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Abstract  This study utilised optimum fractal disk dimension algorithms to characterize the evolved strange attractor 
(Poincare section) when adaptive time steps Runge-Kutta fourth and fifth order algorithms are employed to compute si-
multaneously multiple trajectories of a harmonically excited Duffing oscillator from very close initial conditions. The chal-
lenges of insufficient literature that explore chaos diagrams as visual aids in dynamics characterization strongly motivate 
this study. The object of this study is to enable visual comparison of the chaos diagrams in the excitation amplitude versus 
frequency plane. The chaos diagrams obtained at two different damp coefficient levels conforms generally in trend to lit-
erature results[1] and qualitatively the same for all algorithms. The chances of chaotic behaviour are higher for combined 
higher excitation frequencies and amplitudes in addition to smaller damp coefficient. Fourth and fifth order Runge-Kutta 
algorithms indicates respectively 62.3% and 53.3% probability of chaotic behaviour at 0.168 damp coefficient and respec-
tively 77.9% and 78.9% at 0.0168 damp coefficient. The chaos diagrams obtained by fourth order algorithms is accepted to 
be more reliable than its fifth order counterpart, its utility as tool for searching possible regions of parameter space where 
chaotic behaviour/motion exist may require additional dynamic behaviour tests.  
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1. Introduction 
There has been growing interests in engineering dynamics 

in modelling systems that are chaotic. Chaos is an aspect of 
nonlinear dynamics that is concerned with systems governed 
by equations in which a small change in one variable can 
induce a large systematic change. The relevance of the un-
derstanding of chaos in nonlinear electrical circuits, Duffing 
oscillating systems, magneto-mechanical devices, weather 
and climate, fluid flow in some systems and host of others 
cannot be overstressed. Therefore, it is germane to empha-
size the adoption of visual tools such as chaos diagrams to 
enrich understanding of chaotic behaviour. Useful tools for 
detecting chaos have been explained by[2]. To observe the 
state variables (time series), the phase portrait, the Poincare 
map, the power spectrum, the Lyapunov exponents and 
bifurcation diagram are used to detect chaos in dynamical 
systems. In the paper, the authors adopted all these tools 
using chaotic driven pendulum as a case study. The paper 
clearly explains the existence of chaos in driven pendulum 
using all methods mentioned. The Simulation results ob-
tained from all the tools concur with each other. Also, control 
of chaos in driven pendulum was realized in the study. The 
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paper sufficiently demonstrates the usefulness of bifurcation 
diagram which is one of the most important chaos diagrams 
for explaining chaos. Chaos researchers have identified that 
DC–DC converter is a highly nonlinear system. It is ob-
served that DC–DC converters are experiencing bifurcation 
and chaotic oscillations. In their paper,[3] studied and ana-
lysed chaos as well as bifurcation of voltage mode controlled 
DC–DC buck converter. The study revealed that such 
DC–DC buck converter is experiencing a chaotic behaviour 
under certain operation conditions. The paper studied the 
bifurcation and chaos in the DC–DC buck converter by 
changing different control parameters. The authors demon-
strated satisfactorily how bifurcation diagrams and 
state–space diagrams can be shown for these parameters. It is 
well known that horizontal platform system (HPS) is usually 
applied in offshore and earthquake technology but unfortu-
nately, it is difficult and time-consuming for regulation. In 
order to understand the nonlinear dynamic behaviour of HPS 
and reduce the cost when using it,[4] employs differential 
transformation method to study the bifurcation behaviour of 
HPS. Their numerical results showed a complex dynamic 
behaviour comprising periodic, sub-harmonic, and chaotic 
responses. Furthermore, their results reveal the changes 
which take place in the dynamic behaviour of the HPS as the 
external torque is increased. The paper concluded that the 
proposed method provides an effective means of gaining 
insights into the nonlinear dynamics of horizontal platform 
system.[5] Investigated the periodic motions of a non-linear 
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geared rotor-bearing system using the incremental harmonic 
balance (IHB) method. A path following procedure using 
arc length continuation technique was used to trace the bi-
furcation diagrams. The system exhibited a period doubling 
route and a quasiperiodic route to chaos in different regions 
of excitation frequency. The chaotic motions are investi-
gated by numerical integration and the Lyapunov exponents 
are computed. The paper concluded that the periodic solu-
tions and sub-harmonic solutions obtained by the IHB 
method compares very well with those obtained by numeri-
cal integration. Bifurcation and chaos in a 4-side simply 
supported rectangular thin electro-magneto-elastic plate in 
electro-magnetic, mechanical and temperature fields was 
studied by[6]. Based on the basic nonlinear elec-
tro-magneto-elastic motion equations for a rectangular thin 
plate and expressions of electromagnetic forces, vibration 
equations are derived for the mechanical loading in a 
nonlinear temperature field and a steady transverse magnetic 
field. By using Melnikov function method, the criteria are 
obtained for chaos motion to exist as demonstrated by the 
Smale horseshoe mapping. The vibration equations are 
solved numerically by using a fourth-order Runge-Kutta 
method. Its bifurcation diagram, Lyapunov exponents dia-
gram, displacement wave diagram, phase diagram and 
Poincare section diagram are obtained for some examples. 
The characteristics of the vibration system were analysed, 
and the roles of parameters on the systems are clearly un-
derstood.  

