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Abstract

Conflicting accounts of the role of mathematics in our physical theories can
be traced to two principles. Mathematics appears to be both (1) theoretically
indispensable, as we have no acceptable non-mathematical versions of our
theories, and (2) metaphysically dispensable, as mathematical entities, if they
existed, would lack a relevant causal role in the physical world. I offer a new
account of a role for mathematics in the physical sciences that emphasizes
the epistemic benefits of having mathematics around when we do science.
This account successfully reconciles theoretical indispensability and meta-
physical dispensability and has important consequences for both advocates
and critics of indispensability arguments for platonism about mathematics.

I.

Two plausible principles seem to be responsible for much of the mystery
surrounding the role of mathematics in our physical theories. On the one
hand, mathematics plays a central role in these theories, in the sense that
no non-mathematical alternatives are available. This near universal use of
mathematics in the physical sciences reflects what I will call the theoretical
indispensability of mathematics. That is, when we come to formulate physical
theories that we take to be the best candidates for the truth, i.e. those that
are best confirmed by the evidence we have, we find mathematics playing
a central and undeniable part in these theories. On the other hand, there
is a broad consensus that mathematical entities, if they exist, do not play
a causal role in the happenings of the physical world. Whatever it is that
mathematics is about, the mathematical domain is causally isolated from
the physical domain. It is true that some deny this causal isolation because
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they interpret mathematics to be about physical things, e.g. Lewis’ proposed
megethology, which interprets mathematics in terms of concrete wholes and
their parts (Lewis 1991, 1993). But even on these physicalistic interpreta-
tions of mathematics, where mathematical entities do bear causal relations
to physical systems, it is not in virtue of these causal relations that the math-
ematics helps in scientific theorizing. Whatever causal relations might result
from such an interpretation seem irrelevant to the value of mathematics for
science. I will call this view that mathematical entities have no relevant causal
role in the physical world metaphysical dispensability.1

One’s reactions to indispensability arguments for platonism about math-
ematics no doubt turn in large part on which of these two principles one is
inclined to emphasize. Advocates of such arguments, such as Colyvan, draw
attention to the theoretical indispensability of mathematics (Colyvan 2001).
Given that we must determine our ontological commitments using the most
attractive regimentation of our best scientific theories, and given that our best
scientific theories clearly do need mathematics, it is supposed to be inevitable
that we include mathematical entities of some sort in our ontology. Still, this
sort of argument does little to address the concerns of those philosophers of a
more metaphysical bent who are impressed by the metaphysical dispensabil-
ity of mathematics. Surely, they reply to indispensability arguments, we see
clearly that mathematics plays a different role in physical theories than, say,
theoretical entities, and we can capture the difference by articulating a meta-
physics consistent with the metaphysical dispensability of mathematics. Thus,
even if we cannot articulate non-mathematical physical theories, it remains
prudent to exclude mathematical entities from our ontology, and admit only
those entities whose causal role in the physical world we are confident of.

Both attempts to privilege one principle while ignoring the other are, to
say the least, philosophically unsatisfying, and a common reaction to this
situation is to go on to present arguments denying the principle one is un-
sympathetic with. Most famously, Field not only argued that mathematics
is metaphysically dispensable, but tried to show that mathematics is also
theoretically dispensable by actually formulating what he thought were non-
mathematical and attractive versions of some parts of classical mechanics
(Field 1980, 1991, 2001). Defenders of theoretical indispensability responded
by insisting that Field’s non-mathematical theories are either mathematical
in the end or else so different from our ordinary scientific theories as to be
relatively unattractive (MacBride 1999). While these criticisms of Field seem
to have undermined his specific approach, a more recent flurry of attempts
to block the connection between theoretical indispensability and ontolog-
ical commitment show that advocates of indispensability arguments have
yet to carry the day. Here I am thinking of Balaguer, Azzouni and Yablo,
who despite their differences we might group under the label “fictionalists”
(Balaguer 1998, 2001, Azzouni 2004, Yablo 1998, 2000, 2001, 2002). These
fictionalists insist on metaphysical dispensability and, in various ways, use it
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to adjust their ontological commitments even when they cannot formulate
non-mathematical versions of our best physical theories.

The temptation for one impressed by theoretical indispensability is to ei-
ther somehow try to deny metaphysical dispensability or fall back on what
I will call impatient naturalism. In the next section I will explore some at-
tempts to deny metaphysical dispensability, and argue that these attempts fail.
Still, the main idea pursued in that section will be extremely important in
suggesting a way to reconcile theoretical indispensability with metaphysical
dispensability. To anticipate my main conclusion, I will argue that mathe-
matics allows us to make claims about higher-order or large-scale features of
physical systems while remaining neutral about the basic or micro-scale fea-
tures of such systems. This role for mathematics is essential to our ability to
formulate physical theories that, at any given time, are confirmed by the evi-
dence we have. Thus, any attempt to theorize without mathematics will lead
to theories that are less well confirmed by the evidence typically available.
While the resulting position successfully reconciles theoretical indispensabil-
ity with metaphysical dispensability, it is not a complete vindication of indis-
pensability arguments for platonism. For the only way mathematics can play
this crucial role is if pure mathematics receives a large measure of confirma-
tion prior to its application. So, I am not in any way attempting to argue
for platonism on the basis of the role of mathematics in physical theories,
but am only trying to clarify this role in a way consistent with theoretical
indispensability and metaphysical dispensability.

