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A nonzero residual intersymbol interference (ISI) causes the symbol error rate (SER) to increase where the achievable SERmay not
answer any more on the system’s requirements. Recently, a closed-form approximated expression was derived by the same author
for the residual ISI obtained by nonblind adaptive equalizers for the single-input single-output (SISO) case. Up to now, there does
not exist a closed-form expression for the residual ISI obtained by nonblind adaptive equalizers for the single-inputmultiple-output
(SIMO) case. Furthermore, there does not exist a closed-form expression for the SER valid for the SISO or SIMO case that takes
into account the residual ISI obtained by nonblind adaptive equalizers and is valid for fractional Gaussian noise (fGn) input where
the Hurst exponent is in the region of 0.5 ≤ 𝐻 < 1. In this paper, we derive a closed-form approximated expression for the residual
ISI obtained by nonblind adaptive equalizers for the SIMO case (where SISO is a special case of SIMO), valid for fGn input where
the Hurst exponent is in the region of 0.5 ≤ 𝐻 < 1. Based on this new expression for the residual ISI, a closed-form approximated
expression is obtained for the SER valid for the SIMO and fGn case.

1. Introduction

We consider a nonblind deconvolution problem in which we
observe themultiple output of a finite impulse-response (FIR)
single-input multiple-output (SIMO) channel (unknown
channel) from which we want to recover its input using
adjustable linear filters (equalizers) and training symbols. In
the field of communication, SIMO channels appear either
when the signal is oversampled at the receiver or from the
use of an array of antennas in the receiver [1–6]. It should be
pointed out that, for the SIMO case, the same information
is transmitted through different subchannels and all received
sequences will be distinctly distorted versions of the same
message, which accounts for a certain signal diversity [6, 7].
Therefore, it is reasonable to assume that more information
about the transmitted signal will be available at the receiver
end [6, 7]. SIMO transmission is widely replacing single-
input single-output (SISO) approach to enhance the perfor-
mance via diversity combining [6, 8]. It is well known that
ISI is a limiting factor inmany communication environments
where it causes an irreducible degradation of the bit error rate
(BER) and SER, thus imposing an upper limit on the data

symbol rate [1, 6]. In order to overcome the ISI problem, an
equalizer is implemented in those systems [6]. For the blind
SIMO channel equalization case, we may find the following
methods [9–13] which exploit various properties of the input
signal.

In this paper we consider the nonblind adaptive equalizer
where training sequences are needed to generate the error
that is fed into the adaptive mechanism which updates the
equalizer’s taps [14–17]. The nonblind adaptive approach
yields in most cases better equalization performance consid-
ering convergence speed and equalization quality compared
with the blind adaptive version [18]. In addition, the blind
adaptive version has a higher computational cost compared
to its nonblind approach [18].

Recently [19], a closed-form approximated expression (or
an upper limit) was derived for the residual ISI obtained by
nonblind adaptive equalizers for the SISO case that depends
on the stepsize parameter, equalizer’s tap length, input signal
statistics, signal-to-noise ratio (SNR), and channel power and
is valid for the fGn case where the Hurst exponent is in the
region of 0.5 ≤ 𝐻 < 1. But this expression is not valid for
the SIMO case. Thus, there is still no answer on the question
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of how the number of receiving antennas contributes to the
residual ISI obtained by nonblind adaptive equalizers in the
convergence region for the fGn input case with 0.5 ≤ 𝐻 < 1.
Since up to now there does not exist a closed-form expression
for the residual ISI obtained by nonblind adaptive equalizers
for the SIMO case, no closed-form expression exists either for
the SER valid for the SIMO case that takes into account the
residual ISI.

In this paper, we propose a closed-form approximated
expression for the residual ISI obtained by nonblind adaptive
equalizers for the SIMO case (where SISO is a special case
of SIMO). This new expression depends on the stepsize
parameter, equalizer’s tap length, input signal statistics, SNR,
channel power, and the number of receiving antennas and
is valid for the fGn case where the Hurst exponent is in the
region of 0.5 ≤ 𝐻 < 1. Please note that𝐻 = 1 is the limit case,
which does not have much practical sense [20–22]. It should
be pointed out that a white Gaussian process is a special case
(𝐻 = 0.5) of the fGn model [23]. FGn with 𝐻 ∈ (0.5, 1)

corresponds to the case of long-range dependency (LRD)
[23]. Thus, the new obtained expression for the achievable
residual ISI is not only valid for the special case of white
Gaussian process but covers also those cases that correspond
to the case of LRD. The Hurst exponent𝐻may be estimated
with the rescaled range (R/S) method [24, 25]. Based on the
new proposed expression for the residual ISI, a closed-form
approximated expression is obtained for the SER valid for the
SIMO and fGn case where nonblind adaptive equalizers are
used in the system.

