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Abstract

The aim of the thesis is to identify an appropriate model in forecasting Value-at-Risk on a more

volatile period than that one from which the model is estimated. We estimate 1-day-ahead and

10-days-ahead Value-at-Risk on a number of exchange rates. The Value-at-Risk estimates are

based on three models combined with three distributional assumptions of the innovations, and

the evaluations are made with Kupiec's (1995) test for unconditional coverage. The data ranges

from January 1st 2006 through June 30th 2011. The results suggest that the GARCH(1,1) and

GJR-GARCH(1,1) with normally distributed innovations are models adequately capturing the

conditional variance in the series.
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1 Introduction

Econometricians are often interested in �tting models to various kinds of data, both cross-sectional

data and time series data. Historically, they have focused their attention on modeling conditional �rst

moments, see e.g. Bollerslev, Engle and Nelson (1994). An underlying assumption for these analysis

is that the error variance is homoscedastic, i.e. constant over time. In many instances, however, this

assumption is invalid. The error variance might be larger for some ranges in the data, and smaller for

others. The error terms is then said to su�er from heteroscedasticity.

In �nancial econometrics this is called volatility clustering and is a common phenomenon. For the

investor, volatility means risk, and it is therefore of interest to model and forecast. In a seminal

paper, Engle (1982) introduced the Autoregressive Conditional Heteroscedasticity (ARCH) model,

a model aimed to capture time varying conditional variance. Later on, Bollerslev (1986) and Taylor

(1986) proposed, independently of each other, a generalization of this model, called Generalized ARCH

(GARCH). Today, many have designed modi�cations of the GARCH model, which has given rise to

the expression of an ARCH/GARCH family of models, see e.g. Bollerslev, Engle and Nelson (1994)

and Teräsvirta (2006).

The purpose of this paper is to identify the best model in modeling �nancial time series data or, more

speci�cally, exchange rates. The �nancial crisis and the ongoing debt crisis has created a demand

of models that are valid even when a change in regime occurs, from a period of lower volatility to a

period of higher volatility. We use data from less volatile periods to explore how accurate the models

are in predicting the variation in more volatile periods. The models employed in this thesis are the

GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) model.

Capital requirements are imposed on �nancial institutions by The Basel Committee on Banking Su-

pervision (2010). They base their requirements on Value-at-Risk (VaR) measures, which is commonly

used in risk management. In this thesis, we give 1-day-ahead and 10-days-ahead VaR forecasts and

evaluate them with Kupiec's (1995) unconditional coverage test. Furthermore, Root Mean Square

Error (RMSE) and Mean Square Error (MSE) are also presented as complementary measures.

We base our thesis on the work that two other studies carried out. Angelidos, Benos and Degiannakis

(2004) evaluate a family of ARCH models in modeling 1-day-ahead VaR of perfectly diversi�ed port-

folios in �ve stock indices. They conclude that models with leptokurtic distributions, i.e. distributions
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with excess kurtosis and fat tails, produce better VaR forecasts than models utilizing the normal dis-

tribution. They also �nd strong evidence that the EGARCH produces the most satisfactory results

for a majority of the markets. Moreover, the choice of sample size seems to matter for the accuracy of

the forecast.

Jánský and Rippel (2011) evaluate ARCH models on six world stock indices, also in modeling 1-day-

ahead VaR. With data ranging from 2004 through 2009 they �t models to data from less volatile

periods and make forecasts on more volatile ones. They �nd the GARCH process to most adequately

capture the volatility in the indices.

The outline of the paper is as follows. The next section establishes the theoretical framework where

the models are presented along with the VaR concept and our methods of evaluation. We also give a

description of the data. Section three provides our main results and an analysis of them. Section four

gives our main conclusions.

2 Theoretical Framework

The ARCH/GARCH Family

To use �nancial notation, let the times series sequence of returns {rt} be de�ned as

rt = ln pt − ln pt−1, (1)

where pt is the exchange rate at time t and, hence, rt the rate of change in the exchange rate from

time t− 1 to t. A regression of rt might look like

rt = E [rt|ψt−1] + εt, (2)

where E [·|·] is some mean function, ψt−1the information set at time t−1 and εt the error term. Earlier

studies - see e.g Angelidos, Benos and Degiannakis (2004) and Jánský and Rippel (2011) - conclude

that a mean function does not improve the forecast accuracy of the model. Therefore, we drop this

part, as it would add more complexity than improvent of the predictions.
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When we have heteroscedasticity, we can de�ne the error sequence as

εt = ztσt, (3)

where {zt} is an independently and identically distributed sequence with zero expectation and unit

variance and σt is the conditional standard deviation at time t. Engle (1982) proposed the Auto