Before I turn to some attempts to deny metaphysical dispensability, I want
to briefly describe the position I call impatient naturalism. An impatient nat-
uralist accepts both theoretical indispensability and metaphysical dispens-
ability but rejects outright the proposals by Field, Balaguer, Azzouni, and
Yablo by an appeal to the standards of scientific practice. These standards
supposedly conflict with the non-literal or non-standard readings that fic-
tionalists give to our best physical theories or undermine the scientific cre-
dentials of Field’s alternative non-mathematical theories. A typical impatient
naturalist demand, made by Burgess & Rosen, is for Field to submit his non-
mathematical theories to a physics journal for evaluation (Burgess & Rosen
1998, p. 206, Burgess 1983). While entertaining as rhetorical flourishes, such
demands leave a serious explanatory gap, one which I aim to fill in this pa-
per. Every brand of naturalist must accept that scientists use mathematics
in their physical theories and must assign some weight to this practice. But
to stop there and refrain from any further investigation into why scientists
might do this or how such a practice might contribute to the goals of science
is an unattractive form of naturalism. An analogy will hopefully make the
contrast between impatient and patient naturalism clearer. Suppose we are
struck by the scientific practice of different labs repeatedly attempting to re-
produce experimental results announced in journals. All naturalists must take
this practice seriously and refrain from criticizing it for non-scientific reasons.
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Some may still wonder why scientists do this or how this practice contributes
to the goals of science. An impatient naturalist attempts to close off this in-
vestigation by insisting that this is just what scientists do. A more nuanced
naturalist would review various possible explanations until a satisfactory one
had been found. This is the method I adopt regarding the practice of using
mathematics in our scientific theories, and I believe that the explanation I
settle on helps us to understand why scientists have adopted this practice.

II.

In this section I explore the options for defending the theoretical indispens-
ability of mathematics by rejecting metaphysical dispensability. If we could
find some causal role for mathematical entities in the physical world, then
there would be a very short account of why scientists employ mathematics
in their theories. Scientists want their theories to give as complete an ac-
count as possible of the genuine causal structure of the physical world, and if
mathematical entities figure in this causal structure, mathematics must clearly
be part of these scientific theories.2 The difficulty with this approach is well
stated by Field in the course of his argument for the theoretical dispensability
of mathematics:

But even on the platonist assumption that there are numbers, no one thinks
that those numbers are causally relevant to the physical phenomena: numbers
are supposed to be entities existing somewhere outside of space-time, causally
isolated from everything we can observe. If, as at first blush appears to be the
case, we need to invoke some real numbers like 6.67 × 10−11 (the gravitational
constant in m3/kg−1/s−2) in our explanations of why the moon follows the path
that it does, it isn’t because we think that that real number plays a role as a cause
of the moon’s moving that way; it plays a very different role in the explanation
than electrons play in the explanations of the workings of electric devices. The
role it plays is as an entity extrinsic to the process to be explained, an entity related
to the process to be explained only by a function (a rather arbitrarily chosen
function at that). Surely then it would be illuminating if we could show that
a purely intrinsic explanation of the process was possible, an explanation that
did not invoke functions to extrinsic and causally irrelevant entities. . . . . . . the
elimination of numbers, unlike the elimination of electrons, helps us to further
a plausible methodological principle: the principle that underlying every good
extrinsic explanation there is an intrinsic explanation. If this principle is correct,
then real numbers (unlike electrons) have got to be eliminable from physical
explanations, and the only question is how precisely this is to be done (Field
1980, 43–44).3

This sort of argument shows how one can argue for theoretical dispens-
ability based on metaphysical dispensability and what appear to be obvious
additional assumptions. For Field these additional assumptions seem to be
that explanations determine what is needed in a physical theory and that
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all explanations are causal. Given that mathematical entities are not part of
the physical systems of concern, non-mathematical causal explanations must
be available. And any features of our current scientific theories that are not
needed for these causal explanations are not needed in our physical theories.

I have already suggested why it is not helpful to deploy a physicalist inter-
pretation of mathematics in a defense of theoretical indispensability. Even if
we adopt an interpretation of mathematics according to which 6.67 × 10−11

does turn out to be a part of the Earth-moon system, and so the real number
is an intrinsic part of the system we are concerned with, this aspect of 6.67 ×
10−11 is not relevant to the role of the gravitational constant in these units
in our account of why the moon moves the way it does. As Field clearly rec-
ognizes, this number is connected to the system only in virtue of a function
or mapping whose features are determined in part by the arbitrary units we
have adopted. To shift to an even simpler example, “System S is at 40 degrees
Celsius” can be plausibly regimented as “C(S) = 40” where C is a mapping
taking all physical systems to appropriate real numbers, reflecting the choice
of degrees Celsius as units.4 Both 6.67 × 10−11 and 40 play their role in these
scientific representations and resulting explanations only in conjunction with
a mapping between physical systems and mathematical structures.

Given this mapping account of applications it might seem inevitable that
mathematics is theoretically dispensable (as with Field), or that even if it
is not, we can still refrain from accepting mathematics into our ontology
(Balaguer 1998, ch. 7).5 One attempt to block this conclusion focuses on
what I will call abstract explanations. Abstract explanations have quite dif-
ferent features from the explanations involving coordinate systems mentioned
above, and these differences suggest a role for mathematics in physical the-
ories that Field and others seem to have missed. While, in the end, I will
argue that abstract explanations are not by themselves sufficient to defend
theoretical indispensability, they will provide an important clue as to how to
do so.

By an abstract explanation I mean an explanation that appeals primarily
to the formal relational features of a physical system.6 Some abstract expla-
nations that employ mathematics seem to qualify as intrinsic explanations.
This is because even though they can be thought of as involving mappings
between a physical system and a mathematical domain, these mappings do
not turn on any arbitrary choice of units, but concern only the intrinsic fea-
tures of the systems represented. As my example I take an explanation of
why it was impossible to walk a certain kind of path across the bridges of
Königsberg. Suppose that it is 1736 and we are with Euler in Königsberg.
He claims:

A connected graph G is Eulerian iff every vertex of G has even valence
and after a bit of mathematical study we accept what he says as true.7 This
mathematical study involves learning some new concepts: a graph (or multi-
graph) is an ordered pair, where in the first position is a set of objects called
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Figure 1. The bridges of Königsberg

Note: (Figures 1 and 2 are from Carlson 2001. Figure 3 is adapted from figure 2.)

vertices and in the second position is a set of (unordered) pairs of vertices
called edges. A path of a graph is a series of edges where one of the vertices in
the nth edge overlaps with one of the vertices in the n + 1th edge. Connected
graphs have a path between any two distinct vertices. The valence of a vertex
is how many edges it is part of. Finally, a graph is Eulerian just in case it
is connected and has a path from an initial vertex v that includes each edge
exactly once and that ends with v.

