SOCP). To establish the neural networks, the SOCP is first reformu-

lated as a second-order cone complementarity problem (SOCCP) with the Karush-Kuhn-

Tucker conditions of the SOCP. The SOCCP functions, which transform the SOCCP into

a set of nonlinear equations, are then utilized to design the neural networks. We pro-

pose two kinds of neural networks with the different SOCCP functions. The first neural

network uses the Fischer-Burmeister function to achieve an unconstrained minimization

with a merit function. We show that the merit function is a Lyapunov function and this

neural network is asymptotically stable. The second neural network utilizes the natural

residual function with the cone projection function to achieve low computation complex-

ity. It is shown to be Lyapunov stable and converges globally to an optimal solution

1E-mail: chko@isu.edu.tw
2Corresponding author, Member of Mathematics Division, National Center for Theoretical Sciences,

Taipei Office. The author’s work is partially supported by National Science Council of Taiwan. E-mail:

jschen@math.ntnu.edu.tw
3E-mail: yangcy@math.ntnu.edu.tw

1



under some condition. The SOCP simulation results demonstrate the effectiveness of the

proposed neural networks.

Key words. SOCP, Neural network, Merit function, Fischer-Burmeister function, Cone

projection function, Lyapunov stable.

AMS subject classifications. 92B20, 90C33, 65K05

1 Introduction

Second-order cone program (SOCP) has been widely applied in engineering optimiza-

tion [1]. It requires solving the optimization problem subject to the linear equality

and second-order cone inequality constraints [2]. Numerical approaches such as the

interior-point method [1] or the merit function method [3] can effectively solve the SOCP.

However, many engineering dynamic systems, such as force analysis in robot grasping

[1, 4] and control applications [5, 6], require the real-time SOCP solutions. As a re-

sult, efficient approaches for solving the real-time SOCP are needed. Prior research

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] indicates that the neural networks can be used

to solve various optimization problems. Furthermore, the neural networks based on cir-

cuit implementation exhibit the real-time processing ability. We consider it is appropriate

to utilize the neural networks for efficiently solving the SOCP problems.

The recurrent neural network was introduced by Hopfield and Tank [7] for solving lin-

ear programming problems. Kennedy and Chua [8] proposed an extended neural network

for solving nonlinear convex programming problems thereafter, while their approach in-

volves the penalty parameter which affects the neural network accuracy. To find the exact

solutions, more neural networks for optimization have been further developed. Among

them, the primal-dual neural network [9, 10, 11] with the global stability is proposed for

providing the exact solutions of the linear and quadratic programming problems. The

projection neural network, developed by Xia and Wang [12, 14, 15], was proposed to effi-

ciently solve many optimization problems and variational inequalities. Since the SOCP is

a nonlinear convex problem, both primal-dual neural network [16] and projection neural

network [17] can be used to provide the SOCP solution. However, they require many

state variables, leading to high model complexity. It thus motivates the development of

more compact neural networks for SOCP.

The SOCP can be solved by analyzing its Karush-Kuhn-Tucker (KKT) optimality

conditions which leads to the second-order cone complementarity problem (SOCCP)

[3, 19, 20]. The approaches [3, 20] based on the SOCCP functions, such as Fischer-

Burmeister (FB) and natural residual functions, can be further utilized for solving the

SOCCP. In the merit function approach [3], an unconstrained smooth minimization with

2



the FB function is achieved in finding the SOCCP solution. On the other hand, the semi-

smooth approach [20] uses the natural residual function with the cone projection (CP)

function to reformulate the SOCCP as a set of nonlinear equations and then apply the

non-smooth Newton method to obtain the solution. Previous studies have demonstrated

the feasibility of these SOCCP functions in solving the SOCP problems. We also use them

in our neural network design. In this paper, we propose two novel neural networks for

efficiently solving the SOCP problems. One is based on the gradient of the smooth merit

function derived from the FB function [18]. The other is an extended projection neural

network by replacing the scalar projection function [12, 14, 15] with the CP function.

These neural networks are with less state variables than those previously proposed [16, 17]

for solving the SOCP. Furthermore, they are shown to be stable and globally convergent

to the SOCP solutions.

This paper is organized as follows. Section 2 introduces the second-order cone program

and its SOCCP formulation. In Section 3, the neural network based on the Fischer-

Burmeister function is proposed and analyzed. In Section 4, the second neural network

based on the cone projection function is proposed. Its global stability is also verified. In

Section 5, several SOCP examples are presented to demonstrate the effectiveness of the

proposed neural networks. Finally, the conclusions are given in Section 6.