Regressive Conditional Heteroscedasticity (ARCH) model

σ2
t = α0 +

q∑
i=1

αiε
2
t−i, (4)

to model the conditional variance. For the variance to be strictly positive we need that α0 > 0 and

αi ≥ 0, i = 1, 2, . . . , q. If we add the possibility for σ2
t to be a function of its own lags as well, we get

the Generalized ARCH (GARCH) model by Bollerslev (1986) and Taylor (1986). This model can be

expressed as

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , (5)

where α0 > 0, αi ≥ 0, i = 1, 2, . . . , q and βj ≥ 0, j = 1, 2, . . . , p for positivity. If we let q = p = 1,

we get the GARCH(1,1), the �rst model that we use in this thesis. For covariance stationarity we

need that α1 + β1 < 1. The GARCH(1,1) model's forecast expressions of conditional variance for

1-day-ahead and 10-days-ahead are given by

σ2
t+1 = α0 + α1ε

2
t + β1σ

2
t , (6)

and

σ2
t+10 =

8∑
j=0

α0 [α1 + β1]
j

+ [α1 + β1]
9
σ2
t+1, (7)

respectively. As h, i.e. the forecast horizon, grows larger, the conditional variance converges to the

5



unconditional variance,

σ2 =
α0

1− (α1 + β1)
. (8)

There is not much argue about the GARCH model's importance in �nancial and macroeconomic ap-

plications. However, Nelson (1991) stresses that the GARCH model have some drawbacks. Firstly, the

model treats positive and negative changes in a series in the same way. This is not always an appeasing

assumption. Good news and bad news a�ect people's behavior in di�erent ways. Furthermore, the

GARCH model has parameter restrictions that are often violated. Nelson (1991) therefore introduced

the Exponential GARCH (EGARCH) model to address these problems. The EGARCH(p,q) can be

expressed as

ln
(
σ2
t

)
= α0 +

q∑
i=1

αi|zt−i|+
r∑

k=1

γkzt−k +

p∑
j=1

βj ln
(
σ2
t−j
)
, (9)

where γk ≤ 0 and zt−i = εt−i/σt−i. For the EGARCH model, no parameter restrictions are needed; the

log-tranformation assures positivity of the conditional variance by construction.

Again, letting q = p = 1, we get the EGARCH(1,1) model. For covariance stationarity we need that

β1 < 1. The forecasts, 1-day-ahead and 10-days-ahead, are computed as

σ2
t+1 = exp

{
α0 + α1|zt|+ ψzt + β lnσ2

t

}
, (10)

and

σ2
t+10 = exp


8∑
j=0

αoβ
j +

8∑
j=0

α1E [|z|]βj + β9 lnσ2
t+1

 , (11)

respectively. If zt∼N (0, 1), then E [|zt|] =
√

2/π.1

The last model we use in this thesis is the GJR-GARCH model developed by Glosten, Jagannathan

and Runkle (1993). Formally, it can be expressed as

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

r∑
k=1

γkε
2
t−kIt−k +

p∑
j=1

βjσ
2
t−j , (12)

1For proof, see Appendix.

6



where It−k is an indicator variable taking the value one if the innovation is smaller than zero and zero

otherwise,

It =

1, if εt < 0

0, otherwise.

(13)

As we can see, this model also allows for asymmetric impacts by allowing the sign of the lagged errors

to e�ect the model di�erently. For the GJR-GARCH(1,1) model, the 1-day-ahead and 10-days-ahead

forecasts are given by

σ2
t+1 = α0 + α1ε

2
t + γ1ε

2
t It + β1σ

2
t (14)

and

σ2
t+10 =

8∑
j=0

α0δ
j + δ9σ2

t+1, (15)

respectively. δ = α1 + β1 + γ/2 and It is de�ned as above.

Thus far, we have not discussed the distributional properties of εt. Engle (1982) assumed they follow

a normal distribution. Others have suggested, see e.g. Bollerslev (1987), that they are t distributed.

Later on, Nelson (1991) assumed Generalized Error Distributed (GED) innovations. In this thesis we

consider these three distributions of the innovations. The probability density function of the normal

distribution is given by

f (ε) =
1√

2πσ2
exp

{
−1

2

(
ε− µ
σ

)2
}
, (16)

where µ is the mean and σ2 the variance. The probability density function of the t distribution is

given by

f (ε) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
ε2

ν

)−( ν+1
2 )

, (17)

where ν is the degrees of freedom and Γ (·) the gamma function,

Γ(ε) =

ˆ ∞
0

tε−1e−tdt. (18)

Finally, the probability density function of the GED can be expressed as

f (ε) =
β

2αΓ (1/β)
exp

{
− (|ε− µ|/α)

β
}
. (19)
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These density functions are closely related. For example, if we let ν →∞, the t distribution converges

to the normal. The GED is the normal if we let β = 2.