The paper is organized as follows. After having described
the system under consideration in Section 2, the closed-form
approximated expressions for the residual ISI and SER are
introduced in Section 3. In Section 4 simulation results are
presented and the conclusion is given in Section 5.

2. System Description

The system under consideration, illustrated in Figure 1, is the
same system described in [6]. In this paper, we make the
following assumptions as done in [6].

(1) The source sequence 𝑥[𝑛] belongs to a real or two
independent quadrature carrier case constellation
inputs with variance 𝜎2

𝑥
where 𝑥

𝑟
[𝑛] and 𝑥

𝑖
[𝑛] are the

real and imaginary parts of [𝑛], respectively.

(2) The unknown subchannel ℎ(𝑚)[𝑛] (𝑚 = 1, 2, 3, . . . ,𝑀

where𝑀 is the number of subchannels) is a possibly
nonminimumphase linear time-invariant filter.There
is no common zero among all the subchannels.
There are𝑀 subchannels since there are𝑀 receiving
antennas.

(3) Each equalizer 𝑐(𝑚)[𝑛] (𝑚 = 1, 2, 3, . . . ,𝑀) is a tap-
delay line.

(4) The noise 𝑤
(𝑚)

[𝑛] (𝑚 = 1, 2, 3, . . . ,𝑀) consists
of 𝑤(𝑚)[𝑛] = 𝑤

(𝑚)

𝑟
[𝑛] + 𝑗𝑤

(𝑚)

𝑖
[𝑛] where 𝑤

(𝑚)

𝑟
[𝑛]

and 𝑤
(𝑚)

𝑖
[𝑛] are the real and imaginary parts of

𝑤
(𝑚)

[𝑛], respectively, and 𝑤
(𝑚)

𝑟
[𝑛] and 𝑤

(𝑚)

𝑖
[𝑛] are

independent. Both𝑤(𝑚)
𝑟

[𝑛] and𝑤(𝑚)
𝑖

[𝑛] are fractional
Gaussian noises (fGn) with zero mean.

For𝑚 = 𝑘 we have

𝐸 [𝑤
(𝑚)

𝑟
[𝑛] 𝑤
(𝑘)

𝑟
[𝑛]] = 𝜎

2

𝑤
𝑟

𝛿 [𝑛 − 𝑛] ,

𝐸 [𝑤
(𝑚)

𝑖
[𝑛] 𝑤
(𝑘)

𝑖
[𝑛]] = 𝜎

2

𝑤
𝑖

𝛿 [𝑛 − 𝑛] .

(1)

For𝑚 ̸= 𝑘 we have

𝐸 [𝑤
(𝑚)

𝑟
[𝑛] 𝑤
(𝑘)

𝑟
[𝑛]]

=

𝜎
2

𝑤
𝑟

2
[(|𝑚 − 𝑘| − 1)

2𝐻
− 2(|𝑚 − 𝑘|)

2𝐻
+ (|𝑚 − 𝑘| + 1)

2𝐻
]

× 𝛿 [𝑛 − 𝑛] ,

𝐸 [𝑤
(𝑚)

𝑖
[𝑛] 𝑤
(𝑘)

𝑖
[𝑛]]

=

𝜎
2

𝑤
𝑖

2
[(|𝑚 − 𝑘| − 1)

2𝐻
− 2(|𝑚 − 𝑘|)

2𝐻
+ (|𝑚 − 𝑘| + 1)

2𝐻
]

× 𝛿 [𝑛 − 𝑛] ,

(2)

where 𝐸[⋅] denotes the expectation operator on (⋅), 𝛿 is the
Kronecker delta function, and 𝐻 is the Hurst exponent. In
the following, we assume that 𝜎2

𝑤
𝑖

= 𝜎
2

𝑤
𝑟

and 𝜎2
𝑤
= 𝜎
2

𝑤
𝑖

+ 𝜎
2

𝑤
𝑟

.
According to Figure 1, the 𝑚th observation 𝑦

(𝑚)
[𝑛]

(𝑦(𝑚)[𝑛] = 𝑥[𝑛] ∗ ℎ
(𝑚)

[𝑛] + 𝑤
(𝑚)

[𝑛]) is the result of a
linear convolution between the source signal 𝑥[𝑛] and the
corresponding channel response ℎ(𝑚)[𝑛], corrupted by noise
𝑤
(𝑚)

[𝑛], where “∗” denotes the convolution operation. The
equalizer’s output 𝑧[𝑛] is derived as follows:

𝑧 [𝑛] =

𝑚=𝑀

∑

𝑚=1

𝑧
(𝑚)