2 Problem Formulation

In this section, we introduce the second-order cone program and reformulate it as a

second-order cone complementarity problem. The second-order cone program is in the

form of
minimize f(x)

subject to Ax = b, x ∈ K.
(1)

Here f : Rn → R is a nonlinear continuously differentiable function, A ∈ Rm×n is a full

row rank matrix, b ∈ Rm is a vector, and K is a Cartesian product of second-order cones

(or Lorentz cones), expressed as

K = Kn1 ×Kn2 × · · · ×KnN (2)

where N, n1, · · · , nN ≥ 1, n1 + · · ·+ nN = n, and

Kni :=
{

(xi1, xi2, · · · , xini
)T ∈ Rni| ‖(xi2, · · · , xini

)‖ ≤ xi1

}

with ‖ · ‖ denoting the Euclidean norm and K1 the set of nonnegative reals R+. A

special case of equation (2) is K = R
n
+, namely the nonnegative orthant in Rn, which

corresponds to N = n and n1 = · · · = nN = 1. When f is linear, i.e., f = cTx with

c ∈ Rn, SOCP (1) reduces to the following linear SOCP:

minimize cTx

subject to Ax = b, x ∈ K.
(3)

3



The KKT optimality conditions for (1) are given by






∇f(x)− ATy − λ = 0,

xTλ = 0, x ∈ K, λ ∈ K,

Ax = b,

(4)

where y ∈ R
m and λ ∈ R

n. When f is convex, these conditions are sufficient for

optimality. It also can be written as
{

xT (∇f(x)−AT y) = 0, x ∈ K, ∇f(x)− ATy ∈ K,

Ax = b.
(5)

By solving the system (5), we may obtain a primal-dual optimal solution of SOCP (1).

Note that system (5) involves the SOCCP. To efficiently solve it, we propose using the

neural network approaches with the FB function and CP function, respectively, described

below.

3 Neural Network Design with Fischer-Burmeister

Function

It is known that the merit function approach [3] can be used for solving system (5).

Motivated by this approach, we propose a neural network with the Fischer-Burmeister

function to find the minimal of the merit function and study its global stability.

In [3], system (5) is shown to be equivalent to an unconstrained smooth minimization

problem via the merit function approach, described as

min E(x, y) = ΨFB(x,∇f(x)− ATy) +
1

2
‖Ax− b‖2, (6)

where E(x, y) is a merit function, ΨFB(x, y) =
1

2

N
∑

i=1

‖φFB(xi, yi)‖
2, x = (x1, · · · , xN)

T ,

y = (y1, · · · , yN)
T ∈ Rn1 ×· · ·×RnN , and φFB is the Fischer-Burmeister function defined

as

φFB(xi, yi) := (x2
i + y2i )

1/2 − xi − yi. (7)

Based on the gradient of the objective E(x, y) in minimization problem (6), we propose

the first neural network for solving the SOCP, with the following dynamic equation

d

dt

(

x

y

)

= ρ

(

−∇xE(x, y)

−∇yE(x, y)

)

, (8)

where ρ is a positive scaling factor and






∇xE(x, y) = ∇xΨFB(x,∇f(x)− ATy)

+∇2f(x) · ∇yΨFB(x,∇f(x)−AT y) + AT (Ax− b),

∇yE(x, y) = −A · ∇yΨFB(x,∇f(x)− ATy).

(9)

4



For linear SOCP (3), the above equations reduce to

{

∇xE(x, y) = ∇xΨFB(x, c− ATy) + AT (Ax− b),

∇yE(x, y) = −A · ∇yΨFB(x, c−AT y).
(10)

Note that the Jordan product [3] is required for calculating ∇xΨFB and ∇yΨFB which are

introduced in the appendix. And, the dynamic equation (8) can be realized by a recurrent

neural network with FB function as shown in Figure 1. The circuit for the neural network

realization requires n+m integrators, n processors for ∇f(x), n2 processors for ∇2f(x),

n processors for ∇xΨFB, m processors for ∇yΨFB, 4mn connection weights and some

summers. Furthermore, the neural network (8) is asymptotically stable, as proven in the

following theorem.

Theorem 3.1 If u∗ = (x∗, y∗) is an isolated equilibrium point of neural network (8),

then u∗ = (x∗, y∗) is asymptotically stable for (8).

Proof. We assume that u∗ = (x∗, y∗) is an isolated equilibrium point of neural network

(8) over a neighborhood Ω∗ ⊆ R
n of u∗ such that ∇E(x∗, y∗) = 0 and ∇E(x, y) 6= 0,

∀(x, y) ∈ Ω∗ \ {(x
∗, y∗)}. First we show that E(x, y) is a Lyapunov function for u∗ at Ω∗.

Since

∇yE(x∗, y∗) = −A · ∇yΨFB(x
∗,∇f(x∗)− ATy∗) = 0,

from Lemma 3 and Proposition 1 of [3], we have

∇xΨFB(x
∗,∇f(x∗)−AT y∗) = ∇yΨFB(x

∗,∇f(x∗)−AT y∗) = 0.

Moreover, from Proposition 1 of [3], this says

ΨFB(x
∗,∇f(x∗)− ATy∗) = 0.