Value at Risk

Value at Risk (VaR) is a commonly used framework to deal with �nancial risk, see e.g. Engle (2001).

VaR can be de�ned as the percentage loss which will not be exceeded given a certain con�dence level.

Lets say that we have calculated a 5%VaR of 2%. This means that, in the long run, the loss of an

investment of, say, $1,000,000 will not exceed $20,000 (2%×$1,000,000) in 95% of the cases. Explicitly,

it can be expressed as

V aR (α) = −σtφα, (20)

where α is the level, σt the conditional standard deviation at time t and φα the quantile which satis�es

Pr(rt < φα) = α. In this thesis, we give 1%VaR and 5%VaR. The distribution function will be the

normal, the Student's t and the Generalized Error Distribution. If we consider the normal distribution,

for example, the quantile is -2.327 and -1,645 for 1% and 5%, respectively. For the t and the GED,

the value depends on the degrees of freedom and the GED parameter, respectively. The negative sign

makes the VaR a positive value and the interpretation is then in losses. To evaluate the accuracy of

the VaR forecast we introduce an indicator variable which satis�es

It =

1, if rt < −V aR (α)

0, otherwise.

(21)

We can compute the unconditional coverage as 1
T

∑T
t=1It, where T is the number of out-of-sample

forecasts. This is called the empirical level. If the model is good, this estimate should lie close to

the nominal level α. To get a measure of how accurate this estimate is we employ the framework

introduced by Kupiec (1995). It is a likelihood ratio test and can be expressed as

LRuc = −2 ln [L (α; I1, I2, . . . , IT ) /L (π; I1, I2, . . . , IT )] ∼ χ2
(1), (22)

L (α; I1, I2, . . . , IT ) = αn1 (1− α)
n0 , L (π; I1, I2, . . . , IT ) = πn1 (1− π)

n0 ,

8



where n1 is the number of exceptions, n0 the number of realizations not exceeding the VaR and

π the Maximum Likelihood estimate of the probability of exception. If the number of exceptions

deviates signi�cantly from the nominal level α, the model cannot be considered su�ciently capturing

the volatility in the index. If the number of exceptions is too large in relation to the nominal level,

the model underestimates the risk; if it is too low, the model overestimates the risk. Both outcomes

are evidence of a bad model, and both have negative implications for the investor. In both cases, the

model fails to reveal future risk.

VaR is a very intuitive measure of risk. However, the evaluation only tells us whether the ratio of

exceptions are in an acceptable range. This makes it di�cult to compare models giving the same

ratio of exceptions, but where their respective exceptions vary in magnitude.2 Therefore, we include

measures to address this problem. We compute Mean Square Error (MSE) and Root Mean Square

Error (RMSE) for all series. They are used to measure how close the forecast of the conditional variance

lies to the squared returns. Due to its construction, it cannot be used as an absolute measure, but

only to compare models to each other. The MSE and RMSE are computed as

MSE =
1

T

T∑
t=1

(
σ̂2
t − σ2

t

)2
(23)

and

RMSE =

√√√√ 1

T

T∑
t=1

(σ̂2
t − σ2

t )
2
, (24)

respectively, where σ̂2
t is approximated with r2t and T is the number of out-of-sample forecasts.

Data

The data we are working with are exchange rates. The currencies to be evaluated are the U.S. Dollar,

the Euro, the Great British Pound, the Japanese Yen and the Swedish Krona.3 The data is daily and

ranges from January 1st 2006 through June 30th 2011 and is the average between the bid and ask prices.

2One other thing that is important for an adequate model is that the exceptions are independent of past events.
Christo�ersen (1995) constructed a test for this purpose. However, this test has bad small sample properties and with
con�dence levels set as high as 95% or 99% it tends to reject the model too often.

3The data is available upon request. For details about the currencies, consult the References.
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All in all, this gives us a total of 2,007 observations. A description of the distributional properties of

the exchange rates are given in Table 1. Figure 1 illustrates the daily returns for SEK/USD.4

In this thesis we do 1-day-ahead and 10-days-ahead forecasts with a dynamic window of 1000 observa-

tions. This means that a forecast is made for time t+ h at time t, h being 1 or 10. When we stand on

day t+ 1, the sample window encloses that observations, which has now been realized, and drops the

last observation, t−999. This ensures that the window size remains the same. With this new window,

a forecast is made for time t+ h+ 1. This procedure is then repeated until the end of the forecasting

period.