After this lesson in mathematics we walk over with Euler to the famous
seven bridges of Königsberg. They look like Figure 1. If we treat the islands
and banks as objects, and use the bridges to form edges, the physical system
forms a simple graph. See Figure 2. At least one of these vertices has an odd
valence (in fact they all do), so this graph is non-Eulerian. This is just to say
that it is impossible for anyone to cross all the bridges exactly once and return
to their starting point. If I was asked to explain why it is impossible to make
such a crossing, then I would appeal to the fact that one of the vertices has

Figure 2. A non-Eulerian graph
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Figure 3. An Eulerian graph

an odd valence. To further fill out this example, imagine that we traveled to a
nearly identical town down the river (called K′, perhaps) where the residents
had refrained from building three bridges so that their bridge system formed
the graph given in Figure 3. Knowing Euler’s theorem, I could now explain
why we could cross all the bridges exactly once and end up at the starting
point by appealing to the fact that all the vertices have an even valence.

I claim that it is a fact about the bridges of Königsberg that they are
non-Eulerian and that an explanation for this is that at least one vertex has
an odd valence. Whenever such a physical system has at least one bank or
island with an odd number of bridges from it, there will be no path that
crosses every bridge exactly once and that returns to the starting point. If the
situation were slightly different, as it is in K′, and the valence of the vertices
were to be all even, then there would be a path of the desired kind.

Here we see the limitations of Field’s conception of applications of math-
ematics. For him, each application involves relating a physical system to
something mathematical via a coordinate system or unit of measurement.
There is nothing about the solar system alone, he could say, that relates it to
the gravitational constant in some arbitrarily chosen units. But not all ap-
plications are like that. I have not brought in any coordinate system or unit
of measurement, or any arbitrary association between the bridges and graph
theory. All that I have done is described the physical system at a higher level
of abstraction by ignoring the microphysical properties of the bridges, the
banks and the islands. It is tempting to say that the bridge system just is a
graph, although this is somewhat misleading. The bridge system is of course
not a graph because graphs are mathematical entities and the bridge system
is physical. Still, the bridge system and this particular graph seem much more
intimately connected than the system with a temperature and the number 40.
We might capture this by saying that the bridge system has the structure of a
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graph, in the sense that the relations among its parts allow us to map those
parts directly onto a particular graph.

Abstract explanations are useful to scientists because they are successful
even when the microphysical configuration of a system changes. A micro-
physical explanation of why we could not walk a certain path on the bridge
might fail if the microphysics of the bridges was sufficiently altered, e.g. the
bridges were turned into gold. The abstract explanation seems superior be-
cause it gets at the root cause of why walking a certain path is impossible
by focusing on the abstract structure of system. Even if the bridges were
turned into gold, it would still have the structure of the same graph, and
so the same abstract explanation would apply. By abstracting away from the
microphysics, scientists can often give better explanations of the features of
physical systems.

Batterman has recently emphasized a special kind of abstract explana-
tion which he calls asymptotic explanation (Batterman 2002a).8 Asymptotic
explanations involve mathematical equations that result from taking one or
more quantities in a fundamental mathematical law to a limit such as 0 or
infinity. This sort of transformation can greatly simplify the mathematics
involved and produce equations that are both tractable and universal, i.e. re-
main correct for a wide variety of physical systems. I agree with Batterman’s
claims that asymptotic explanations are important for science and that they
deserve further scrutiny by philosophers of science. I add that some abstract
explanations are not asymptotic explanations, as the Euler example shows,
and that abstract explanations generally require philosophical examination.

In order to see how someone critical of theoretical indispensability could
respond to abstract explanations it is useful to review Field’s representation
theorems and what role they play in his account of applications of mathemat-
ics. Field’s theorems depend on first giving a non-mathematical version of the
scientific theory under consideration. In the case discussed in Science With-
out Numbers this involves providing an axiomatization for the background
space-time manifold needed and axioms for each physical magnitude usually
associated with mathematical entities, e.g. temperature (Field 1980, ch. 7).
Once this axiomatization is in place, Field offers a representation theorem
which, if successful, would show that every (semantic) consequence of the
mathematical theory T expressible in the non-mathematical terms of theory
T′ is also a consequence of the non-mathematical theory T′.9 T′, then, is
the theory that Field can appeal to when asked to determine his ontological
commitments, even though in practice it may be more convenient to work
with the original mathematical theory T.

The specific T′ that Field developed has no place for abstract explanations
as his background manifold invokes only space-time points and regions and
his magnitudes are defined as properties of such points and regions. A crude
Fieldian attitude to abstract explanations would thus be that only microphys-
ical explanations are essential to science, and so even if abstract explanations
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occur in scientific practice, they are not really required. In the bridges case
this amounts to the denial that there is any general scientific fact that an Eu-
ler path is impossible. Any particular attempt to walk an Euler path will fail,
but this failure will have a perfectly transparent microphysical explanation
that follows from T′, e.g. pointing out where the path crosses a given bridge
twice.

I call this response crude because it presupposes a number of controver-
sial philosophical assumptions. To carry it through quite generally would
involve a defense of Humean supervenience as well as a rejection of even
the minimal sort of naturalism that I am assuming in this paper. Recall that
Humean supervenience is the doctrine that all facts (in our world and simi-
lar worlds) supervene on facts about microphysical particulars, their intrinsic
properties and their spatio-temporal relations. That is, any difference in facts
of any kind depends on differences at this microphysical level.10 To extend
this metaphysics into a rejection of abstract explanations would involve a
denial of common scientific practices. That is, even though scientists em-
ploy abstract explanations, such a practice is reinterpreted as insignificant
for helping to determine the scientific theories used when assessing ontolog-
ical commitments. While some explanations are accorded importance in this
regard, abstract explanations are ignored. Both positions are of course quite
controversial and go beyond the more plausible commitment to metaphys-
ical dispensability. While Field and others may accept these claims, it does
not seem acceptable to assume them when arguing against theoretical indis-
pensability or platonism about mathematics generally. For at least as stated
above, Humean supervenience by itself is incompatible with the existence of
mathematical entities, and thus would beg the question as a premise in an
argument against platonism.