Then from equation (9),

∇xE(x∗, y∗) = ∇xΨFB(x
∗,∇f(x∗)− ATy∗)

+∇2f(x∗) · ∇yΨFB(x
∗,∇f(x∗)−ATy∗) + AT (Ax∗ − b) = 0,

which implies that AT (Ax∗ − b) = 0. Because A ∈ Rm×n is a full row rank matrix, we

must have Ax∗ − b = 0, which yields

E(x∗, y∗) = ΨFB(x
∗,∇f(x∗)− ATy∗) +

1

2
‖Ax∗ − b‖2 = 0.

Next, we claim that E(x, y) > 0, ∀(x, y) ∈ Ω∗ \ {(x∗, y∗)}. If not, there is an (x, y) ∈

Ω∗ \ {(x∗, y∗)} such that E(x, y) = 0, this says that ΨFB(x,∇f(x) − ATy) = 0 and

Ax = b, then ∇xE(x, y) = 0 and ∇yE(x, y) = 0. Hence, (x, y) is an equilibrium point of

5



neural network (8), contradicting with that u∗ = (x∗, y∗) is an isolate equilibrium point.

Finally,
dE(x(t), y(t))

dt
= [∇(x(t),y(t))E(x(t), y(t))]T (−ρ∇(x(t),y(t))E(x(t), y(t)))

= −ρ‖∇(x(t),y(t))E(x(t), y(t))‖2

≤ 0.

Therefore, the function E(x, y) is a Lyapunov function for neural network (8) over the

set Ω∗. Since u
∗ = (x∗, y∗) is an isolated equilibrium point of neural network (8), we have

dE(x(t), y(t))

dt
< 0, ∀(x(t), y(t)) ∈ Ω∗ \ {(x

∗, y∗)}.

Thus, u∗ is asymptotically stable for neural network (8). 2

4 Neural Network Design with Cone Projection Func-

tion

In this section, we propose another neural network associated with the cone projection

function to solve system (5) for obtaining the SOCP solution and study its stability. In

fact, from [24, Prop. 3.3], we know that such cone projection onto K has a special formula

given as

PK(z) = [λ1(z)]+u
(1)
z + [λ2(z)]+u

(2)
z ,

where [·]+ means the scalar projection, λ1(z), λ2(z) and u
(1)
z , u

(2)
z are the spectral values

and the associated spectral vectors of z = (z1, z2) ∈ R×Rn−1, respectively, given by







λi(z) = z1 + (−1)i‖z2‖,

u
(i)
z =

1

2

(

1, (−1)i
z2

‖z2‖

)

,

for i = 1, 2. The CP function PK(z) has the following property, called projection theorem

[21], which is useful in our subsequent analysis.

Property 4.1 Let K be a nonempty closed convex subset of Rn. Then, for each z ∈ Rn,

PK(z) is the unique vector z̄ ∈ K satisfying (y − z̄)T (z − z̄) ≤ 0, ∀y ∈ K.

Employing the natural residual function with the CP function [19, 20], system (5)

can be equivalently written as

{

x− PK(x−∇f(x) + ATy) = 0,

Ax− b = 0,
(11)

6



where x = (x1, · · · , xN)
T ∈ Rn1 × · · · ×RnN with xi = (xi1, xi2, · · · , xini

)T , i = 1, · · · , N ,

and PK(x) = [PK(x1), · · · , PK(xN )]
T .

Based on the equivalent formulation in (11) and employing the ideas for networks

used in [12, 13], we consider the second neural network for solving the SOCP, with the

following dynamic equations:

d

dt

(

x

y

)

= ρ

(

−x+ PK(x−∇f(x) + ATy)

−Ax+ b

)

, (12)

where ρ is a positive scaling factor. The dynamic equations can be realized by a recurrent

neural network with the cone projection function as shown in Figure 2. The circuit for

the neural network realization requires n + m integrators, n processors for ∇f(x), N

processors for cone projection mapping PK , 2mn connection weights and some summers.

Compared with the first neural network in (8), the second neural network (12) dose not

require to calculate ∇2f(x), resulting in lower model complexity.

To analyze the stability of the neural network in equation (12), we first give three

lemmas and one proposition.

Lemma 4.1 Let F (u) be defined as

F (u) := F (x, y) :=

(

−x+ PK(x−∇f(x) + ATy)

−Ax+ b

)

. (13)

Then, F (u) is semi-smooth. Moreover, F (u) is strongly semi-smooth if ∇2f(x) is locally

Lipschitz continuous.

Proof. This is an immediate consequence of [20, Theorem 1]. 2

Proposition 4.1 For any initial point u0 = (x0, y0) where x0 := x(t0) ∈ K, there exists

a unique solution u(t) = (x(t), y(t)) for neural network (12). Moreover, x(t) ∈ K.