Mean St.D Skewness Kurtosis Jarque-Bera

SEK/USD -0.0001 0.0065 -0.0556 6.6206 1097.28
SEK/EUR -1.04E-5 0.0033 0.3420 9.4591 3528.06
JPY/SEK -7.31E-05 0.0082 -0.2558 8.9081 2940.86
GBP/USD 3.56E-05 0.0047 0.6968 11.9396 6845.47
GBP/EUR 0.0001 0.0038 0.2089 10.0386 4157.62
JPY/USD -0.0001 0.0049 -0.2295 8.3602 2420.39
JPY/EUR -8.99E-05 0.0062 -0.3844 12.1767 7091.80
USD/EUR 9.71E-05 0.0046 0.1212 8.0346 2124.61

Table 1: Descriptive statistics for the exchange rates.

Figure 1: Daily and squared returns for SEK/USD

3 Results

Here we present the results from our estimations. Table 2 shows an extract of the best model for each

level, 1% and 5%, and horizon, h = 1 and h = 10. Note that the table does not reveal how good the

4Graphical illustrations of the return series and squared returns can be found in the Appendix.
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models are. Neither does it provide any information about how much better the chosen models are

than the rest. However, it might give an indication about how the models perform.

h=1 h=10

1% 5% 1% 5%

SEK/USD EGARCH-GED EGARCH-GED GJR-GARCH-GED EGARCH-GED
GBP/EUR EGARCH-N GJR-GARCH-N EGARCH-N GJR-GARCH-N
GBP/USD GJR-GARCH-N GJR-GARCH-N GJR-GARCH-N GJR-GARCH-N
JPY/USD EGARCH-GED GARCH-N EGARCH-N EGARCH-GED
SEK/EUR GARCH-N GJR-GARCH-GED GARCH-N GJR-GARCH-GED
SEK/JPY GARCH-GED GARCH-N GARCH-t GARCH-GED
USD/EUR GJR-GARCH-N GARCH-GED GARCH-GED GJR-GARCH-GED
JPY/EUR EGARCH-GED EGARCH-GED GARCH-GED GJR-GARCH-GED

Table 2: The best model for each exchange rate, level and horizon.

The GARCH, EGARCH and GJR-GARCH model all produce similar RMSE and MSE measures, and

the small di�erences among the estimates do not provide much further information about the models'

relative accuracy in forecasting conditional variance.

It is di�cult to mark out one model that outperforms all other models. The GJR-GARCH and GARCH

model often provide good estimates. Almost without exceptions, the three models with Student's t

distributed innovations estimate the true risk poorly for both 1-day-ahead and 10-days-ahead VaR. In

our estimations, the degrees of freedom turns out low, which generates larger terms to be multiplied

with the standard deviations. This we think serves as a possible explanation for the bad estimation.

A majority of the times, the estimates are rejected on the 1%-level.

Both GED and normally distributed errors works better with the models than those with t. These

two seem to work good interchangebly. However, it seems as if GED errors more often produce better

forecasts than the normal does, although in some cases, the opposite is true.

For the 1% level and 1-day-ahead, the EGARCH model generates an empirical coverage ratio closest

to the nominal level. Out of those, three are with GED errors. However, GED quali�es just as often

as the normal. Not once does the t distribution come out as the best one. That the EGARCH with

GED works good is not much of a surprise. When Nelson (1992) introduced the model, he stressed

that it follows the GED distribution.

When looking at the 5% level, still with h = 1, the results are more dubious. Both the GJR-GARCH

and the GARCH are the best one three times each. Twice, they come with the normal distribution.

11



However, equally many times does the GED appear. For the EGARCH, it does so in both cases.

The GARCH model is the best in a majority of the times on the 1% level when h = 10. It is so with

all distributions which makes it hard to distinguish one distribution that is more plausible than the

others. All in all, the normal distribution appear most frequently.

When h = 10, on the 5% level the GJR-GARCH seems to be the best model. It appears �ve times as

the best one and utilizes the GED three times and the normal twice. For the rest of the models, GED

appears exclusively.

If we look at one exchange rate at a time, we can see that for GBP/USD the best model is the

GJR-GARCH-N. For SEK/JPY, the best model is the GARCH, but it has di�erent distributions.

For the rest of the exchange rates, the results are more dubious. For SEK/USD the GED is the

only distribution that seems appropriate, and three times it is so with the EGARCH model. Also for

JPY/USD, the EGARCH appear three times, but here the normal distribution comes up twice.

The results in Table 2 are not conclusive. They do not mark out one speci�c model that outperforms

all other. Rather, they recommend di�erent ones for every combination of level and horizon. Moreover,

which one that is the best model also depends on which exchange rate we look at. However, what

can be said is that GED and Normal seem to be good distributional assumptions. When looking at

the complete results in the tables presented in the Appendix, it can be seen that the GJR-GARCH-N

model is rejected the least number of times, closely followed by the GARCH-N. This might be an

indication that these models more often provide even and good results.