[𝑛] =

𝑚=𝑀

∑

𝑚=1

𝑦
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛]

=

𝑚=𝑀

∑

𝑚=1

(𝑥 [𝑛] ∗ ℎ
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] + 𝑤
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛])

= 𝑥 [𝑛] + 𝑝 [𝑛] + 𝑤 [𝑛] ,

(3)

where 𝑝[𝑛] is the convolutional noise (𝑝[𝑛] = 𝑥[𝑛] ∗

𝜉[𝑛]), 𝜉[𝑛] = ∑
𝑚=𝑀

𝑚=1
ℎ
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] − 𝛿[𝑛], and 𝑤[𝑛] =

∑
𝑚=𝑀

𝑚=1
𝑤
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛]. Next we turn to the adaptation
mechanism of the equalizer in each subchannel which is
based on training symbols [14–17, 26]

𝑐
(𝑚)

[𝑛 + 1] = 𝑐
(𝑚)

[𝑛] − 𝜇
(𝑚)

(𝑧 [𝑛] − 𝑥 [𝑛]) 𝑦
(𝑚)∗

[𝑛]

= 𝑐
(𝑚)

[𝑛] − 𝜇
(𝑚)

𝑃 [𝑧 [𝑛]] 𝑦
(𝑚)∗

[𝑛] ,

(4)

where 𝜇
(𝑚) is the stepsize parameter in the subchannel,

𝑃[𝑧[𝑛]] = 𝑧[𝑛] − 𝑥[𝑛], 𝑐
(𝑚)

[𝑛] is the equalizer vector where
the input vector is 𝑦(𝑚)[𝑛] = [𝑦

(𝑚)
[𝑛] ⋅ ⋅ ⋅ 𝑦

(𝑚)
[𝑛 − 𝑁 + 1]]

𝑇,
and 𝑁 is the equalizer’s tap length. The operators (⋅)𝑇 and
(⋅)
∗ denote for transpose and conjugate of the function (⋅),

respectively.
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3. Residual ISI and SER for the SIMO and
Fractional Gaussian Noise Case

In this section, a closed-form approximated expression is
derived for the residual ISI valid for the SIMO and fGn case.
Based on this new expression, the SER is obtained.

3.1. Derivation of the Residual ISI. In this subsection we
derive the residual ISI valid for the SIMO and fGn case.

Theorem 1. For the following assumptions:

(1) the convolutional noise, 𝑝[𝑛], is a zero mean, white
Gaussian process with variance 𝜎2

𝑝
= 𝐸[𝑝[𝑛]𝑝

∗
[𝑛]].

The real part of𝑝[𝑛] is denoted as𝑝
𝑟
[𝑛] and𝐸[𝑝2

𝑟
[𝑛]] =

𝑚
𝑝
;

(2) the source signal 𝑥[𝑛] is a square QAM (quadrature
amplitude modulation) signal (where the real part of
𝑥[𝑛] is independent with the imaginary part of 𝑥[𝑛])
with known variance and higher moments;

(3) the convolutional noise 𝑝[𝑛] and the source signal are
independent;

(4) the gain between the source and equalized output signal
is equal to one;

(5) the convolutional noise 𝑝[𝑛] is independent with 𝑤[𝑛];

(6) the added noise is fGn as defined in the previous section
in assumption (4);

(7) the Hurst exponent is in the range of 0.5 ≤ 𝐻 < 1,

the residual ISI expressed in [dB] units may be defined as

ISI = 10 log
10
(𝑚
𝑝
) − 10 log

10
(𝜎
2

𝑥
𝑟

) , (5)

where

𝑚
𝑝
=

𝜎
2

𝑤
𝑟

𝑁𝜎
2

𝑥
∑
𝑚=𝑀

𝑚=1
𝜇
(𝑚)

(∑
𝑘=𝑅−1

𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2

+ (1/SNR))

2 − 𝑁𝜎2
𝑥
∑
𝑚=𝑀

𝑚=1
𝜇(𝑚) (∑

𝑘=𝑅−1

𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2

+ (1/SNR))
(6)

with

𝜎
2

𝑤
𝑟

≅

𝑀

∑

𝑚=1

𝜎
2

𝑥
𝑟

𝑀2SNR∑𝑘=𝑅−1
𝑘=0

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑚)

𝑘
[𝑛]

󵄨󵄨󵄨󵄨󵄨

2

× (1 + 𝐻 (2𝐻 − 1) (𝑀 − 1)) ,

(7)

where SNR = 𝜎
2

𝑥
/𝜎
2

𝑤
and 𝜎2

𝑥
𝑟

is the variance of 𝑥
𝑟
[𝑛].