A superior response by an advocate of Field’s program would be to accept
abstract explanations as genuine and to go on to offer representation theo-
rems for these parts of mathematics as well. There seems to be nothing to stop
Field from merely adding new axioms to his non-mathematical theory T′ and
proving a representation theorem in relation to this use of graph theory just
as he proved a representation theorem relating to the use of real numbers in
measuring temperature magnitudes. Indeed, in my account of how the bridge
system forms a graph it looks like I have described the series of steps needed
to do this. Field could define physical vertex or p-vertex, physical edge or
p-edge, and then physical graph or p-graph in parallel to the mathematical
definitions of these concepts with little change. Generalizing this idea, when-
ever an abstract mathematical explanation is found in science, Field could
adopt axioms for higher-order or abstract physical properties and prove the
resulting representation theorem. The resulting non-mathematical theories
would be considerably more complicated than the theories Field and others
have considered to date, but they seem a natural extension of the principles
Field articulates.
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III.

The lesson of the previous section is that a disciplined adherent of metaphys-
ical dispensability bent on undermining theoretical indispensability should
take any purportedly indispensable application of mathematics and absorb it
into her non-mathematical theory by simply invoking new physical properties
and relations and the requisite axioms needed to prove the representation the-
orem. This is most likely the picture motivating an important, though flawed,
argument by Balaguer. Balaguer dubs our account of applications in terms
of mappings the representational account, and argues that if the represen-
tational account is successful for applications of mathematics generally then
mathematics is theoretically dispensable:

whenever the representational account can be used to explain a given application
of mathematics, we will be able to define a function �, of the sort discussed above,
from the physical objects that the assertions in question (that is, the assertions
of the given empirical theory that refer to mathematical objects) can be taken to
be about, to the mathematical objects of the mathematical theory being applied.
But to define such a � is just to prove a representation theorem for the given use of
mathematics. That is, the � here is going to be exactly the sort of function that’s
constructed by a representation theorem: it’s going to be an appropriate sort of
homomorphism mapping an appropriate sort of empirical structure (which the
assertions in question can be taken to be about) into the mathematical structure
that we’re applying. But as Field has shown, [footnote to Field 1980] once we’ve
proved a representation theorem, it is not hard to nominalize the assertions in
question. All we have to do is restate these assertions solely in terms of the
empirical structure that we defined along with the homomorphism � (Balaguer
1998, p. 112, my emphasis).11

The error in this argument occurs in the emphasized sentence. An advocate of
the mapping account clearly must accept mappings, as it is in terms of map-
pings that the statements of applied mathematics are assigned appropriate
truth-conditions. Still, defining these mappings between physical situations
and mathematical structures is not sufficient to prove the needed representa-
tion theorems. In addition to defining the mapping, one must adopt axioms
about the physical situation and its properties that are quite strong. For exam-
ple, in proving his representation theorem for temperature magnitudes Field
assumes that “if point x has temperature ψ (x) and point z has temperature ψ

(z) and r is a real number between ψ (x) and ψ (z), then there will be a point
y spatio-temporally between x and z such that ψ (y) = r” (Field 1980, p. 57).
Such an assumption is required to ensure that the temperatures of space-time
points are sufficiently arrayed so that any statement involving real numbers
and temperatures will have a clear non-mathematical analogue. By setting
up this parallel between mathematical claims about temperature and non-
mathematical claims about temperature properties, we get the conclusion
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that every consequence about these temperature properties implied by the
mathematical theory is also implied by the non-mathematical theory.

The lesson to be drawn from Balaguer’s argument is that a defender of the-
oretical indispensability who accepts the mapping account must find a way
to reject the axioms needed to prove the appropriate representation theorem.
One kind of objection to the axioms is that they are really just mathemat-
ical claims in disguise. These objections are inconclusive, though, because
there is no consensus on how we decide whether or not space-time points,
for example, are mathematical entities. More recently, Colyvan has pointed
forcefully to the many respects in which the theory T′ that results from as-
sembling all the needed axioms is worse off than the original mathematical
T.12 For example, T′ will generally be less unified than T due to the way in
which the mathematics is eliminated. Again, unfortunately, there is no prior
agreement on how we compare the goodness of two scientific theories when
assessing our ontological commitments. Field at least grants that his T′ must
be “attractive” (Field 1980, p. 41) and mentions at one point explanatory
power (Field 1980, p. 8), but these criteria are too vague to deploy in either
attacking or defending T′.13

A stronger objection is based on considering the evidence we have for the
two theories. We have just seen that to prove a representation theorem for
temperatures, one must assume quite strong axioms about instantiated tem-
perature magnitudes. Similarly, to get a representation theorem for a physical
theory employing graph theory, one must invoke strong axioms about phys-
ical graphs or p-graphs. The worry with these axioms is that they receive
little or no support by our empirical evidence for the mathematical scientific
theories T. In line with the naturalism assumed in this paper, we are entitled
to the claim that the scientific theories adopted by the scientific community
receive an acceptable measure of confirmation by our experimental data. But
this data does not help us when we ask if instantiated temperature proper-
ties are continuous as required, or even whether temperatures are properties
of space-time points in the first place. Our ignorance regarding such issues
points squarely at one crucial role for mathematics in our scientific theoriz-
ing: we can offer abstract mathematical descriptions of physical systems, and
have these descriptions be confirmed to a reasonable degree, even when we
are ignorant of many of the features of the physical system. In the tempera-
ture case, we can use real numbers to describe temperatures while remaining
neutral on the question of whether instantiated temperatures are continuous
and a host of other interpretative questions about temperature. Similarly, we
can use graph theory to describe the bridges of Königsberg without knowing
either the details of the bridges’ physical construction or the extent to which
graphs are to be found in physical systems of this type or in the physical
world more generally.

On the present view, then, when a scientist accepts a mathematical state-
ment like “C(S) = 40” or “The bridge system forms a non-Eulerian graph”
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there is an implicit adjudication between the mathematical properties that
the scientist believes are appropriate to ascribe to the physical system and
those that are deemed inappropriate. Field denies that this distinction is in
place, and so assigns analogues of all the necessary mathematical properties
of the mathematical entities to the constituents of his physical systems using
the axioms of the non-mathematical theory. We can block this extension by
drawing attention to the evidence that scientists use to determine whether
or not to accept a mathematical scientific claim. This evidence simply does
not resolve all the issues that are relevant to every mathematical property.
Despite this ignorance, scientists work with the mathematical statements. As
a non-mathematical theory must take a stand on some of these murky issues,
it is a violation of scientific standards to adopt it. The prudent course is
to continue to investigate the systems to see which additional mathematical
properties are correctly ascribed to the systems. Until that investigation is
complete, the scientist accepts the mathematical scientific theory as the best
confirmed available theory.