The use of Runge-Kutta methods have provided a reliable 
alternative numerical tools for producing fractals, phase 
plots, bifurcation diagrams and other forms of chaos dia-
grams.[7] Carried out a critical review on the development of 
Runge-Kutta discontinuous Galerkin (RKDG) methods for 
nonlinear convection-dominated problems. The authors 
combined a special class of Runge-Kutta time discretization 
that allows the method to be nonlinearly stable regardless of 
its accuracy, with a finite element space discretization by 
discontinuous approximations that incorporates the idea of 
numerical fluxes and slope limiters coined during the re-
markable development of high-resolution finite difference 
and finite volume schemes. The findings of this review re-
vealed that RKDG methods are stable, high-order accurate 
and highly parallelizable schemes that can easily handle 
complicated geometries and boundary conditions. The re-
view showed its immense applications in Navier-Stokes 
equations and Hamilton-Jacobian equations. This study has 
become a breakthrough in computational fluid dynamics 
especially in producing its chaos diagrams.[8] demonstrated 
how Duffing’s equation can be applied in predicting the 
emission characteristics of sawdust particles. The paper 
explains the modelling of sawdust particle motion as a two 
dimensional transformation system of continuous time series. 
The authors applied Runge-Kutta algorithms in providing 
solution to Duffing’s model equation for the sawdust parti-
cles. The author simulation results revealed a high profile 
feasibility of modelling sawdust dynamics as emissions from 
band saws. The conclusion drawn from this work was that 

the findings no doubt provide a breakthrough in the knowl-
edge of sawdust emission technology.[9] article in 2002 
investigated the chaotic behaviour of a transformer during 
ferroresonance under single and double opens conductor 
configurations .The solutions of the nonlinear differential 
equations which describe a ferroresonant circuit were cate-
gorized into three types, i.e., periodic, quasiperiodic, and 
chaotic. Simulation of each of these types was carried out 
using the fourth order Runge-Kutta method and results were 
corroborated using EMTP. The results revealed that the type 
of response from both configurations is influenced by the 
transformer saturation characteristic, core loss, and the am-
plitude of the voltage source. However, the double open 
conductor configuration exhibits greater sensitivity to pa-
rameters and chaotic behaviour for lower values of voltage 
source. The paper asserted that the steady state bifurcation 
diagram generated using a continuation procedure reveals 
the occurrence of contiguous stable and unstable funda-
mental frequency solutions. A critical study was carried out 
by[10] on the systematic analysis of the dynamic behaviour 
of the hybrid squeeze-film damper (HSFD) mounted on a 
gear-bearing system with strongly non-linear oil-film force 
and gear meshing force. The dynamic orbits of the system 
were observed using bifurcation diagrams plotted using the 
dimensionless unbalance coefficient, damping coefficient 
and the dimensionless rotating speed ratio as control pa-
rameters. The non-dimensional equations of the gear-bearing 
system were solved using the fourth order Runge-Kutta 
method. The onset of chaotic motion was identified from the 
chaotic diagrams which are phase diagrams, power spectra, 
Poincaré maps, bifurcation diagrams, maximum Lyapunov 
exponents and fractal dimension of the gear-bearing system. 
The research outcome provides some useful insights into the 
design and development of a gear-bearing system for rotat-
ing machinery that operates in highly rotating speed and 
highly non-linear regimes. Chaotic vibrations of a har-
monically excited non-linear oscillator with Coulomb 
damping were investigated by numerical solution in a range 
of excitation frequencies[11]. The paper reported that phase 
plane diagrams, Poincaré maps and time histories were ob-
tained with the Poincaré maps exhibiting strange attractor 
behaviour. Lyapunov exponents were estimated and for 
chaos; one of them is positive. A period doubling route to 
chaos was observed in certain frequency ranges and this 
was explained by harmonic balance analysis  

[12] Emphasized that one of the major ways of investi-
gating the dynamics of a continuous time system by differ-
ential equation is the use of Runge-Kutta methods in de-
veloping bifurcation diagram.  