Proof. For simplicity, we assume K = Kn. The analysis can be carried over to the

general case where K is the Cartesian product of second-order cones. From Lemma 4.1,

F (u) := F (x, y) is semi-smooth and Lipschitz continuous. Thus, there exists a unique

solution u(t) = (x(t), y(t)) for neural network (12). Therefore, it remains to show that

x(t) ∈ Kn. For convenience, we denote x(t) := (x1(t), x2(t)) ∈ R × Rn−1. To complete

the proof, we need to verify two things: (i) x1(t) ≥ 0 and (ii) ‖x2(t)‖ ≤ x1(t). First,

from (12), we have
dx

dt
+ ρx(t) = ρPK(x−∇f(x) + ATy).

7



The solution of the first-order ordinary differential equation above is

x(t) = e−ρ(t−t0)x(t0) + ρe−ρt

∫ t

t0

eρsPK(x−∇f(x) + AT y)ds.

If we let x(t0) := (x1(t0), x2(t0)) ∈ R × Rn−1 and denote z(t) := (z1(t0), z2(t0)) as the

term PK(x− (∇f(x)−ATy)), which leads to

x1(t) = e−ρ(t−t0)x1(t0) + ρe−ρt

∫ t

t0

eρsz1(s)ds,

x2(t) = e−ρ(t−t0)x2(t0) + ρe−ρt

∫ t

t0

eρsz2(s)ds.

Due to both x0(t) and z(t) belong to Kn, there have x1(t0) ≥ 0, ‖x2(t0)‖ ≤ x1(t0) and

z1(t) ≥ 0, ‖z2(t)‖ ≤ z1(t) . Therefore, x1(t) ≥ 0 since both terms in the right-hand side

are nonnegative. In addition,

‖x2(t)‖ ≤ e−ρ(t−t0)‖x2(t0)‖+ ρe−ρt

∫ t

t0

eρs‖z2(s)‖ds

≤ e−ρ(t−t0)x1(t0) + ρe−ρt

∫ t

t0

eρsz1(s)ds

= x1(t),

which implies that x(t) ∈ Kn. 2

Lemma 4.2 Let H(u) be defined as

H(u) := H(x, y) :=

(

∇f(x)− ATy

Ax− b

)

. (14)

Then, H is a monotone function if f is a convex function. Moreover, ∇H(u) is positive

semi-definite if and only if ∇2f(x) is positive semi-definite.

Proof. Let u = (x, y) and ũ = (x̃, ỹ). Then, the monotonicity of H holds since

(u− ũ)T (H(u)−H(ũ))

= (x− x̃)T (∇f(x)−∇f(x̃))− (x− x̃)T (AT (y − ỹ)) + (y − ỹ)T (A(x− x̃))

= (x− x̃)T (∇f(x)−∇f(x̃))

≥ 0,

where the last inequality is due to the convexity of f(x), see [22, Theorem 3.4.5]. Fur-

thermore, we observe that

∇H(u) =

[

∇2f(x) −AT

A 0

]

.

8



Thus, we have
uT∇H(u)u

=
[

xT yT
]

[

∇2f(x) −AT

A 0

] [

x

y

]

= xT∇2f(x)x,

which indicates that the positive semi-definiteness of ∇H(u) is equivalent to the positive

semi-definiteness of ∇2f(x). 2

Lemma 4.3 Let F (u), H(u) be defined as in (13) and (14), respectively. Also, let u∗ =

(x∗, y∗) be an equilibrium point of neural network (12) with x∗ being an optimal solution

of SOCP. Then, the following inequalities hold:

(F (u) + u− u∗)T (−F (u)−H(u)) ≥ 0. (15)

Proof. First, we denote λ := ∇f(x)− ATy. Then, we obtain

(F (u) + u− u∗)T (−F (u)−H(u))

=

[

−x+ PK(x− λ) + (x− x∗)

(−Ax + b) + (y − y∗)

]T [

x− PK(x− λ)− λ

(Ax− b)− (Ax− b)

]

=

[

−x∗ + PK(x− λ)

(−Ax+ b) + (y − y∗)

]T [

(x− λ)− PK(x− λ)

0

]

= −(x∗ − PK(x− λ))T ((x− λ)− PK(x− λ)).

Since x∗ ∈ K, applying Property 4.1 gives

(x∗ − PK(x− λ))T ((x− λ)− PK(x− λ)) ≤ 0.

Thus, inequality (15) is proved. 2

We now investigate the stability and convergence issues of neural network (12). First,

we analyze the behavior of the solution trajectory of neural network (12) including exis-

tence and convergence. We then establish two kinds of stability for an isolated equilibrium

point.

We know that every solution u∗ to SOCP is an equilibrium point of neural network

(12). If further u∗ is an isolated equilibrium point of neural network (12), we show that

u∗ is Lyapunov stable.

