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Statistics is the mathematical science dealing

with the presentation, analysis, and interpret-

ation of numerical information (data). In

descriptive statistics, raw data are simplified as

tables, graphs, and summary statistics such as

mean and standard deviation. Inferential stat-

istics is used to analyse and draw conclusions

about a population of interest using data taken

from a sample of the population, according to

the laws of probability theory. Investigators are

usually interested in populations rather than

samples. For example, it is more useful to

know the average arterial pressure in the UK

adult population as a whole rather than in a

much smaller sample in whom it is actually

measured during the course of an investigation.

As the study of entire populations is generally

not possible, statistical methods are used to

extrapolate from measured (known) sample

characteristics to unmeasured (unknown) popu-

lation characteristics.

Three key terms are often used in statistics:

parameter, variable, and sample statistic. A

parameter is a measurable characteristic or

attribute of a population or model (e.g. the

average height or weight of the UK popu-

lation). It has a fixed and usually unknown

value. A variable is a measurable attribute of

a sample (e.g. height or weight in a sample

data set); variables vary from individual to

individual. Variables may be either quantitat-

ive (interval or ordinal data) or qualitative

(nominal data). A dependent variable is

simply measured, whereas an independent

variable is manipulated or controlled exper-

imentally. For example, in an investigation of

a new neuromuscular blocking agent, the dose

of neuromuscular blocking agent received by

patients is an independent variable, whereas

the length of time before return of the first

twitch in a train-of-four count is a dependent

variable. A sample statistic is a mathematical

quantity calculated from sample data vari-

ables, and is used as an approximation to a

corresponding population parameter.

Types of data

It is important to appreciate the different types

of data generated during the course of an inves-

tigation. Interval and categorical data are the

two main types of data. Interval data are con-

tinuous and quantitative (e.g. height, weight).

A subtype of interval data is integer data; such

data are continuous, but may be assigned only

integer values (e.g. age of patients).

Non-interval data are placed into different

groups or categories, hence the term categorical

data. Categorical data are discrete and qualita-

tive (or pseudo-quantitative) and comprise two

subtypes: nominal and ordinal. Examples of

nominal categorical data are gender, hair

colour, and patients’ preferences for postopera-

tive analgesia. There is no sense of a math-

ematical relationship or hierarchy between the

categories.

When categorical data are stratified into

groups with an implied rank order, the data are

termed ordinal. A common example of this is

the use of verbal rating pain scores (e.g. no

pain, 0; mild pain, 1; moderate pain, 2; severe

pain, 3). There is a definite hierarchy of cat-

egories that have pseudo-quantitative character-

istics. A common source of confusion with

ordinal categorical data is to treat them as

being continuous and quantitative. However,

the values in an ordinal scale have no real

mathematical relationship to each other. It is

meaningless to say that a patient with a pain

score of 2 is in twice as much pain as another

with a score of 1. It is also statistically invalid

to state that the average (mean) pain score is

2.4; an ordinal pain score of 2.4 has no

definition.

Presenting data

In general, data may be presented in one of

three formats: numerical, tabular, or graphical.

Numerical and tabular representations of data

are precise and provide the reader with all of
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the data, so that they are able to perform any statistical calculations

for themselves. Graphical representations of data have more visual

impact and are useful in identifying patterns in the data. The

different methods compliment each other.

Categorical data

The simplest way of summarizing categorical data is to present

them as a table. For example, a coin is tossed 20 times, and the

following data are obtained: HHTHTHHTTHTTHHHHTHTT. A

summary table of these data describing frequencies, percentages or

both must contain the size of the data set (Table 1).

A contingency table is a special type of frequency table that may

be used to summarize and analyse categorical data by cross-

classifying two or more independent sample variables. The rows

represent sample groups and the columns represent outcomes. In a

2 � 2 contingency table, the upper row usually represents the active

group, the lower row the control group, the left column represents

the ‘positive’ outcome (e.g. those with the disease) and the right

column the ‘negative’ outcome (e.g. those without the disease). A

2 � 2 contingency table may be drawn up from a study of 100

critically ill patients with acute respiratory distress syndrome. Two

ventilatory strategies, A (a newer, experimental approach) and B

(routine management), are used on patients in the study, chosen by

random allocation. ICU mortality is the primary end point (Table 2).

Each cell in the table must contain the actual count of the data,

which must not be expressed as a proportion or percentage. The cells

must also be both exhaustive and mutually exclusive.