Comments. It should be pointed out that assumptions (1)–(7)
from above are precisely the same assumptions made in [6].
In addition, assumptions (1), (3), and (5) were also used in
[18, 27–33] where [31] explained why assumptions (1) and (3)

can hold for the latter stages of the deconvolution process
for which our residual ISI is derived. Since the noise and
the source signal are independent in practical applications,
assumption (5) holds. For a square QAM constellation,
the real and imaginary parts of the constellation input are
always independent and, in practical applications, the update
mechanism of the equalizer is given by (4) where the gain
between the equalized output signal 𝑧[𝑛] and the source
signal 𝑥[𝑛] is equal to one. Thus, assumptions (2) and (4) are
reasonable and are met in practical applications. FGn gains
wide applications in various fields, ranging from geosciences
to telecommunications [34]. FGn is a commonly used model
of network traffic with LRD [35].This trafficmay for instance
play as an interferer on other communication links. Thus,
assumptions (6) and (7) are also reasonable and can be met
in practical applications.

Proof. The real part of𝑤[𝑛], namely,𝑤
𝑟
[𝑛], may be expressed

as

𝑤
𝑟 [𝑛] =

𝑀

∑

𝑚=1

𝑘=𝑁−1

∑

𝑘=0

(𝑐
(𝑚)

𝑟
[𝑘] 𝑤
(𝑚)

𝑟
[𝑛 − 𝑘]

− 𝑐
(𝑚)

𝑖
[𝑘] 𝑤
(𝑚)

𝑖
[𝑛 − 𝑘]) ,

(8)

where 𝑐(𝑚)
𝑟

[𝑘] and 𝑐(𝑚)
𝑖

[𝑘] are the real and imaginary parts of
𝑐
(𝑚)

[𝑘], respectively. The variance of 𝑤
𝑟
[𝑛]may be expressed

by

𝜎
2

𝑤
𝑟

= 𝐸[

𝑀

∑

𝑚=1

𝑘=𝑁−1

∑

𝑘=0

(𝑐
(𝑚)

𝑟
[𝑘] 𝑤
(𝑚)

𝑟
[𝑛 − 𝑘] − 𝑐

(𝑚)

𝑖
[𝑘] 𝑤
(𝑚)

𝑖
[𝑛 − 𝑘])

⋅

𝑀

∑

𝑝=1

𝑘𝑘=𝑁−1

∑

𝑘𝑘=0

(𝑐
(𝑝)

𝑟
[𝑘𝑘]𝑤

(𝑝)

𝑟
[𝑛 − 𝑘𝑘]

−𝑐
(𝑝)

𝑖
[𝑘𝑘]𝑤

(𝑝)

𝑖
[𝑛 − 𝑘𝑘]) ]

(9)

which can be written according to [6] as

𝜎
2

𝑤
𝑟

=

𝑀

∑

𝑚=1

𝜎
2

𝑤
𝑟

𝑘=𝑁−1

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝑐
(𝑚)

[𝑘]
󵄨󵄨󵄨󵄨󵄨

2

+

𝑀

∑

𝑚=1,𝑚 ̸= 𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝜎
2

𝑤
𝑟

2
[(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 − 1)
2𝐻

− 2(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨)
2𝐻

+ (
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 + 1)
2𝐻

]

⋅

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]] .

(10)
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This expression (10) was shown in [6] to be equal to (7) with
the help of the triangle inequality [36], the Holder inequality
[36], and the approximation given by [34]

0.5 [(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 − 1)
2𝐻

− 2(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨)
2𝐻

+ (
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 + 1)
2𝐻

]

≃ 𝐻 (2𝐻 − 1)
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨

2𝐻−2

.

(11)

Next we turn to the expression for𝑚
𝑝
. According to [1],

𝐸 [Δ (𝑝
2

𝑟
)]

= −2𝐸[𝑝
𝑟
(𝑃
𝑟 [𝑧 [𝑛]]

𝑚=𝑀

∑

𝑚=1

𝜇
(𝑚)󵄩󵄩󵄩󵄩󵄩

𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

+R(

𝑚=𝑀

∑

𝑚=1

Δ
(𝑚)

(𝑤∗𝑐)
))]

+ 𝐸[

[

(−𝑃
𝑟 [𝑧 [𝑛]]

𝑚=𝑀

∑

𝑚=1

𝜇
(𝑚)󵄩󵄩󵄩󵄩󵄩

𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

−R(

𝑚=𝑀

∑

𝑚=1

Δ
(𝑚)

(𝑤∗𝑐)
))

2

]

]