Theorem 4.1 If f is convex and twice differentiable, then the solution of neural network

(12), with initial point u0 = (x0, y0) where x0 ∈ K, is Lyapunov stable. Moreover, the

solution trajectory of neural network (12) is extendable to the global existence.

9



Proof. Again, for simplicity, we assume K = Kn. From Proposition 4.1, there exists

a unique solution u(t) = (x(t), y(t)) for neural network (12) and x(t) ∈ Kn. Let u∗ =

(x∗, y∗) be an equilibrium point of neural network (12) with x∗ being an optimal solution

of SOCP. We define a Lyapunov function as below:

E(u) := E(x, y) := −H(u)TF (u)−
1

2
‖F (u)‖2 +

1

2
‖u− u∗‖2, (16)

where F (u) and H(u) are given as in (13) and (14), respectively. From [23, Theorem

3.2], we know that E is continuously differentiable with

∇E(u) = H(u)− [∇H(u)− I]F (u) + (u− u∗).

It is also trivial that E(u∗) = 0. Then, we have

dE(u(t))

dt
= ∇E(u(t))T

du

dt
= {H(u)− [∇H(u)− I]F (u) + (u− u∗)}T ρF (u)

= ρ
{

[H(u) + (u− u∗)]TF (u) + ‖F (u)‖2 − F (u)T∇H(u)F (u)
}

.

Hence, inequality (15) in Lemma 4.3 implies

(H(u) + u− u∗)TF (u) ≤ −H(u)T (u− u∗)− ‖F (u)‖2,

which yields

dE(u(t))

dt
≤ ρ

{

−H(u)T (u− u∗)− F (u)T∇H(u)F (u)
}

= ρ
{

−H(u∗)T (u− u∗)− (H(u)−H(u∗))T (u− u∗)− F (u)T∇H(u)F (u)
}

.

(17)

On the other hand, we know that

(F (u∗) + u∗ − u)T (−F (u∗)−H(u∗))

= −(x− PK(x
∗ − λ∗))T ((x∗ − λ∗)− PK(x

∗ − λ∗)).

Since x ∈ Kn, applying Property 4.1 gives

(x− PK(x
∗ − λ∗))T ((x∗ − λ∗)− PK(x

∗ − λ∗)) ≤ 0.

Thus, we have (F (u∗)+u∗−u)T (−F (u∗)−H(u∗)) ≥ 0. Note that F (u∗) = 0, we therefore

obtain −H(u∗)T (u−u∗)T ≤ 0. Also the monotonicity ofH implies −(H(u)−H(u∗))T (u−

u∗) ≤ 0. In addition, f is convex and twice differentiable if and only if ∇2f(x) is positive

semidefinite and hence ∇H is positive semidefinite by Lemma 4.2, i.e., the second term

−F (u)T∇H(u)F (u) ≤ 0. The above discussions lead to dE(u(t))/dt ≤ 0.

In order to obtain E(u) is a Lyapunov function and u∗ is Lyapunov stable, we will

show the following inequality:

−H(u)TF (u) ≥ ‖F (u)‖2. (18)

10



To see this, we first observe that

‖F (u)‖2 +H(u)TF (u)

= (x− PK(x− λ))T ((x− λ)− PK(x− λ)).

Since x ∈ K, applying Property 4.1 again, there holds

(x− PK(x− λ))T ((x− λ)− PK(x− λ)) ≤ 0,

which yields the desired inequality (18). By combining equation (16) and inequality (18),

we have

E(u) ≥
1

2
‖F (u)‖2 +

1

2
‖u− u∗‖2,

which says E(u) > 0 if u 6= u∗. Hence E(u) is indeed a Lyapunov function and u∗ is

Lyapunov stable. Moreover, it holds that

E(u0) ≥ E(u) ≥
1

2
‖u− u∗‖2 for t ≥ t0, (19)

which means the solution trajectory u(t) is bounded. Hence, it can be extended to global

existence. 2

Theorem 4.2 Let u∗ = (x∗, y∗) be an equilibrium point of (12) with x∗ being an optimal

solution of SOCP. If f is twice differentiable and ∇2f(x) is positive definite, the solution of

neural network (12), with initial point u0 = (x0, y0) where x0 ∈ K, is globally convergent

to u∗ and has finite convergence time.

Proof. From (19), the level set

L(u0) := {u | E(u) ≤ E(u0)}

is bounded. Then, the Invariant Set Theorem [25] implies the solution trajectory u(t)

converges to θ as t → ∞ where θ is the largest invariant set in

Π =

{

u ∈ L(u0) |
dE(u(t))

dt
= 0

}

.

We will show that du/dt = 0 if and only if dE(u(t))/dt = 0 which yields that u(t)

converges globally to the equilibrium point u∗ = (x∗, y∗). Suppose du/dt = 0, then

it is clear that dE(u(t))/dt = ∇E(u)T (du/dt) = 0. Let û = (x̂, ŷ) ∈ Π which says

dE(û(t))/dt = 0. From (17), we know that

dE(û(t))

dt
≤ ρ

{

−(H(û)−H(u∗))T (û− u∗)− F (û)T∇H(û)F (û)
}

.