Mathematics, then, has an indispensable epistemic role in our physical
theories that is clearly consistent with its metaphysical dispensability. While,
perhaps in principle, if we knew all the facts about a given physical system, we
could give a correct, non-mathematical description of these facts, it remains
that, in practice, our ignorance of some of these facts leads us to employ
abstract mathematical descriptions. If asked to compare an accepted math-
ematical scientific theory with a newly proposed non-mathematical one, the
prudent scientist should reject the non-mathematical theory as currently less
well confirmed than the mathematical theory. This is the explanation that I
would suggest for why a physics journal would reject such non-mathematical
theories.

I end this section with two further issues related to confirmation. First,
for this account to work pure mathematics must receive a high degree of con-
firmation prior to its application in science. If mathematics received all or
most of its confirmation due to its application, then mathematical scientific
theories would be relatively unattractive compared to non-mathematical sci-
entific theories. Adding mathematics would have significant costs. However,
if mathematics was highly confirmed prior to its applications, then combining
mathematics with a non-mathematical scientific theory would hardly detract
at all from the overall degree of confirmation of the theory.

Ideally my account of the role of mathematics in physical theories would
be supplemented with a story of exactly how mathematics is confirmed by
mathematicians. I do not have such a story ready to hand, and so must fall
back on the naturalistic premise that if mathematicians accept a given body
of mathematical theory, they must have taken appropriate steps to confirm it.

A second point concerns the status of indispensability arguments for pla-
tonism about mathematics in light of my account of the role of mathematics in
our physical theories. Some have insisted that indispensability arguments are
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the only or best argument for platonism (Field 1980, Colyvan 2001), but my
proposed role for mathematics completely undermines this claim. For while I
have defended the theoretical indispensability of mathematics, the way I have
carried out this defense rules out any special kind of confirmation for the
mathematics employed in our scientific theories. For mathematics to play the
important role that it does, it must be confirmed prior to its application. If
this prior confirmation was absent, then the axioms Field needs for his rep-
resentation theorems would be just as good or bad as the axioms of the pure
mathematical theory. Indeed it seems that, other things being equal, Field’s
axioms are better because they at least stand a chance of eventual empirical
confirmation, even if they are currently completely unsupported by the evi-
dence we have. Thus it was a serious tactical error for platonists to rest their
position on the role of mathematics in science. A nuanced platonist must find
a source of confirmation for mathematics prior to its application if mathe-
matics is to be theoretically indispensable and metaphysically dispensable.

IV.

So far I have proposed a way of reconciling theoretical indispensability with
metaphysical dispensability by focusing on the epistemic benefits of having
mathematized scientific theories, i.e. having well confirmed theories despite
our ignorance of various features of the physical situation. What I would like
to do in this section is argue for the connection between this kind of theoret-
ical indispensability and questions of ontological commitment. Many people
that I have dubbed “fictionalists”, such as Balaguer, Azzouni and Yablo,
have claimed that we can accept mathematized scientific theories without
adjusting our ontological commitments in any way. I believe that the flaws
in these arguments come into sharper focus given the account of the role of
mathematics just offered. I will not argue here for the strong claim that the
only way to accept these theories is to be a platonist about mathematics, but
only for the comparatively weaker claims (1) that the presence of mathemat-
ics in our best confirmed scientific theories forces us to offer some account
of the subject matter of mathematics and (2) this account, whether it turns
out to be platonist or nominalist, must be a realist account that assigns the
statements of pure mathematics truth-values that accord with mathematical
practice.

To reach these conclusions I must emphasize an aspect of Quine’s criterion
for ontological commitment that has so far merely lurked in the background.
This is the epistemological motivation of Quine’s test. Quine stipulates that
we should believe in all the entities that are quantified over by our best
scientific theories because these are the entities that we have some reason
to be committed to. The test is not meant as a criterion for existence and
would clearly be unacceptable if this is how it was meant. Not even the most
strident scientific realist, who maintains that our theories are true, would
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insist that being mentioned in our theories is a criterion for existence. Still,
I maintain that we should adjust our ontological commitments using these
theories and only these theories. If the theory does not quantify over a kind
of object, then we should not believe in that kind of object. Even if those
objects nevertheless do exist, we have no reason to believe in them.14

I turn now to Balaguer’s attempt to reconcile fictionalism with the accep-
tance of mathematical scientific theories. For clarity, I will label the fictional-
ist account of applications of mathematics that Balaguer defends the frame-
work account. Balaguer calls the attitude towards mathematical scientific
theories needed for his framework account “nominalistic scientific realism”
(N-realism). The N-realist accepts our ordinary theories T, but restricts her
ontological commitments to what is needed to handle what Balaguer calls the
“purely nominalistic content” of T. Three principles are needed to support
this position:

(NC) Empirical science has a purely nominalistic content that captures its “com-
plete picture” of the physical world.

(COH) It is coherent and sensible to maintain that the nominalistic content
of empirical science is true and the platonistic content of empirical science is
fictional (Balaguer 1998, p. 131).

(TA) Empirical theories use mathematical-object talk only in order to construct
theoretical apparatuses (or descriptive frameworks) in which to make assertions
about the physical world (Balaguer 1998, p. 137).

(TA) is supposed to be consistent with some applications being explained
in terms of mappings, but is also a more flexible and general account of
applications because it allows scientists to use mathematics in any way desired
to make assertions about the physical world.

(TA) is supported by (NC) and (COH), which in turn depend on Balaguer’s
principle of causal isolation (PCI): “there are no causal interactions between
mathematical and physical objects” (Balaguer 1998, p. 110, italics removed).
Of course, this is just a version of what I have been labeling metaphysical
dispensability. Given that there are no causal connections between physical
and mathematical objects, Balaguer claims that there can be no ultimate or
bottom-level facts whose constituents include both mathematical and physi-
cal objects:

if we grant that the number 40 isn’t causally related to S—and this is beyond
doubt—then we are forced to say that while (A) [“The physical system S is forty
degrees Celsius”] does express a mixed fact, it does not express a bottom-level
mixed fact; that is, the mixed fact that (A) expresses supervenes on more basic
facts that are not mixed. In particular, it supervenes on a purely physical fact
about S and a purely platonistic fact about the number 40 (Balaguer 1998, p.
133).