A table may be considered a gold standard for summarizing

and presenting data. All of the data from a study may be included

in a table as the precise numerical values obtained, and readers are

able to analyse the data for themselves. However, as the number of

groups increases, it can become increasingly difficult to appreciate

the data and the relationship between the groups. Therefore, a pic-

torial or graphical representation of the data is often used (e.g. pie

charts, bar charts). Although pie charts are useful graphical rep-

resentations of categorical data, bar charts are more commonly

used as most people find them better for comparing the frequency

distribution of the different categories. Also they are a very good

way of showing how the categorical frequency distributions of two

or more different groups compare.

In a line graph, the bars are replaced by points or symbols

joined together by a straight line. The individual points may be

omitted entirely, showing only the line. Because the nature of the

line suggests a continuum along the x-axis as the categories are

run through one by one, a line graph is most useful when the cat-

egories depicted on the x-axis exist as a continuum.

Interval data

The main methods used to present interval data are tables, histo-

grams, cumulative frequency curves, dot plots, and x–y

scatterplots.

Tables
The principles underlying the construction of tables for interval

data are similar to those already described for categorical data.

When preparing a table, interval data must first be divided arbitra-

rily into ranges known as class intervals. The number of class

intervals chosen should neither be too small nor be too large, as

meaningful comparisons of the spread of the data are then difficult.

The class intervals should be of equal size and arranged in a rank

order. However, when dealing with outliers, it is permissible for

the first and last class interval to be enlarged to avoid multiple

occurrences of empty, or nearly empty, class intervals. Table 3

shows frequency data obtained for the weights of a sample of 100

adult males.

Histograms
Histograms are graphical displays of tabulated frequencies, and are

often used to represent interval data. Unlike a bar chart, the x-axis

of a histogram is not dimensionless as it represents interval data.

Although the class intervals are ideally the same size, it is permiss-

ible to have differing sizes, because it is the area of the rectangles

that is proportional to the frequency count of each class interval.

The data for the weights of the sample of 100 males are shown in

Figure 1. A histogram may be examined to show how the data are

distributed from its overall shape, whether or not it is symmetric,

skewed, or has multiple peaks (multimodal), and where the central

tendency of the data appears to be located.

Frequency curves
Frequency curves present data in a similar way to histograms. The

rectangles are replaced by points positioned at the mid-point of

each class interval on the x-axis and the appropriate height

Table 1 Distribution of frequency data

Category Frequency (%)

Heads 11 (55)

Tails 9 (45)

Table 2 ICU mortality between a newer, experimental approach (strategy A) and

routine management (strategy B)

Ventilatory strategies Non-survivors Survivors

A 18 32

B 12 38

Table 3 Frequency data obtained for the weights of a sample of 100 adult males

Weight (kg)

,50 50–60 60–70 70–80 80–90 90–100 .100

Frequency ( f ) 1 5 20 30 25 16 3
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[frequency or relative frequency (%)] on the y-axis. The points are

joined by straight lines. Frequency curves are useful for comparing

two or more distributions.

Cumulative frequency curves
In a cumulative frequency curve, a running total of the frequency

of occurrence of interval data on the x-axis is plotted on the y-axis.

Datum points are placed at the upper end of each class interval. A

cumulative relative frequency curve simply converts the scale on

the y-axis to either 1 or 100%. A cumulative frequency curve can

be used to estimate any percentile (discussed later) from the distri-

bution. Figure 2 shows the data for the weights of the sample of

100 males; the 50th percentile (median) is indicated on the graph.

Dot plots
In a histogram, continuous interval data on the x-axis is subdivided

into different class intervals. In a dot plot, the raw data is presented

without modification; it is therefore most useful with relatively

small data sets.

Scatterplots
A scatterplot is useful when looking at relationships or associations

between two sample variables, x and y (bivariate data). In a scat-

terplot, both the x and y axes represent interval data. Each datum

comprises an x–y pair of values represented by a dot or other

symbol on the plot. If an association between two variables in

more than one group is under investigation (e.g. variables height

and weight in groups male and female), different symbols or

colours may be used.

It may be apparent from looking at a scatterplot that there may

be a linear relationship between the two variables, which may be

positive (y increases with x) or negative (y decreases with x). The

strength of this possible linear relationship may be tested statisti-

cally by calculating the correlation coefficient between the two

variables. If the correlation coefficient is statistically significant,

then linear regression analysis may be used to determine the

approximate mathematical relationship between the two variables,

and an equation may be derived.

Although there may be a strong correlation between two vari-

ables, it must never be assumed that this is a result of cause and

effect. No statistical test can prove or negate this; before ascribing

any association between two variables, because of cause and

effect, all other potential reasons for the association must be con-

sidered and excluded.