,

(12)

where Δ(𝑝2
𝑟
) = 𝑝
2

𝑟
[𝑛 + 1] − 𝑝

2

𝑟
[𝑛], R(⋅) is the real part of (⋅),

𝑃
𝑟
[𝑧[𝑛]] is the real part of 𝑃[𝑧[𝑛]], and Δ

(𝑚)

(𝑤∗𝑐)
= 𝑤
(𝑚)

[𝑛] ∗

𝑐
(𝑚)

[𝑛 + 1] −𝑤
(𝑚)

[𝑛] ∗ 𝑐
(𝑚)

[𝑛] = 𝑤
(𝑚)

∗ (𝑐
(𝑚)

[𝑛 + 1] − 𝑐
(𝑚)

[𝑛]).
By using (3) and (4), we may have for the nonblind case
𝑃
𝑟
[𝑧[𝑛]] = 𝑝

𝑟
[𝑛] + 𝑤

𝑟
[𝑛] = 𝑝

𝑟
+ 𝑤
𝑟
[𝑛] (where 𝑝

𝑟
= 𝑝
𝑟
[𝑛]).

According to [1], when the equalizer has converged we have
∑
𝑚=𝑀

𝑚=1
Δ
(𝑚)

(𝑤∗𝑐)
→ 0 and𝐸[Δ(𝑝2

𝑟
)] ≅ 0.Thus, after substituting

𝑃
𝑟
[𝑧[𝑛]] = 𝑝

𝑟
+ 𝑤
𝑟
[𝑛] and 𝐸[Δ(𝑝2

𝑟
)] = 0 into (12) we obtain

− 2𝐸 [𝑝
𝑟
(𝑝
𝑟
+ 𝑤
𝑟 [𝑛])]

𝑚=𝑀

∑

𝑚=1

𝜇
(𝑚)

𝐸 [
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

]

+ 𝐸 [(𝑝
𝑟
+ 𝑤
𝑟 [𝑛])
2

] 𝐸[

[

(

𝑚=𝑀

∑

𝑚=1

𝜇
(𝑚)󵄩󵄩󵄩󵄩󵄩

𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

)

2

]

]

= 0.

(13)

According to [1], 𝐸[(‖𝑦(𝑚)[𝑛]‖
2

)

2

] may be approximated as

(𝐸[‖𝑦
(𝑚)

[𝑛]‖
2

])

2

. Thus we obtain

− 2𝑚
𝑝
𝐸[

𝑚=𝑀

∑

𝑚=1

𝜇
(𝑚)󵄩󵄩󵄩󵄩󵄩

𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

]

+ (𝑚
𝑝
+ 𝜎
2

𝑤
𝑟

)(𝐸[

𝑚=𝑀

∑

𝑚=1

𝜇
(𝑚)󵄩󵄩󵄩󵄩󵄩

𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

])

2

= 0.

(14)

From (14) we have

𝑚
𝑝

=

𝜎
2

𝑤
𝑟

(𝐸 [∑
𝑚=𝑀

𝑚=1
𝜇
(𝑚)󵄩󵄩󵄩󵄩󵄩

𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

])

2

2𝐸 [∑
𝑚=𝑀

𝑚=1
𝜇(𝑚)

󵄩󵄩󵄩󵄩󵄩
𝑦(𝑚) [𝑛]

󵄩󵄩󵄩󵄩󵄩

2

] − (𝐸 [∑
𝑚=𝑀

𝑚=1
𝜇(𝑚)

󵄩󵄩󵄩󵄩󵄩
𝑦(𝑚) [𝑛]

󵄩󵄩󵄩󵄩󵄩

2

])

2

=

𝜎
2

𝑤
𝑟

(𝐸 [∑
𝑚=𝑀

𝑚=1
𝜇
(𝑚)󵄩󵄩󵄩󵄩󵄩

𝑦
(𝑚)

[𝑛]
󵄩󵄩󵄩󵄩󵄩

2

])

2 − (𝐸 [∑
𝑚=𝑀

𝑚=1
𝜇(𝑚)

󵄩󵄩󵄩󵄩󵄩
𝑦(𝑚) [𝑛]

󵄩󵄩󵄩󵄩󵄩

2

])

.

(15)

Next we substitute [1] 𝐸[‖𝑦(𝑚)[𝑛]‖
2

] = 𝑁𝜎
2

𝑥
(∑
𝑘=𝑅−1

𝑘=0
|ℎ
(𝑚)

𝑘
[𝑛]|
2

+ (1/SNR)) into (15) and obtain the expression for 𝑚
𝑝
given

in (6). This completes our proof.

3.2. Derivation of the SER for the SIMO Case. In this subsec-
tion, we derive the SER for a source signal 𝑥[𝑛] belonging to a
rectangular QAM constellation, applicable for the SIMO and
fGn case.