4 Conclusion

Our objective have been to identify a suitable model to forecast risk in a more volatile future than

the data from which the model is estimated. The data is exchange rates constructed from various

combinations of the U.S. Dollar, the Euro, the Great British Pound, the Japanese Yen and the Swedish

Krona. The data ranges from January 1st 2006 through June 30th 2011, and thus covers the peak

of the 2008 �nancial crisis, as well as the anxiety that striked markets in the aftermatch. We have

analyzed three principal members belonging to the ARCH/GARCH class of models, and by means

of these models, we computed VaR estimates. In our thesis, we �nd support for the GARCH and
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GJR-GARCH model as adequate captures of the dynamics in the exchange rate series. Additionally,

these models combined with the assumption of normally distributed innovations generates empirical

coverage ratios of VaR estimates close to the nominal level. However, there are more to do. To apply

the VaR concept on other models from the ARCH/GARCH family or from the �eld of high frequency

MIDAS models, both with further distributional assumptions about the innovations, are examples of

possible extensions of our analysis that future research can adopt.
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Results

The computed estimates of VaR in the tables in this section show the ratio of number of exceptions

to the total forecasting period. A model is considered good whenever this ratio is consistent with the

nominal level, 1% or 5%, and the Kupiec test rejects the VaR if the realized and theoretical ratio di�er

too much from each other. Also presented are RMSE and MSE for all series.

14



SEK/USD

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0451 0.0180 0.0441 0.0531 0.0240 0.0511 0.0461 0.0251 0.0471
*** *** ***

1%VaR 0.0150 0.0010 0.0050 0.0160 0.0030 0.0100 0.0130 0.0020 0.0090
h = 1 *** * * *** ***

RMSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MSE 1.69E-08 1.69E-08 1.71E-08 1.70E-08 1.79E-08 1.75E-08 1.64E-08 1.65E-08 1.64E-08

5%VaR 0.0461 0.0160 0.0421 0.0471 0.0481 0.0511 0.0481 0.0240 0.0521
*** ***

1%VaR 0.0130 0.0030 0.0160 0.0280 0.0170 0.0060 0.0130 0.0030 0.0090
h = 10 *** * *** * ***

RMSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MSE 1.72E-08 1.74E-08 1.79E-08 1.74E-08 1.96E-08 1.81E-08 1.66E-08 1.67E-08 1.66E-08

Table 3: 5% and 1% VaR for SEK/USD. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.

GBP/EUR

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0441 0.0170 0.0401 0.0291 0.0090 0.0371 0.0471 0.0220 0.0421
*** *** *** ** ***

1%VaR 0.0150 0.0010 0.0030 0.0090 0.0010 0.0040 0.0160 0.0010 0.0040
h = 1 *** *** *** ** * *** **

RMSE 5.97E-05 5.97E-05 6.02E-05 6.00E-05 6.08E-05 6.02E-05 6.02E-05 6.09E-05 6.14E-05

MSE 3.56E-09 3.56E-09 3.62E-09 3.60E-09 3.70E-09 3.62E-09 3.63E-09 3.71E-09 3.77E-09

5%VaR 0.0351 0.0160 0.0351 0.0331 0.0421 0.0591 0.0481 0.0220 0.0301
** *** ** *** *** ***

1%VaR 0.0140 0.0000 0.0030 0.0090 0.0360 0.0340 0.0140 0.0010 0.0040
h = 10 *** *** *** *** *** **

RMSE 5.94E-05 5.96E-05 6.09E-05 6.02E-05 6.53E-05 6.45E-05 6.02E-05 6.13E-05 6.26E-05

MSE 3.52E-09 3.55E-09 3.71E-09 3.62E-09 4.27E-09 4.16E-09 3.63E-09 3.76E-09 3.92E-09

Table 4: 5% and 1% VaR for GBP/EUR. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.
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GBP/USD

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0431 0.0150 0.0391 0.0467 0.0100 0.0291 0.0501 0.0220 0.0361
*** *** *** *** **

1%VaR 0.0080 0.0010 0.0020 0.0110 0.0020 0.0040 0.0100 0.0030 0.0030
h = 1 *** *** *** ** *** ***

RMSE 9.85E-05 9.87E-05 9.86E-05 0.0001 0.0001 0.0001 9.94E-05 0.0001 0.0001

MSE 9.73E-09 9.74E-09 9.95E-09 1.00E-08 1.03E-08 1.04E-08 9.88E-09 1.00E-08 1.01E-08

5%VaR 0.0351 0.0120 0.0341 0.0417 0.1042 0.1242 0.0441 0.0261 0.0251
** *** ** *** *** *** ***

1%VaR 0.0110 0.0010 0.0020 0.0110 0.0020 0.0040 0.0110 0.0040 0.0040
h = 10 *** *** *** ** ** **

RMSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MSE 1.05E-08 1.05E-08 1.12E-08 1.04E-08 1.04E-08 1.07E-08 1.01E-08 1.01E-08 1.05E-08

Table 5: 5% and 1% VaR for GBP/USD. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.