The challenge of relevant literature that explores chaos 
diagrams as visual aid in dynamics characterization cannot 
be over emphasised. Furthermore, extensive literature study 
has shown significantly that Runge-Kutta is one of the most 
versatile numerical techniques that are used in computing 
chaos problems. A careful perusal of the numerous litera-
tures consulted shows that there exists a lacuna. There is still 
a question of which of the Runge-Kutta orders (i.e First, 
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Second, Third, Fourth, Fifth and Sixth orders) provides ac-
ceptable and reliable chaos diagrams. Therefore, the benefits 
of comparative analysis of fourth-order and fifth- order nu-
merically computed chaos diagrams cannot be overempha-
sized. This paper intend to fill part of the identified gaps by 
comparing the reliability of fourth and fifth orders 
Runge-Kutta methods in producing chaos diagrams for 
Duffing oscillator using[1] as a reference standard. 

2. Methodology 
2.1. Duffing Oscillator  

The studied normalized governing equation for the dy-
namic behaviour of a harmonically excited Duffing system is 
given by equation (1). 

2(1 ) ( )
2 o
xx x x P Sin tγ ω

•• •
+ − − =           (1) 

In equation (1), x , x
•

 and x
••

 represents respectively 
displacement, velocity and acceleration of the Duffing os-
cillator about a set datum. The damping coefficient is γ . 
Amplitude strength of harmonic excitation, excitation fre-
quency and time are respectively oP , ω  and t .[1,13,14] 
proposed that combination of γ  = 0.168, oP  = 0.21, and
ω  = 1 .0 or γ  = 0.0168, oP  = 0.09 and ω  = 1.0 pa-
rameters leads to chaotic behaviour of a harmonically ex-
cited Duffing oscillator. This study investigated the evolu-
tion of 1000 trajectories that started very close to each other 
and over five (5) excitation periods using adaptive 
Runge-Kutta algorithms with a start time step 

(
500

Excitation periodt∆ = ). The resulting strange attractor[15] at 

the end of five (5) excitation periods in addition to other 
selected parameters combination are characterized with 
fractal disk dimension estimate based on optimum disk count 
algorithms. 

2.2. Parameter Details of Studied Cases 
A studied case is defined same as a parameter point in the 

parameters space. In all 101 101×  cases was studied in the 
plane of excitation frequencies versus amplitudes at two 
different damp coefficient levels ( γ  = 0.168 and γ  = 
0.0168). Excitation frequency and amplitude range are 
0.07 1.5ω≤ ≤ and 0.07 1.3oP≤ ≤ respectively. Common pa-
rameters to all cases includes initial displacement range 

( 0.9 1.1x≤ ≤ ), Zero initial velocity ( x
•

) and random number 
generating seed value of 9876 

2.3. Attractor Characterization 

The optimum disk count algorithm was used to charac-
terize all the resulting attractors based on fifteen (15) dif-
ferent disk scales of examination and over five (5) inde-
pendent trials. The Duffing behaviour is taken to be chaotic 
for estimated disk dimension greater than one (1.0) and 

otherwise non-chaotic. 

2.4. Time step selection 
[16] Argued that employing a constant time step size to 

seek solutions of ordinary differential equations of some 
dynamical systems that exhibits an abrupt change could pose 
serious limitation. In such engineering problems (chaotic 
dynamics) of interest, the choice of adaptive time step size 
becomes inevitable. The formula used for increasing and 
decreasing the time step ( t∆ ) in this study is given by (2) 
and (3) respectively. The tolerance ( tε ) was fixed at 610−

for all computation steps while the error (ε ) compares pre-
dicted results taking two half-steps with taking a full step. 
Equation (2) is used when tε ε<  and equation (3) used 
when tε ε> . 

1
4(0.95)( )tt t ε ε∆ = ∆              (2) 

1
5(0.95)( )tt t ε ε∆ = ∆             (3) 

3. Results and Discussions 
The algorithms developed by[17] was utilised to generate 

data for figures 1(a) to 1(d) shown below subject to minor 
modification. 