Theorem 2. Based on the assumptions given in the previous
subsection, the SER for the nonblind adaptive version valid for
the SIMO and fGn case may be defined as

SERQAM = 4
𝑀̃ − 1

𝑀̃

𝑄(
𝑑

𝜎
𝑇

)(1 −
𝑀̃ − 1

𝑀̃

𝑄(
𝑑

𝜎
𝑇

)) , (16)

where 𝑀̃ = √𝑀QAM and𝑀QAM is the number of signal points
for a𝑀QAM-ary QAM constellation, 𝑑 is half the distance betw-
een adjacent√𝑀QAM-ary PAM (pulse amplitude modulation)
signals:

𝜎
𝑇
= √𝑚

𝑝
+ 𝜎
2

𝑤
𝑟

;

𝑄 (
𝑑

𝜎
𝑇

) =
1

√2𝜋

∫

∞

𝑑/𝜎
𝑇

𝑒
−𝑢
2

/2
𝑑𝑢

(17)

and𝑚
𝑝
, 𝜎2
𝑤
𝑟

are according to (6) and (7), respectively.

Proof. According to [6], the equalized output for the blind
adaptive version for the SIMO case is given by 𝑧[𝑛] = 𝑥[𝑛] +

𝑝[𝑛] + 𝑤[𝑛]. This expression is quite similar to the nonblind
adaptive version given in (3). The difference between the
two cases (blind and nonblind case) lies on the fact that the
variance of𝑝[𝑛] is very different. For each case, the expression
for the variance of the real part of 𝑝[𝑛] (named in this paper
as𝑚
𝑝
) is different.However, the expression for the variance of

the real part of 𝑤[𝑛] (named in this paper as 𝜎2
𝑤
𝑟

) is the same
for both cases. Recently [6], a closed-form approximated
expression was obtained for the SER (blind adaptive version),
based on 𝑧[𝑛] = 𝑥[𝑛] + 𝑝[𝑛] + 𝑤[𝑛], valid for the SIMO and
fGn case where𝐻 is in the region of 0.5 ≤ 𝐻 < 1.The recently
obtained expression for the SER [6] is recalled in (16) and (17).
In order to obtain a closed-form approximated expression for
the SER valid for the nonblind adaptive, SIMO and fGn case,
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Figure 1: Block diagram of a baseband SIMO communication system.

the recently obtained expression for the SER [6] was used
with 𝑚

𝑝
and 𝜎

2

𝑤
𝑟

((6) and (7), resp.), valid for the nonblind
adaptive, SIMO and fGn case.This completes our proof.

4. Simulation

In this section we test our new proposed expression for the
SER for the 16QAMcase (amodulation using±{1, 3} levels for

in-phase and quadrature components) for different values of
SNR and equalizer’s tap length and for four different channel
cases.The equalizer taps were updated according to (4) where
we set for simplicity 𝜇(𝑚) = 𝜇. In the following we consider
four channel cases:

channel case A which is a four-channel model with
channel coefficients determined according to

ℎ
1
= [−0.0318 + 𝑗0.2330 0.3128 − 𝑗0.3693 −0.3609 + 𝑗0.3810 0.6490 −0.1110 + 𝑗0.0396] ,

ℎ
2
= [0.3005 − 𝑗0.0247 0.6784 0.6248 − 𝑗0.1316 0.1282 − 𝑗0.1411 −0.0590 − 𝑗0.0366] ,

ℎ
3
= [−0.1351 − 𝑗0.2061 −0.1274 + 𝑗0.5876 0.6401 −0.1818 − 𝑗0.3354 0.0871 − 𝑗0.1216] ,

ℎ
4
= [0.2835 + 𝑗0.0204 0.6799 0.5936 + 𝑗0.0986 0.1938 + 𝑗0.2101 −0.0333 + 𝑗0.1095]

(18)

channel case B which is a two-channel model with
channel coefficients determined according to

ℎ
1
= [−0.4000 0.8000 0.3200 0.1280 0.0512 0.0205 0.0082 0.0033 0.0013 0.0005 0.0002 0.0001 0.0000]

ℎ
2
= [1.3000 0.6000 − 𝑗0.6364 0 0 0 0 0 0 0 0 0 0 0] ;

(19)
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Figure 2: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 17, 𝐻 = 0.6, and channel
case A; the results were obtained for 1600000 symbols.

channel case C which is a four-channel model with
complex channel coefficients. Each subchannel has
a five-channel tap length with randomly generated
complex coefficients at each time where no common
zero among all the subchannels is generated;

channel case D which is a two-channel model with
complex channel coefficients. Each subchannel has
a three-channel tap-length with randomly generated
complex coefficients at each time where no common
zero among all the subchannels is generated.