JPY/USD

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0501 0.0170 0.0471 0.0331 0.0140 0.0501 0.0501 0.0220 0.0421
*** *** *** ***

1%VaR 0.0150 0.0010 0.0030 0.0130 0.0020 0.0080 0.0150 0.0010 0.0020
h = 1 *** *** *** *** ***

RMSE 5.97E-05 5.97E-05 6.02E-05 8.18E-05 8.91E-05 8.17E-05 7.59E-05 7.66E-05 7.72E-05

MSE 3.56E-09 3.56E-09 3.62E-09 6.69E-09 7.94E-09 6.68E-09 5.76E-09 5.86E-09 5.95E-09

5%VaR 0.0461 0.0110 0.0441 0.0341 0.1102 0.0501 0.0401 0.0220 0.0361
*** ** *** *** **

1%VaR 0.0140 0.0000 0.0030 0.0120 0.1032 0.0120 0.0210 0.0020 0.0050
h = 10 *** *** *** *** *** *

RMSE 5.94E-05 5.96E-05 6.09E-05 8.37E-05 8.81E-05 8.50E-05 7.66E-05 7.64E-05 7.74E-05

MSE 3.52E-09 3.55E-09 3.71E-09 7.01E-09 7.76E-09 7.22E-09 5.87E-09 5.84E-09 6.00E-09

Table 6: 5% and 1% VaR for JPY/USD. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.
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SEK/EUR

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0451 0.0120 0.0441 0.0671 0.0240 0.0621 0.0491 0.0180 0.0497
*** ** *** * ***

1%VaR 0.0100 0.0000 0.0000 0.0090 0.0000 0.0050 0.0120 0.0010 0.0020
h = 1 *** *** *** * *** ***

RMSE 4.31E-05 4.31E-05 4.37E-05 4.28E-05 4.42E-05 4.42E-05 4.40E-05 4.44E-05 4.50E-05

MSE 1.85E-09 1.86E-09 1.91E-09 1.83E-09 1.95E-09 1.95E-09 1.93E-09 1.97E-09 2.03E-09

5%VaR 0.0451 0.0130 0.0431 0.0671 0.0481 0.0872 0.0461 0.0190 0.0506
*** ** *** ***

1%VaR 0.0100 0.0000 0.0000 0.0120 0.09120 0.0972 0.0100 0.0020 0.0020
h = 10 *** *** *** *** *** ***

RMSE 4.33E-05 4.35E-05 4.50E-05 4.40E-05 4.77E-05 4.75E-05 4.34E-05 4.38E-05 4.52E-05

MSE 1.87E-09 1.89E-09 2.03E-09 1.94E-09 2.28E-09 2.26E-09 1.89E-09 1.92E-09 2.04E-09

Table 7: 5% and 1% VaR for SEK/EUR. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.

JPY/SEK

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0551 0.0261 0.0551 0.0681 0.0401 0.0661 0.0661 0.0311 0.0631
*** ** ** ** *** *

1%VaR 0.0180 0.0030 0.0090 0.0160 0.0030 0.0080 0.0230 0.0050 0.0130
h = 1 ** *** * *** *** *

RMSE 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002

MSE 5.97E-08 5.97E-08 6.06E-08 1.71E-08 1.74E-08 1.73E-08 5.69E-08 5.68E-08 5.74E-08

5%VaR 0.0531 0.0261 0.0521 0.0601 0.0401 0.0601 0.0671 0.0361 0.0571
*** ** **

1%VaR 0.0200 0.0100 0.0140 0.0120 0.0040 0.0070 0.0250 0.0110 0.0170
h = 10 *** ** *** **

RMSE 0.0003 0.0003 0.0003 0.0001 0.0001 0.0001 0.0003 0.0003 0.0003

MSE 6.52E-08 6.51E-08 6.89E-08 1.75E-08 1.79E-08 1.76E-08 6.31E-08 6.35E-08 6.45E-08

Table 8: 5% and 1% VaR for JPY/SEK. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.
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USD/EUR

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0521 0.0200 0.0491 0.0541 0.0220 0.0451 0.0571 0.0200 0.0531
*** *** ***

1%VaR 0.0170 0.0020 0.0030 0.0160 0.0010 0.0040 0.0150 0.0010 0.0020
h = 1 ** *** *** * *** ** *** ***