11



Both terms inside the big parenthesis are nonpositive as shown in Lemma 4.2, so (H(û)−

H(u∗))T (û− u∗) = 0, F (û)T∇H(û)F (û) = 0, and

F (û)T∇H(û)F (û)

= {−x̂+ PK(x̂−∇f(x̂) + AT ŷ)}T∇2f(x̂){−x̂+ PK(x̂−∇f(x̂) + AT ŷ)}

= 0.

The condition of ∇2f(x̂) being positive definite leads to

−x̂+ PK(x̂−∇f(x̂) + AT ŷ) = 0,

which is equivalent to dx̂/dt = 0. On the other hand, similar to the arguments in Lemma

4.2, we have
(û− u∗)T (H(û)−H(u∗))

= (x̂− x∗)T (∇f(x̂)−∇f(x∗))

= (x̂− x∗)T∇2f(xs)(x̂− x∗)

= 0,

where xs ∈ [x∗, x̂]. Again, the condition of ∇2f(xs) being positive definite yields x̂ = x∗.

Hence dŷ/dt = 0 and therefore dû(t)/dt = 0. From above, u(t) converges globally to

the equilibrium point u∗ = (x∗, y∗). Moreover, with Theorem 4.1 and following the same

arguments as in [12, Theorem 2], the neural network (12) has finite convergence time.

5 Simulations

To demonstrate the effectiveness of the proposed neural networks, three illustrative SOCP

problems are tested, described as below.

Example 5.1 Consider the nonlinear convex SOCP [20] given by

minimize exp(x1 − x3) + 3(2x1 − x2)
4 +

√

1 + (3x2 + 5x3)2

subject to Ax = b, x ∈ K3 ×K2

where

A =

[

4 6 3 −1 0

−1 7 −5 0 −1

]

and b =

[

1

−2

]

This problem has an approximate solution x∗ = [0.2324,−0.07309, 0.2206, 0.153, 0.153]T.

We use the proposed neural networks with the FB and CP functions, respectively, to solve

the problem with the trajectories obtained by them shown in Figures 3 and 4. From the

simulation results, we found that both trajectories are globally convergent to x∗ and the

neural network with the CP function converged to x∗ quicker than that with the FB

function. On the other hand, the neural network with the CP function also has lower

12



model complexity than that with the FB function as mentioned in Sec. 4. Hence, the

neural network with the CP function is preferable to the neural network with the FB

function when both can globally converge to the optimal solution.

Example 5.2 Consider the following linear SOCP given by

minimize x1 + x2 + x3 + x4 + x5 + x6

subject to Ax = b, x ∈ K3 ×K3

where

A =













1 2 0 0 0 1

1 0 0 1 4 0

0 1 1 0 1 0

1 1 0 0 0 0

0 0 1 0 2 0













and b =













9

20

6

4

8













This problem has an optimal solution x∗ = [3, 1, 2, 5, 3, 4]T . Note that, its objective

function is convex and the Hessian matrix ∇2f(x) is a zero matrix. Hence, the neural

network with the FB function is asymptotically stable from Theorem 3.1 while the neural

network with the CP function is Lyapunov stable from Theorem 4.1. Figures 5 and 6

display the trajectories obtained using the neural networks with the FB and CP functions,

respectively. The simulation results show that both trajectories are convergent to x∗.

Coinciding with above results of Theorems 3.1 and 4.1, the neural network with the CP

function yields the oscillating trajectory and has longer convergence time than the neural

network with the FB function.

Example 5.3 Consider the grasping force optimization problem for the multi-fingered

robotic hand [1, 4, 17]. Its goal is to find the minimum grasping force for moving an

object. For the robotic hand with m fingers, the optimization problem can be formulated

as

minimize
1

2
fTf

subject to
Gf = −fext
‖(fi1, fi2)‖ ≤ µfi3, (i = 1, · · · , m)

where f = [f11, f12, · · · , fm3]
T is the grasping force, G the grasping transformation matrix,

fext the time-varying external wrench, and µ the friction coefficient.