A Role for Mathematics in the Physical Sciences 267

So, at the level of facts, even if this is not captured by our scientific theories,
there is a domain of physical facts and, if there are any truths of pure math-
ematics, mathematical facts. These bottom-level facts are the metaphysical
basis for the truth of claims like (A), when they are true. And, crucially, the
existence of basic physical facts makes it “coherent and sensible”, as Balaguer
puts it, for the N-realist to commit herself only to the constituents of these
facts, i.e. physical objects and properties. The ontological commitment to
mathematical objects and properties is rejected and so we can be fictionalists
after all. On this approach theoretical indispensability and metaphysical dis-
pensability are reconciled without granting mathematics any genuine subject
matter.

Now, in light of all that we have seen, let us consider how it could be that
the mathematics found in a given scientific theory is theoretically indispens-
able, and yet metaphysically dispensable. This will happen just in case we
do not have a good understanding of the physical facts responsible for the
physical phenomena we are investigating, although some of the facts may
be clear. But if we do not grasp some of the physical facts, the theory we
accept should remain neutral on the interpretative questions relating to these
facts. Given this ignorance, both (NC) and (COH) are fatally undermined.
Our theories, understood in light of the evidence we have, do not determine
a collection of physical claims that we could view as the nominalistic content
of those theories. Given this indeterminacy, it is not reasonable to assent to
the nominalistic content of the theories we accept. Here I am presupposing
the epistemological nature of Quine’s criterion for ontological commitment.
If Balaguer accepts this, then his N-realist is fixing her ontological com-
mitments using an indeterminate aspect of her theory, i.e. its nominalistic
content.

I think this objection is decisive as, while there can be doubts about exactly
what the correct canons of scientific reasoning are, it seems quite clear that
it is not rational to fix one’s commitments using an indeterminate collection
of claims. To see the problem, consider a temperature theory T proposed
when the physical basis for temperature is still unresolved, and so perhaps
T leaves open the crucial interpretative question of the existence of a lowest
temperature. What does the N-realist countenance in committing herself to
the nominalistic content of this theory T? Any set of claims sufficient to fix
our ontological commitments would include either the claim that there is
no lowest temperature or the claim that there is a lowest temperature. Given
that our theory T remains silent on this issue, there is no definite nominalistic
content there to assent to. Similarly, suppose our theory involves an abstract
description of the bridges of Königsberg, but lacks any resources to describe
the microphysical features of the bridges. The nominalistic content of this
theory is completely unspecified. Does the N-realist admit bridges without
microphysical features, or does she supply these features arbitrarily? Believ-
ing in bridges without believing in their microphysical features is strange to
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say the least, and adding such features goes beyond what the N-realist has
reasonably confirmed.

There is still one way to make the commitments of the N-realist determi-
nate, but to take this route is again to fly in the face of Quine’s conception
of ontological commitment. We can resolve the indeterminacy by replacing
(COH) with:

(COH∗) It is coherent and sensible to maintain that the actual bottom-level phys-
ical facts render the nominalistic content of empirical science true and the pla-
tonistic content of empirical science is fictional.

So, in our example, the N-realist would commit herself to the constituents
of the actual facts about temperature, including the existence of a lowest
temperature, as it is these facts that actually underwrite the truth of her in-
complete theory of temperature. The problem with this is not that these facts
do not obtain or that their constituents do not exist. It is rather that the
evidence available to the N-realist does not support her commitment to the
constituents of these facts and, perhaps more disturbingly, given her lack
of access to the ultimate facts the N-realist will not have access to her own
ontological commitments either. The success of science may give her some
evidence for some of the facts that obtain, say that objects have temperatures
and the temperatures range at least from −100 degrees Celsius to 50 000 de-
grees Celsius. But the evidence available does not, at that moment, indicate
what to say about the existence of a lowest temperature. So, the scientist who
winds up believing in a lowest temperature by these means will believe in
something that she has no evidence for. Similar issues arise with the bridges
example. Supposing that they were actually constructed out of a rare metal,
the N-realist who adopted (COH∗) would admit into her ontology this very
metal, independently of whether she had any genuine evidence for its exis-
tence. Unless we abandon Quine’s test and sever the tie between ontological
commitment and evidence, (COH∗) is not a viable principle.

V.

I believe that any attempt to combine theoretical indispensability, metaphys-
ical dispensability and a rejection of mathematical realism must either face
the sorts of problems that Balaguer does or else revise our entire picture of
ontological commitment. As an example of the former problem I take the
work of Stephan Yablo. Yablo is quite sensitive to the pitfalls of appealing
to non-literal language, but in the end he seems to face the same sort of
objections that I raised against Balaguer and Field. To see the differences
between Yablo’s “figuralism” (as he calls it) and Balaguer’s fictionalism, con-
sider statements like “The physical system S is forty degrees Celsius” or
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“The bridge system forms a non-Eulerian graph”. As we have seen, Balaguer
grants these claims both a normal and a nominalistic content and he ad-
justs his ontological commitments only in light of the nominalistic contents
of these statements. What I have just argued is that these statements do not
have determinate nominalistic contents. Unlike Balaguer, Yablo appeals di-
rectly to the similarities between mathematical language and non-literal or
figural uses of language. Thus Yablo would maintain that he determines what
to believe based on the entire content of applied mathematical statements,
but only when these statements are assigned their proper contents, and that
these proper contents are generated by the non-literal use of language. Still,
he grants that the “real contents” of these statements may be something less
than what they appear to be, which he sometimes calls their “literal content”:
“The real content of my utterance is the real-world condition that makes it
sayable that S. The real content of my utterance is that reality has feature
BLAH: the feature by which it fulfills its part of the S bargain” (Yablo 2002,
p. 229) and elsewhere.

What is the literal content of “the number of sheep is three times the number of
goats”? That the sheep have associated with them a number that stands to the
number associated with the goats in a certain numerical relation, a relation that
the number of F’s bears to the number of G’s only if there are three times as
many F’s as G’s. The real content is that there are three times as many sheep as
goats. It does not seem very mysterious how we get from the one to the other.
The real content is that portion of the literal content that concerns the sheep
and the goats (Yablo 2001, p. 97).