RMSE 7.50E-05 7.52E-05 7.58E-05 7.50E-05 7.51E-05 7.54E-05 7.59E-05 7.66E-05 7.72E-05

MSE 5.63E-09 5.65E-09 5.75E-09 5.63E-09 5.64E-09 5.69E-09 5.76E-09 5.86E-09 5.96E-09

5%VaR 0.0551 0.0210 0.0531 0.0541 0.1413 0.1573 0.0581 0.0200 0.0491
*** *** *** ***

1%VaR 0.0190 0.0040 0.0060 0.0160 0.1343 0.1333 0.0210 0.0020 0.0050
h = 10 ** *** * *** *** *** *** *

RMSE 7.78E-05 7.80E-05 7.98E-05 7.72E-05 8.05E-05 7.99E-05 7.66E-05 7.64E-05 7.74E-05

MSE 6.05E-09 6.08E-09 6.37E-09 5.97E-09 6.48E-09 6.39E-09 5.87E-09 5.84E-09 6.00E-09

Table 9: 5% and 1% VaR for USD/EUR. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.

JPY/EUR

GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

N t GED N t GED N t GED

5%VaR 0.0641 0.0261 0.0611 0.0661 0.0180 0.0471 0.0641 0.0311 0.0541
** *** ** *** ** ***

1%VaR 0.0230 0.0050 0.0070 0.0230 0.0060 0.0100 0.0140 0.0010 0.0030
h = 1 *** * *** *** ***

RMSE 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 6.06E-05 6.13E-05 6.28E-05

MSE 2.74E-08 2.73E-08 2.79E-08 2.63E-08 2.63E-08 2.62E-08 3.68E-09 3.76E-09 3.94E-09

5%VaR 0.0621 0.0291 0.0581 0.0611 0.0240 0.1062 0.0701 0.0351 0.0541
* *** *** *** *** **

1%VaR 0.0230 0.050 0.0080 0.0280 0.0321 0.0411 0.0150 0.0020 0.0030
h = 10 *** * *** *** *** *** ***

RMSE 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 6.12E-05 6.27E-05 6.81E-05

MSE 3.21E-08 3.12E-08 3.38E-08 2.99E-08 3.01E-08 3.02E-08 3.74E-09 3.93E-09 4.64E-09

Table 10: 5% and 1% VaR for JPY/EUR. ***, ** and * indicates rejection of Kupiec's unconditional
coverage test on 1%, 5% and 10%, respectively.
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Graphics

Here we give graphs over the return series and squared returns. From the graphs it is clear that there

were an increase in volatily in the midst of the period.

Figure 2: Daily and squared returns for SEK/USD

Figure 3: Daily and squared returns for GBP/EUR

Figure 4: Daily and squared returns for GBP/USD
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Figure 5: Daily and squared returns for JPY/EUR

Figure 6: Daily and squared returns for JPY/SEK

Figure 7: Daily and squared returns for SEK/EUR
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Figure 8: Daily and squared returns for USD/EUR

Figure 9: Daily and squared returns for JPY/USD

Proofs

In this subsection we give inductive proofs for the forecast equations with h ≥ 2, which can be applied

to our 10-days-ahead forecast equations.

Proposition 1: The 10-days-ahead forecast equation of the conditional variance for GARCH(1,1) is

computed as

σ2
t+10 =

8∑
j=0

α0 (α1 + β1)
j

+ (α1 + β1)
9
σ2
t+1.

Proof: For t+ 2

σ2
t+2 = α0 + α1E

[
ε2t+1

]
+ β1σ

2
t+1

= α0 + (α1 + β1)σ2
t+1,
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because E
[
ε2t+1

]
= σ2

t+1. For t+ 3

σ2
t+3 = α0 + (α1 + β1)σ2

t+2

= α0 + (α1 + β1)
(
α0 + (α1 + β1)σ2

t+1

)
= α0 + α0 (α1 + β1) + (α1 + β1)

2
σ2
t+1,

for t+ 4

σ2
t+4 = α0 + (α1 + β1)σ2

t+3

= α0 + (α1 + β1)
(
α0 + α0 (α1 + β1) + (α1 + β1)

2
σ2
t+1

)
= α0 + α0 (α1 + β1) + α0 (α1 + β1)

2
+ (α1 + β1)

3
σ2
t+1,

and now we can see that for any h ≥ 2 we have

σ2
t+h = α0 (α1 + β1)

0
+ α0 (α1 + β1)

1
+ α0 (α1 + β1)

2
+ . . .+

+α0 (α1 + β1)
h−2

+ (α1 + β1)
h−1

σ2
t+1

=

h−2∑
j=0

α0 (α1 + β1)
j

+ (α1 + β1)
h−1

σ2
t+1, Q.E.D.