Letting [xi1, xi2, xi3] = [µfi3, fi1, fi2], i = 1, · · · , m, and x = [x11, x12, · · · , xm3]
T , the

problem can be reformulated as a nonlinear convex SOCP. For the three-finger grasp

example in [17], the robot hand grasps a polyhedral with the grasp points [0, 1, 1]T ,

13



[1, 0.5, 0]T , and [0,−1, 0]T , and the robot hand moves along a vertical circular trajectory

of radius r with a constant velocity ν. We reformulate the example as

minimize
1

2
xTQx

subject to Ax = b, x ∈ K3 ×K3 ×K3
(20)

where Q = diag(1/µ2, 1, 1, 1/µ2, 1, 1, 1/µ2, 1, 1)

A =

















0 0 1 −1/µ 0 0 0 1 0

−1/µ 0 0 0 0 −1 1/µ 0 0

0 −1 0 0 −1 0 0 0 −1

0 −1 0 0 −0.5 0 0 0 1

0 0 0 0 1 0 0 0 0

0 0 −1 0.5/µ 0 −1 0 1 0

















and b =

















0

−fc sin θ(t)

Mg − fc cos θ(t)

0

0

0

















,

where M is the mass of the polyhedral, g = 9.8m/s2, fc =
Mν2

r
the centripetal force,

t the time, and θ =
νt

r
∈ [0, 2π]. Note that problem (20) is a nonlinear convex SOCP

and the matrix Q is positive definite. We know from Theorems 3.1 and 4.2 that both

the proposed neural networks are globally convergent to the optimal solution. Under the

conditions M = 0.1kg, r = 0.2m, ν = 0.4π m/s, and µ = 0.6, the time-varying grasping

force obtained from the proposed neural networks is shown in Figure 7. We found that

the maximum grasping force occurs at the position θ = π (t = 0.5s) which corresponds

to the maximum downward wrench. The simulation results demonstrate that the neural

networks are effective in the SOCP applications.

6 Conclusion

In this paper, we have proposed two neural networks for efficiently solving the SOCP.

The first neural network is based on gradient of the merit function derived from the FB

function and was shown to be asymptotically stable. The second neural network with

the CP function has low model complexity, and has been shown to be Lyapunov sta-

ble and converge globally to the SOCP solution under the positive definite condition of

Hessian matrix of the objective function. The convergence of the neural networks has

been validated with the simulation results of the SOCP examples. When the second

14



neural network with the CP functions yields oscillating trajectory, we can employ the

neural network based on FB function instead, though it has higher model complexity.

The proposed neural networks are thus ready for the SOCP applications.

During the reviewing process of this paper, we published another paper [26] which

focuses on second-order cone constrained variational inequality problem. Since the KKT

conditions of second-order cone programs can be recast as variational inequality problem,

the paper [26] indeed deals with a broader class of optimization problems. However, the

two neural networks considered therein are different from the two neural networks studied

in this paper. More specifically, the FB method used in [26] is based on the smoothed

FB function while the one studied here is based on regular FB function; the CP method

in [26] is based on a Lagrangian model which is, even when it reduces to SOCP, not the

same as the one investigated here. Due to the essential difference, the assumptions used

to establish stability are also different. In view of this, it will be an interesting topic to

do numerical comparison among these neural networks for SOCP.

Acknowledgement

The work was supported by National Science Council of Taiwan under the Grant NSC

97-2221-E-214-034.

References

[1] M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of

second-order cone programming, Linear Algebra and its Applications, vol. 284, no. 1,

pp. 193-228, 1998.

[2] F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical

Programming , vol. 95, no. 1, pp. 3-51, 2003.

[3] J.-S. Chen and P. Tseng, An unconstrained smooth minimization reformulation

of the second-order cone complementarity problem, Mathematical Programming, vol.

104, pp. 293–327, 2005.

[4] S.P. Boyd and B. Wegbreit, A Fast computation of optimal contact forces, IEEE

Transactions on Robotics, vol. 23, no. 6, pp. 1117-1132, 2007.

[5] S. Boyd, C. Crusius and A. Hansson, Control applications of nonlinear convex

programming, Journal of Control Process, vol. 8, no. 5, pp. 313-324, 1998.

15



[6] D. Bertsimas and D.B. Brown, Constrained stochastic LQC: a tractable ap-

proach, IEEE Transactions on Automatic Control, vol. 52, no. 10, pp. 1826-1841,

2007.

[7] D.W. Tank and J.J. Hopfield, Simple neural optimization networks: an A/D

converter, signal decision circuit, and a linear programming circuit, IEEE Transac-

tions on Circuits and Systems, vol. 33, no. 5, pp. 533-541, 1986.

[8] M.P. Kennedy and L.O. Chua, A Neural network for nonlinear programming,

IEEE Transaction on Circuits and Systems, Vol. 35, No. 5, pp. 554-562, 1988.

[9] Y.S. Xia, A new neural network for solving linear and quadratic programming prob-

lems, IEEE Transactions on Neural Networks, vol. 7, no. 6, pp. 1544-1547, 1996.

[10] Q. Tao, J.D. Cao, M.S. Xue and H. Qiao, A high performance neural network

for solving nonlinear programming problems with hybrid constraints, Physics Letters

A, vol. 288, no. 2, pp. 88-94, 2001.

[11] J. Wang, Q. Hu, and D. Jiang, A Lagrangian neural network for kinematic

control of redundant robot manipulators, IEEE Transactions on Neural Networks, vol.