Please note that channel cases A and B were also used in
[6]. The equalizers were initialized by setting the center tap
equal to one and all others to zero.

In the following we denote the SER performance accord-
ing to (16) as “Calculated with Equalizer.” In addition, we
wish to show the SER performance for the case where the
residual ISI is not taken into account. Therefore, we denote
in the following the SER performance that does not take into
account the residual ISI as “Calculated without Equalizer.”
Figure 2 to Figure 16 show the SER performance for different
values of 𝐻 and four channel cases as a function of SNR of
our proposed expression (16) compared with the simulated
results and with those calculated results that do not take into
account the residual ISI. According to Figures 2, 3, 4, 6, 7,
10, 11, 12, 14, and 15 the calculated results (16) describe closer
the simulated results in comparison to the results that do not
take into account the residual ISI. According to Figures 5, 8,
9, 13, and 16 the proposed expression for the SER (16) may be
considered only as the upper bound for the simulated results.
According to Figure 10 to Figure 16, the proposed expression
for the SER (16) for𝐻 = 0.7 is a very accurate approximation
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Figure 3: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 17, 𝐻 = 0.7, and channel
case A; the results were obtained for 1600000 symbols.
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Simulated, H = 0.8
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Figure 4: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 17, 𝐻 = 0.8, and channel
case A; the results were obtained for 1600000 symbols.

for the actual SER. Thus, the proposed expression for the
SER (16) for 𝐻 = 0.7 can be very useful for the system
designer when dealing with time varying channels where
the averaged SER is needed with high accuracy. But, if the
averaged SER is not needed with such high accuracy for
the time-varying channel case, then the proposed expression
for the SER (16) is also very useful for the range of 0.6 ≤

𝐻 < 0.7 where it provides the system designer a more
accurate approximation for the averaged SER compared to
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Figure 5: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 17, 𝐻 = 0.9, and channel
case A; the results were obtained for 1600000 symbols.
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Figure 6: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.002, 𝑁 = 13, 𝐻 = 0.6, and channel
case B; the results were obtained for 1600000 symbols.

the case where the expression for the SER is used that does
not take into account the residual ISI. According to Figure 1,
the equalized output 𝑧[𝑛] is the sum of the equalizer’s output
from each subchannel. For 𝐻 > 0.5, the noise components
from the different subchannels are dependent (please refer
to assumption (4) in the system description section). In
addition, according to (11), the noise dependency is stronger
for higher values of 𝐻. Thus, it is reasonable to think that
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Figure 7: SER comparisonwith the following parameters: 𝑑 = 1, the
stepsize parameter 𝜇 = 0.002,𝑁 = 13,𝐻 = 0.7, and channel case B;
the results were obtained for 1600000 symbols.
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Figure 8: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.002, 𝑁 = 13, 𝐻 = 0.8, and channel
case B; the results were obtained for 1600000 symbols.

the SER might increase as the value for 𝐻 increases due
to the noise dependency from the different receiving paths.
But, according to simulation results (Figure 2 to Figure 9),
improved SER performance is seen for higher values of 𝐻.
This outcome was also seen in [6]. The reason for having
improved SER performance (Figure 2 to Figure 9) for higher
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Figure 9: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.002, 𝑁 = 13, 𝐻 = 0.9, and channel
case B; the results were obtained for 1600000 symbols.
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Figure 10: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 9, 𝐻 = 0.6, and channel
case C; the averaged results were obtained in 50 Monte Carlo trials
for 128000 symbols.

values of𝐻may be explained via (10). The second part of the
right side of (10) defined by

𝑀

∑

𝑚=1,𝑚 ̸= 𝑝

𝑀

∑

𝑝=1,𝑝 ̸=𝑚

𝜎
2

𝑤
𝑟

2
[(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 − 1)
2𝐻

− 2(
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨)
2𝐻

+ (
󵄨󵄨󵄨󵄨𝑚 − 𝑝

󵄨󵄨󵄨󵄨 + 1)
2𝐻

]

⋅

𝑘=𝑁−1

∑

𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘] 𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘] 𝑐
(𝑝)

𝑖
[𝑘]]

(20)
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Figure 11: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 9, 𝐻 = 0.65, and channel
case C; the averaged results were obtained in 50 Monte Carlo trials
for 128000 symbols.
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Figure 12: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 9, 𝐻 = 0.7, and channel
case C; the averaged results were obtained in 50 Monte Carlo trials
for 128000 symbols.

can obtain negative values via ∑
𝑘=𝑁−1

𝑘=0
[𝑐
(𝑚)

𝑟
[𝑘]𝑐
(𝑝)