Proposition 2a: The 10-days-ahead forecast equation of the conditional variance for EGARCH(1,1) is

computed as

σ2
t+10 = exp


8∑
j=0

α0β
j +

8∑
j=0

α0E [|z|]βj + β9 lnσ2
t+1

 .

Proof: For t+ 2

lnσ2
t+2 = α0 + α1E [|zt+1|] + γ1E [zt+1] + β1 lnσ2

t+1

= α0 + α1E [|zt+1|] + β1 lnσ2
t+1,
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as E [zt+1] = 0. For t+ 3

lnσ2
t+3 = α0 + α1E [|zt+2|] + β1 lnσ2

t+2

= α0 + α1E [|zt+2|] + β1
(
α0 + α1E [|zt+1|] + β1 lnσ2

t+1

)
= α0 + α0β1 + α1E [|zt+2|] + α1β1E [|zt+1|] + β2

1 lnσ2
t+1,

for t+ 4

lnσ2
t+4 = α0 + α1E [|zt+3|] + β1 lnσ2

t+3

= α0 + α1E [|zt+3|] + β1
(
α0 + α0β + α1E [|zt+2|] + α1β1E [|zt+1|] + β2

1 lnσ2
t+1

)
= α0 + α0β1 + α0β

2
1 + α1E [|zt+3|] + α1β1E [|zt+2|] + α1β

2
1E [|zt+1|] + β3

1 lnσ2
t+1.

Now we can draw the conclusion that for any h ≥ 2

lnσ2
t+h = α0β

0
1 + α0β

1
1 + . . .+ α0β

h−2
1 + α1β

0
1E [|zt+h−1|] + α1β

1
1E [|zt+h−2|] + . . .+

+α1β
h−2
1 E [|zt+1|] + βh−1 lnσ2

t+1

=

h−2∑
j=0

α0β
j +

h−2∑
j=0

α1E [|z|]βj + βh−1 lnσ2
t+1.

That E [|zt|] = E [|z|] follows from the fact that zt is independently and identically distributed. We

solve the last part by taking the anti-logarithm,

σ2
t+h = exp


h−2∑
j=0

α0β
j +

h−2∑
j=0

E [|z|]βj + βh−1 lnσ2
t+1

 , Q.E.D.

Proposition 2b: If z ∼ N (0, 1), then E [|z|] =
√

2
π .
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Proof: Calculus yields

E [|z|] = 2

ˆ ∞
0

z√
2π

exp

{
−z

2

2

}
dz

=
2√
2π

[
exp

{
−z

2

2

}]0
∞

=
2√
2π
,

and thus E [|z|] = 2√
2π

=
√

2
π , Q.E.D. The �rst equality follows from the symmetric property of the

normal distribution.

Proposition 3: The 10-days-ahead forecast equation of the conditional variance for GJR-GARCH(1,1)

is computed as

σ2
t+10 =

8∑
j=0

α0δ
j + δ9σ2

t+1.

Proof: For t+ 2

σ2
t+2 = α0 + α1E

[
ε2t+1

]
+ γ1E

[
ε2t+1It+1

]
+ β1σ

2
t+1

= α0 + α1σ
2
t+1 +

γ1
2
σ2
t+1 + β1σ

2
t+1

= α0 +
(
α1 +

γ1
2

+ β1

)
σ2
t+1

= α0 + δσ2
t+1,

where δ = α1 + γ1
2 + β1. That E

[
ε2t+1It+1

]
= σ2

t+1/2 follows from the fact that

E
[
ε2t+1It+1

]
= E

[
ε2|I(0)

]
+ E

[
ε2|I(1)

]
= 0×

ˆ ∞
0

ε2f (ε) dε+ 1×
ˆ 0

−∞
ε2f (ε) dε

=

ˆ ∞
0

ε2f (ε) dε

=
1

2
× σ2,

where the third equality is due to the symmetric property of the Normal, the t and Generalized Error
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Distribution and the last equality because they all have expectation zero. For t+ 3

σ2
t+3 = α0 + δσ2

t+2

= α0 + δ
(
α0 + δσ2

t+1

)
= α0 + α0δ + δ2σ2

t+1,

for t+ 4

σ2
t+4 = α0 + δσ2

t+3

= α0 + δ
(
α0 + α0δ + δ2σ2

t+1

)
= α0 + α0δ + α0δ

2 + δ3σ2
t+1.

Now we can see that for any h ≥ 2

σ2
t+h = α0δ

0 + α0δ
1 + α0δ

2 + . . .+ α0δ
h−2 + δh−1σ2

t+1

=

h−2∑
j=0

α0δ
j + δh−1σ2

t+1, Q.E.D.
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