10, no. 5, pp. 1123-1132, 1999.

[12] Y. Xia and J. Wang, A recurrent neural network for solving nonlinear convex

programs subject to linear constraints, IEEE Transactions on Neural Networks, vol.

16, no. 3, pp. 379-386, 2005.

[13] Y. Xia, H. Leung and J. Wang, A projection neural network and its application

to constrained optimization problems, IEEE Transactions on Circuits and Systems -

Part I, vol. 49, pp. 447-458, 2002.

[14] Y. Xia and J. Wang, A recurrent neural network for nonlinear convex optimiza-

tion subject to nonlinear inequality constraints, IEEE Transactions on Circuits and

Systems-I: Regular Papers, vol. 51, no. 7, pp. 1385-1394, 2004.

[15] Y. Xia, H. Leung and J. Wang, A general projection neural network for solving

monotone variational inequalities and related optimization problems, IEEE Transac-

tions on Neural Networks, vol. 15, no. 2, pp. 318-328, 2004.

[16] X. Mu, S. Liu and Y. Zhang, A neural network algorithm for second-order conic

programming, Second International Symposium on Neural Networks, Chongqing,

China, Proceedings Part II, pp. 718-724, 2005.

[17] Y. Xia, J. Wang and L. M. Fok, Grasping-force optimization for multifingered

robotic hands using a recurrent neural network, IEEE Transactions on robotics and

automation, vol. 20, no. 3, pp. 549-554, 2004.

16



[18] L. Z. Liao and H. D. Qi, A neural network for the linear complementarity problem,

Mathematical and Computer Modeling, vol. 29, no. 3, pp. 9-18, 1999.

[19] J. S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued func-

tion associated with second-order cone, Mathematical Programming, vol. 101, no. 1,

pp. 95-117, 2004.

[20] C. Kanzow, I. Ferenczi and M. Fukushima, On the local convergence of semis-

mooth Newton methods for linear and nonlinear second-order cone programs without

strict complementarity, SIAM Journal on Optimization, vol. 20, pp. 297–320, 2009.

[21] D. P. Bertsekas, Nonlinear Programming, Belmont, MA: Athena Scientific, 1995.

[22] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables, Philadelphia: SIAM, 2000.

[23] M. Fukushima, Equivalent differentiable optimization problems and descent meth-

ods for asymmetric variational inequality problems, Mathematical Programming, vol.

53, no. 1, pp. 99-110, 1992.

[24] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-

order-cone complimentarity problems, SIAM Journal on Optimization, vol. 12, pp.

436–460, 2002.

[25] R. Golden, Mathematical Methods for Neural Network Analysis and Design, Cam-

bridge, MA: The MIT Press, 1996.

[26] J. Sun, J.-S. Chen and C.-H. Ko, Neural networks for solving second-order cone

constrained variational inequality problem, to appear in Computational Optimization

and Applications, 2011.

Appendix

In Appendix, we introduce the Jordan product and its properties used in the neural

network with the FB function, which are needed when we write codes for simulations.

For any x = (x1, x2) ∈ R×Rn−1, their Jordan product is defined as

x ◦ y = (xTy, y1x2 + x1y2).

Their sum of square is calculated by

x2 + y2 = (‖x‖2 + ‖y‖2, 2x1x2 + 2y1y2).

17



The square root of x is

x1/2 = (s,
x2

2s
), s =

√

1

2

(

x1 +
√

x2
1 − ‖x2‖2

)

, if x = 0, x1/2 = 0

and the determinant of x is det(x) = x2
1 − ‖x2‖

2. Furthermore, a matrix Lx is defined as

Lx =

[

x1 xT
2

x2 x1I

]

,

and when det(x) 6= 0, Lx is invertible with

L−1
x =

1

det(x)





x1 −xT
2

−x2
det(x)

x1
I +

1

x1
x2x

T
2



 .

Based on the properties of the Jordan product described above, the formulae of∇xΨFB(x, y)

and ∇yΨFB(x, y) in neural network (8) are calculated (see [3]) as

∇xΨFB(x, y) =

(

LxL
−1

(x2+y2)
1
2

− I

)

φFB(x, y),

and

∇yΨFB(x, y) =

(

LyL
−1

(x2+y2)
1

2

− I

)

φFB(x, y).

18



Figure 1: Block diagram of the proposed neural network with FB function.

19



Figure 2: Block diagram of the proposed neural network with CP function.

20



Figure 3: Transient behavior of the neural network with FB function in Example 5.1.

Figure 4: Transient behavior of the neural network with CP function in Example 5.1.

21



Figure 5: Transient behavior of the neural network with FB function in Example 5.2.

Figure 6: Transient behavior of the neural network with CP function in Example 5.2.

22



Figure 7: Grasping force obtained by using proposed neural networks in Example 5.3.

23