Despite the innovations over Balaguer and the resources that result from an
appeal to non-literal uses of language, Yablo faces precisely the same inde-
terminateness objection that I raised against Balaguer. As it stands, he has
not offered any general account of how we are to discern the real contents
hidden in the literal contents which we appear to be asserting or reasoning
with. Perhaps in the number case, the simple transformations that he has
discussed are workable. But this still leaves open our claims, which are still
quite simple, like “The physical system S is forty degrees Celsius” or “The
bridge system forms a non-Eulerian graph”. There is no determinate real
content here, either just about temperatures or just about bridges, to be re-
vealed. The full, literal content involves a complicated mapping relationship
between the systems and some part of the mathematical domain. If we try to
remove this appeal to the mathematical domain, we get only indeterminate
statements.

This does not show that Yablo could not carry out a general investiga-
tion of the use of applied mathematics, and extend his account of how the
real content is isolated from the literal. In fact, this appears to be what his
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more recent work is focused on. Still, even if such a general account were
developed to handle the wide range of applications currently in existence, it
is important to note that Yablo would then face another kind of question.
If he makes his real contents determinate, has he saddled the scientist with
commitments that she is not warranted in accepting, as we saw with (COH∗)
and with Field’s axioms? It is, of course, difficult to argue that any account
Yablo developed would do this, but it seems that the burden of proof must
be on Yablo to satisfy the indeterminateness objection without ascribing un-
reasonable commitments to practicing scientists.

Another strategy, sometimes also suggested by Yablo, is to revise our cri-
terion of ontological commitment. Azzouni frankly admits that his approach
requires a new account of ontological commitment, and I will end this section
by briefly summarizing my reasons for not following him. First, there is a
question of priorities. I am most impressed by the apparent conflict between
theoretical indispensability and metaphysical dispensability, and am sympa-
thetic with a broadly naturalistic approach to epistemology and ontological
commitment. Thus, in line with Quine, I am trying to clarify our commit-
ments with the aim of understanding how scientific theories work and why
scientists adopt the methodological principles that they do. An integral part
of this project is having an unequivocal and transparent criteria with which we
can decide, after the process of clarification and regimentation, what things
a scientist should believe in. Azzouni, by contrast, seems much more focused
on resolving the platonism-nominalism dispute, especially with reference to
the indispensability argument for platonism. From this perspective, Quine’s
criteria of ontological commitment can come to look like a substantial and
unexamined premise that can reasonably be questioned by the nominalist.
This questioning leads Azzouni to a distinction between quantifier commit-
ment and genuine ontological commitment. As with Field, Balaguer and
Yablo, Azzouni appeals to something like metaphysical dispensability to mo-
tivate his proposal. For Azzouni, though, the appeal is part of an argument
that even if our theories are quantifier committed to mathematical objects,
they need not be ontologically committed to mathematical entities because
mathematical entities fail certain tests.

I am prepared to grant Azzouni’s maneuver as an interesting and inno-
vative response to a certain kind of indispensability argument for platonism,
but as I have tried to make very clear I am not offering such an argument.
Instead, I am trying to account for a certain kind of scientific practice, us-
ing the best tools of clarification that philosophers have developed to date.
These tools include Quine’s test for ontological commitment. From within
the confines of my project, I do not see any advantages in abandoning Quine’s
criteria in favor of Azzouni’s. In fact, the disadvantages seem clear. If I were
to adopt Azzouni’s criteria, there would be an additional explanatory task
to resolve: why are scientists quantifier committed to mathematical enti-
ties, and not genuinely ontologically committed? The distinction introduced
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by Azzouni does not help me with my explanatory project and so I set it
aside.15

VI.

I conclude by considering two serious objections to my account. Both objec-
tions raise further philosophical and technical considerations which I cannot
resolve here, but discussing them will at least give me an opportunity to
suggest how I hope to respond in greater detail in the future.

The first objection grants much of what I have said against Field and
others, but traces the problems I have found to the role of mathematics in
idealized scientific theories. Idealized theories are those that we use despite
the fact that we are convinced that they are strictly speaking false. Thus, the
reason we are unhappy with Field’s non-mathematical version of classical
mechanics is the same reason we are dissatisfied with ordinary, mathematical
classical mechanics. Both theories are idealizations, and we can see in what
respects they are idealizations when we compare their predictions with the
theories that we actually accept, i.e. general relativity theory and quantum
mechanics. Perhaps, the objection concludes, the role for mathematics that
I have isolated is limited to such idealized cases. And, given that the the-
ories that we actually use to determine our ontological commitments are
not idealized in this way, the role of mathematics in these theories remains
mysterious.

Now, I have certainly not addressed the role of mathematics in our best,
current scientific theories like general relativity theory or quantum mechanics
and I grant that I must do this in order to fully vindicate my account. Still,
at least initially, the role of mathematics in these theories seems quite in line
with what I have suggested is the case with classical mechanics. In general rel-
ativity theory, for example, we adopt differential geometry and relate various
physical magnitudes to aspects of a preferred class of differentiable manifolds.
Someone like Field would no doubt insist that this involves extrinsic consid-
erations and that we would do better to develop a non-mathematical theory
that directly describes the physical properties of space-time. Our reluctance
to do this, I suggest, is due in large part to our wish to remain agnostic about
the wide variety of features of space-time that we would have to take a stand
on to get such a non-mathematical theory off the ground. It is no better to
follow Balaguer and Yablo and claim that we countenance only the entities
involved in the nominalistic or real content of general relativity theory. These
contents remain indeterminate precisely because can we accept general rela-
tivity theory without deciding certain basic questions about space-time. So,
I certainly do believe that this account is correct for our most up-to-date
scientific theories, and hope to work out the details in future work.

The objection raises even deeper issues, though, once we realize that ide-
alizations are central even in our best, current scientific theories.16 That is,
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often we can recognize that our claims about a system are strictly speaking
false, even though we have no superior, more realistic alternative to compare
it with. For example, many of the mathematical models used to make predic-
tions needed to test general relativity theory employ idealizations when they
leave out planets of the solar system, or include them only in an unrealistic
fashion. This is a central aspect of scientific practice, and one that seems to
go hand in hand with the use of mathematics in scientific theories.