Mathematical relationships between
two variables

Correlation

A correlation refers to the relationship between two sets of paired

interval data (e.g. height and weight of patients or the measure-

ment of cardiac output using both a pulmonary artery catheter and

a pulse contour analysis monitor). A linear correlation may exist if,

when eyeballing the data, there looks to be a straight line relation-

ship between the two sets of paired data. If both data sets are nor-

mally distributed, the Pearson correlation coefficient (r) is

calculated; otherwise, either the Spearman (@) or Kendal (t) corre-

lation coefficient is calculated. The correlation coefficient lies

within the range 21 (for a perfect straight line negative corre-

lation) to þ1 (for a perfect straight line positive correlation).

When r ¼ 0, there is no correlation at all and eyeballing the data

on a scatterplot reveals a completely random pattern. The statistical

significance of r may be tested, and a P-value determined. When

data are normally distributed, r2 value may be quoted and lies

between 0 and þ1. When expressed as a percentage, it equals the

amount of variance between the two sample variables that is

shared. For example, if r2 ¼ 0.8 between x and y, 80% of the var-

iance in y is because of variation in x, and vice versa.

Linear regression

If a statistically significant correlation exists between two variables,

linear regression analysis may be used to calculate the equation for

Fig. 1 Histogram showing the distribution of body weight in 100 males.

Fig. 2 Cumulative frequency curve showing the distribution of body
weight in 100 males.
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the straight line relationship. Confidence intervals for the slope and

position of the line may also be determined. Figure 3 shows a scat-

terplot of the marks obtained in a preparatory course mock exam-

ination against performance in the actual examination itself. The

two variables are well correlated (r ¼ 0.95). The equation for the

regression line is y ¼ 0.45x þ 12.5, with the 95% confidence inter-

val shown by the dotted lines.

Bland–Altman plots

The determination of a correlation coefficient is a valid approach

when comparing two entirely different (independent) variables that

we believe may be associated (e.g. height and weight of patients

or mean alcohol consumption and serum gGT concentrations).

However, when comparing two different methods of measuring the

same variable, this approach may be misleading and unreliable.

This is because even if a statistically significant correlation is

observed (which we would expect anyway as the two methods are

measuring the same thing—unless one of the methods was entirely

inaccurate and unreliable), there may still be clinically unaccepta-

ble differences between the output of one method and the other for

individual measurements.

The standard statistical approach in this situation is to construct

a Bland–Altman plot. In clinical research, we may wish to

compare the performance of a new monitor with a gold standard

or routine monitor. Thus, the performance of a pulse contour

analysis cardiac output monitor may be compared with that of a

pulmonary artery catheter, the acknowledged gold standard for

measuring cardiac output. In a Bland–Altman plot, the mean of

each individual data pair is shown on the x-axis and the difference

between each data pair on the y-axis.

Another example comparing the two sets of examination

marks, one from a preparatory course mock examination and the

other from the actual examination itself, can also be analysed in

this way, as the two examinations are essentially two different

ways of measuring the same thing—the knowledge base of exam-

ination candidates. Clearly, the gold standard must be the actual

examination itself.

The Bland–Altman plot shown in Figure 4 is a scatterplot of

the mean examination mark of each candidate from the two exam-

inations plotted on the x-axis against the difference between the

two marks of each candidate (actual examination mark2

preparatory mock course mark) on the y-axis. The average (mean)

difference between all of the data pairs is shown by the solid line.

It can be seen that, on average, candidates score five more marks

in the actual examination than they do on the course. This average

discrepancy between the two methods of measurement is termed

the bias, and in this case the bias is þ5. However, the bias is, by

definition, an average discrepancy of the sample studied, but how

does this apply to an individual candidate who wants to know how

well he might perform in the actual examination from a knowledge

of his score on the course? The 95% confidence interval

for the range of differences between individual data pairs (limits

of agreement) is indicated by the dotted lines, and equals twice

the standard deviation of the distribution of the differences.

The candidate now knows that on average his actual

examination mark will be five marks better than his performance

on the course, but may vary within the range 20.5 and þ10.5

(with 95% confidence—however, there is a 5% chance that his

mark will fall even outside this range). This is a large range that

might well make the difference between a pass and a fail. The cor-

relation coefficient between the two examinations is almost perfect

(r ¼ 0.95); yet, the Bland–Altman analysis has given a quite

different impression.

Fig. 4 Bland–Altman plot comparing performance in a preparatory course
mock examination against performance in the actual examination.

Fig. 3 Scatterplot of a preparatory course mock examination mark against
actual performance in the examination itself. The correlation coefficient is
very high (r ¼ 0.95). The linear relationship between the two examination
marks has been determined by linear regression analysis.
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