The strange attractors in figure 1 are all qualitatively the 
same as in the literature; see[1]. Though the estimated fractal 
disk dimensions (DE) of the four strange attractors in figure 1 
are quantitatively different, the fact that they are greater than 
one (Chaotic criteria for this study) signifies manifestation of 
chaotic behaviour of Duffing Oscillator for the respective 
combined driven parameters. The strange attractors in figure 
1(c) and 1(d) has higher fractal disk dimension and fill more of 
the phase space than the attractors in figures 1(a) and 1(b). It is 
expected in line with the definition of dimension as space 
filling ability of an attractor. Furthermore, major modifica-
tion of algorithms developed by[17] enable numerical pre-
diction of the Duffing Oscillator behaviour at 101 101×
(10201) case points in the plane of excitation frequencies 
versus amplitudes. The collection of case points with esti-
mated fractal disk dimension greater than one (1.0) at dif-
ferent damp level forms the chaos diagrams shown in figures 
2(a), 2(b), 3(a) and 3(b). 

Figures 2(a) and 2(b) are qualitatively alike and likewise 
figures 3(a) and 3(b). Each figure took average of seventeen 
and half hours to compute on Toshiba laptop Intel (R) Pen-
tium (R) Dual CPU T3400 at 2.16GHz with 2.00GB Ram 
and 32-bit operating system. There are respectively 6356 
(62.3%), 5435 (53.3%), 7943 (77.9%) and 8046 (78.9%) out 
of 10201 tested parameter points that drives Duffing oscil-
lator chaotically in figures 2(a) and 2(b) 3(a) and 3(b). In addi-
tion ,[18] suggests respectively reliability of chaos diagrams 
2(a) and 3(a) than 2(b) and 3(b) because of shorter average 
computation time step associated with Runge-Kutta fourth 
order algorithms in comparison with its fifth order counter-
part. Probability of chaotic behaviour is non-uniform on the 
plane ( oP ω− )by visual assessments of figures 2 and 3. 
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However, chaotic behaviour is highly probable below the 
diagonal line of the excitation frequencies versus amplitudes 
plane ( oP ω− ) than above and neighbourhood of the diago-
nal for all studied cases. 

 
(a) ( 0.21, 1.0, 0.168, 1.2815o EP Dω γ= = = = ) 

 
(b) ( 0.21, 1.0, 0.168, 1.3079o EP Dω γ= = = = ) 

 
(c) ( 0.09, 1.0, 0.0168, 1.4004o EP Dω γ= = = = ) 

 
(d) ( 0.09, 1.0, 0.0168, 1.4073o EP Dω γ= = = = ) 

Figure 1.  Computed strange attractors of Duffing Oscillator at two dif-
ferent damp coefficients based on one thousand trajectories at the end of 
five excitation periods 

 
Figure 2(a).  Chaos diagrams at 0.168 damp coefficients computed by 
Runge-Kutta fourth order algorithms (1.0001 1.5732ED≤ ≤ ) 

 
Figure 2(b).  Chaos diagrams at 0.168 damp coefficients computed by 
Runge-Kutta fifth order algorithms (1.0001 1.5649ED≤ ≤ ) 

 
Figure 3(a).  Chaos diagrams at 0.0168 damp coefficients computed by 
Runge-Kutta fourth order algorithms (1.0001 1.7260ED≤ ≤ ) 

 
Figure 3(b).  Chaos diagrams at 0.0168 damp coefficients computed by 
Runge-Kutta fifth order algorithms (1.0001 1.7328ED≤ ≤ ) 

4. Conclusions 
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This study has developed numerical tools that can predict 
the chaos diagrams of a harmonically excited Duffing Os-
cillator in the excitation frequencies versus amplitudes using 
fourth and fifth order Runge-Kutta algorithms. The chaos 
diagrams compares satisfactorily with literature results. 
Furthermore, there is qualitative agreement between chaos 
diagrams generated at different damp coefficients by fourth 
and fifth order algorithms. The probability that selected 
excitation frequencies and amplitudes will drive Duffing 
oscillator chaotically at 0.168 damp coefficient are 62.3% 
and 53.3% for fourth and fifth order Runge-Kutta algorithms 
are respectively, 77.9% and 78.9% at 0.0168 damp coeffi-
cient. However the utility of these chaos diagrams as tool for 
searching possible regions of parameter space where chaotic 
behaviour/motion exist may require additional tests such as 
spectral analysis, largest positive Lyapunov exponent e.t.c. 
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