One worry that idealization raises is whether or not it is compatible with
the mapping account of applying mathematics that I have relied on through-
out this paper. Suppose that “The physical system S is forty degrees Celsius”
is best regimented as a claim about a mapping C, namely that it is a ho-
momorphism that preserves temperature and that C(S) = 40, but that we
recognize it to be part of an idealization, and so as strictly speaking false.
Given its falsity, we should not commit ourselves to any of the things it talks
about. And, given the widespread use of idealization in science, perhaps we
should not commit ourselves to any of the entities that Quine’s criteria would
suggest (Maddy 1992, 1997). While I grant that idealization renders a simple
mapping account problematic, in future work I will present an explanation of
how an extended mapping account is consistent with idealization. And, just
as with the non-idealized cases I have assumed here, mathematics will play
a role in allowing well confirmed, definite claims about physical situations,
consistent with our ignorance of a wide variety of other features of these
situations.

The other deep issue that I have not touched on concerns alternative, less
ambitious versions of Field’s program. Recall that Field formulated strong
non-mathematical theories so that he could prove that the mathematical the-
ories were conservative over the non-mathematical theories: every (semantic)
consequence of the mathematical theory T formulated in non-mathematical
terms is also a consequence of the non-mathematical theory T′. In reaction
to my worries about the lack of evidence for these non-mathematical axioms,
one might ask what would follow from weaker non-mathematical axioms that
we might rate as more highly confirmed than the strong non-mathematical
axioms that Field needs for his full representation theorems. To take a triv-
ial but hopefully instructive example, consider the graph theory used in the
Königsberg bridges case. Graph theory includes the study of graphs with
infinitely many vertices. So, to establish a full representation theorem for this
case, Field would need to adopt non-mathematical axioms for his p-graphs
that would imply the existence of p-graphs with infinitely many vertices.
Suppose, though, that these sorts of graphs were never used in applications.
Even if they appear in the mathematical theory, it seems somewhat irrelevant
whether or not we can get a representation theorem for this part of graph
theory. Similarly, there are no doubt facts about the real numbers that are
not exploited in any current applications of the real numbers. Why should
our non-mathematical theory be worried about these sorts of “non-physical”
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parts of the mathematical theory? It seems sufficient to show how to for-
mulate axioms for the non-mathematical theory that can do the work of the
mathematics that is actually applied, and forget the rest.

I will call the pursuit of such axioms and associated representation the-
orems “weak representation theory”. While it has received some discussion
in light of Shapiro’s objections to Field’s program, I do not believe there has
been any systematic research to date on what technical results are achievable
within weak representation theory.17 Such work could conceivably respond
to the objections I have raised in this paper if it led one to formulate non-
mathematical axioms that were both well confirmed and sufficient to explain
the applications of mathematics actually made in the mathematical version
of that scientific theory. This non-mathematical theory could then be used
to determine our ontological commitments, and could also be used to ex-
plain what the nominalistic or real content of our mathematical, scientific
statements actually was.

I have granted that idealization and weak representation theory greatly
complicate my attempt to reconcile theoretical indispensability and meta-
physical dispensability, but have also expressed the hope that future work
will vindicate my epistemic account of why scientists use mathematics in
their theories. To repeat, by including mathematics, scientists can formulate
definite claims that zero in on those aspects of the physical situation that
they wish to take a stand on, while remaining neutral about the aspects
that they have yet to understand and that are not relevant to the phenom-
ena they do understand. This account may be consistent with the eventual
removal of mathematics from our scientific theories, if we were to ever have a
complete understanding of the systems at issue. Today, though, we lack such
an understanding, and it is today that we must determine our present onto-
logical commitments in light of all the evidence we have. While prior meta-
physical commitments might influence this process of regimentation, when
it comes to our mathematical scientific theories, it is simply not possible to
make our commitments determinate without taking the mathematics we use
seriously.18

Notes
1 See Baker 2003 for a critical examination of some attempts to clarify metaphysical dis-

pensability. Baker 2005 appeared after this paper was completed.
2 This is perhaps one of the motivations for Maddy’s earlier work (Maddy 1990). See Cheyne

2001 for an extended defense of the metaphysical dispensability of mathematics.
3 Other related passages in Field are Field 1991, pp. 18–19, 46, 193 and Field 2001, pp.

329–330.
4 Cf. Balaguer 1998, p. 111 and Kyburg 1997.
5 Balaguer’s position will be discussed in § III.
6 Abstract explanations are a species of what are sometimes called “structural explanations”

(McMullin 1978).
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7 I closely follow the exposition given in Carlson 2001.
8 See also Batterman 2000, 2002b.
9 See footnote 17 for references relating to the need to mention semantic consequence here.
10 Lewis 1994, 1999.
11 Balaguer 1996, p. 295 offers a similar argument.
12 Colyvan 2001, esp. ch. 4.
13 Balaguer mentions a preservation of “look and feel” condition (Balaguer 1998, p. 129,

fn. 2).
14 Colyvan 2001 summarizes this point by saying that Quine’s test is a normative claim

about what we should believe exists and not a descriptive claim about what actually exists.
15 I am here largely following Burgess 2004.
16 Nancy Cartwright is one of the most careful advocates of this claim. See Cartwright

1999.
17 For Shapiro’s objection, Field’s replies and further references, see Shapiro 1983, Field

1991, ch. 4, Burgess & Rosen 1998, § III.B.1.b and MacBride 1999, § 5. My label “weak rep-
resentation theory” is adapted from Field’s phrase “weak representation theorem” (Field 1991,
p. 135). MacBride’s remark that “weak representation theorems . . . will map all those mathema-
tized claims that have empirical support into the nominalistic theory” (MacBride 1999, p. 451)
seems quite close to my proposal here, but MacBride appears not to have been pursued this idea
any further.

18 Previous versions of this paper were presented at the Fifth Annual Midwest Phil Math
Workshop (Notre Dame, 2004) and at a session of the Society for Realist/Antirealist Discussion
held at the 2004 Eastern APA (Boston). I would like to thank both audiences for their helpful
comments, especially Mark Colyvan, Susan Vineberg and Otávio Bueno. A misguided ancestor
of section II was read at the 2004 Central APA (Chicago) and I am indebted to Julian Cole and
Alan Baker for helping me to see this.
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