𝑟
[𝑘] +

𝑐
(𝑚)

𝑖
[𝑘]𝑐
(𝑝)

𝑖
[𝑘]]. By using the approximation of (11) in (20), we

can see that, for certain cases where ∑𝑘=𝑁−1
𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘]𝑐
(𝑝)

𝑟
[𝑘] +

𝑐
(𝑚)

𝑖
[𝑘]𝑐
(𝑝)

𝑖
[𝑘]] achieves a negative value, this negative value

is multiplied by a positive value depending on 𝐻 (𝐻(2𝐻 −

1)|𝑚 − 𝑝|
2𝐻−2). Thus, for higher values of 𝐻 and for the
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Figure 13: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 9, 𝐻 = 0.8, and channel
case C; the averaged results were obtained in 50 Monte Carlo trials
for 128000 symbols.
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Figure 14: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 19, 𝐻 = 0.6, and channel
case D; the averaged results were obtained in 50 Monte Carlo trials
for 128000 symbols.

case where ∑
𝑘=𝑁−1

𝑘=0
[𝑐
(𝑚)

𝑟
[𝑘]𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘]𝑐
(𝑝)

𝑖
[𝑘]] < 0,

𝜎
2

𝑤
𝑟

(10) decreases which causes 𝜎
𝑇
(17) to decrease which

leads to improved SER. Since the equalizer’s coefficients
𝑐
(𝑚)

𝑟
[𝑘], 𝑐(𝑝)
𝑟
[𝑘], 𝑐(𝑚)
𝑖

[𝑘], and 𝑐
(𝑝)

𝑖
[𝑘] are not available to us,

∑
𝑘=𝑁−1

𝑘=0
[𝑐
(𝑚)

𝑟
[𝑘]𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘]𝑐
(𝑝)

𝑖
[𝑘]] was upper limited
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Figure 15: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 19, 𝐻 = 0.7, and channel
case D; the averaged results were obtained in 50 Monte Carlo trials
for 128000 symbols.
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Figure 16: SER comparison with the following parameters: 𝑑 = 1,
the stepsize parameter 𝜇 = 0.0005, 𝑁 = 19, 𝐻 = 0.8, and channel
case D; the averaged results were obtained in 50 Monte Carlo trials
for 128000 symbols.

(please refer for more details to [6]) in order to supply the
system designer an expression for 𝜎2

𝑤
𝑟

depending only on
available parameters to him. Thus, the outcome was that 𝜎2

𝑤
𝑟

as appears in (7) increases for higher values for𝐻 for all cases
of∑𝑘=𝑁−1
𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘]𝑐
(𝑝)

𝑟
[𝑘]+𝑐

(𝑚)

𝑖
[𝑘]𝑐
(𝑝)

𝑖
[𝑘]], namely, also for the

case where ∑𝑘=𝑁−1
𝑘=0

[𝑐
(𝑚)

𝑟
[𝑘]𝑐
(𝑝)

𝑟
[𝑘] + 𝑐

(𝑚)

𝑖
[𝑘]𝑐
(𝑝)

𝑖
[𝑘]] < 0. Thus,
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the accuracy of our proposed expression for the SER (16) is
dependent on𝐻.

5. Conclusion

In this paper, we proposed for the real and two independent
quadrature carrier case, closed-form approximated expres-
sions for the residual ISI and SER obtained by nonblind
adaptive equalizers that are applicable for the SIMO and fGn
(0.5 ≤ 𝐻 < 1) input case.The expression for the SER depends
on the system’s parameters (stepsize parameter, equalizer’s tap
length, input constellation statistics, channel power, number
of receiving antennas used in the SIMO system and on 𝐻).
Thus, there is no need anymore to carry out any simulation
in order to find those system’s parameters that will lead to the
required SER performance. According to simulation results,
the proposed expression for the SER can be very useful for
the systemdesignerwhendealingwith time-varying channels
where the averaged SER is needed and𝐻 ≤ 0.7. For channel
caseA and 0.6 ≤ 𝐻 ≤ 0.8 or channel case B and 0.6 ≤ 𝐻 ≤ 0.7

the proposed expression for the SER provides better results
for the simulated results in comparison to the results that
do not take into account the residual ISI. For channel case
A and 1 > 𝐻 > 0.8 or channel cases B, C, and D and
1 > 𝐻 > 0.7 the new proposed expression for the SER
may be considered only as the upper bound for the simulated
results. FGnwith𝐻 ∈ (0.5, 1) corresponds to the case of LRD.
Thus, it could be thought that the SER might increase as the
value for 𝐻 increases due to the noise dependency from the
different receiving paths. But, according to simulation results,
improved SER performance is seen for higher values of𝐻.
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