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A transient, one-dimensional, compressible, two-phase flow is studied. 
Two different flow regimes, dispersed and stratified, as well as momentum, 
heat, and mass-interphase processes are considered. Numerical solutions 
and calculation of wave speeds are shown for different flow conditions. 
Simple tests using analytical solutions for approximate flow conditions 
are introduced. Computational results are compared and found to be in 
excellent agreement. 
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Introduction 

The problem considered 
The present study is concerned with a transient, 

one-dimensional, compressible, two-phase flow in a 
confined duct. The momentum, heat, and mass-inter- 
phase processes of two different flow regimes, one 
dispersed and one gravity-stratified, are considered. 

Practical relevance 
Two-phase transients can be found in many indus- 

trial pipeline flows. Typical examples of such situa- 
tions are (a) two-phase flow in petroleum lines, (b) the 
presence of free gas in sewage lines, (c) the discharge 
of primary coolant in a pressurised water reactor fol- 
lowing a pipe rupture, (d) the release of air and other 
gases as a result of a sudden pressure reduction, and 
(e) the release of a gas during liquid-column separation. 

Previous work 
The various flow regimes which are present in two- 

phase flows, the slip velocity between the phases, non- 
equilibrium effects of subcooling or superheating as 
well as the strong coupling of the thermal and hydro- 
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dynamic flow fields give rise to complex and, there- 
fore, difficult-to-analyse flow patterns. It is well known, 
for example, that small amounts of free gas in a liquid 
can dramatically reduce the velocity of sound in the 
medium. 2 An important way to verify and quantify 
some of the nonsteady aspects of two-phase interac- 
tions is the prediction of wave propagation phenom- 
ena. Ability to predict the wave speed in two-phase 
flows has importance in such diverse areas as the onset 
of slug flow, 3-4 the relation between choked flow and 
sonic velocity, 5-6 the formation of shock waves, ?-" or 
the determination of mechanical impulse loads and 
blowdown starting transients. 

If the disturbances are not very strong, wave ve- 
locities and attenuation of wavefronts can be calcu- 
lated on the basis of a linearisation of the governing 
flow equations and on consideration of the eigenvalues 
of the resulting dispersion equation. Interesting results 
have been obtained by Mecredy and Hamilton, 9 Ar- 
dron and Duffey, ~° and Cheng et al. ~ Using the same 
approach, we can also explore stability problems con- 
cerning particular mathematical models. Although sta- 
bility analysis using the linearised form of a strong 
nonlinear system cannot always provide reliable re- 
sults, it can offer enhanced possibilities in the mod- 
elling of two-phase flows, as, in this case, Stuhmiller, ~2 
Ardron, ~3 Wallis and Hutchings, ~4 and Jones and 
Prosperetti ~5 have shown. 
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When strong disturbances need to be considered, 
the above-mentioned analytical approach cannot be 
applied, and numerical solutions are inevitable. Wave 
propagation in unsteady, incompressible, two-phase 
flows has been studied numerically by using the IPSA 
algorithm, ~6 and results have been reported along with 
comparisons to analytical solutions by Baghdadi et al.17 
and Kurosaki and Spalding. ~8 Some preliminary results 
for a compressible flow have been presented by Spald- 
ing.~9 Hancox et al. 2° have also performed some cal- 
culations for a compressible stratified mixture using 
an explicit numerical scheme. 

Objectives o f  the present work 
In the present work a two-fluid model is used which 

explicitly allows for momentum, mass, and heat trans- 
fer at the interface. For the calculations performed and 
reported here, the IPSA algorithm has been used. The 
objectives of the work are to 

a. introduce simple approximating analytical solutions 
so that the accuracy of the computational results 
can be tested 

b. demonstrate that compressible two-phase flows with 
nonequilibrium interphase processes and pressure 
or gravity waves can be accurately simulated at 
different flow regimes 

c. suggest that simulation of that sort can be used to 
investigate the effects of the interphase correlations 
leading to a better understanding of the underlying 
physical mechanisms 

Description of the process simulated 

The process we are to model concerns the transient 
two-phase flow in a duct and, in particular, the prop- 
agation of a wavefront developed because of the com- 
pressibility effects appearing in the light phase. The 
duct has a length of 10 m, a rectangular cross section, 
and both ends closed. The duct walls are considered 
adiabatic. Both fluids initially have uniform pressures 
and uniform velocities. 

Two different flow systems are studied. The first is 
a two-phase system for which only interphase mo- 
mentum transfer is allowed. The two phases are as- 
sumed to be air and water of densities 1 kg/m 3 and 
1000 kg/m 3, respectively, and equal temperatures. In 
the second system a two-phase flow of steam and water 
is considered. In addition to momentum, interphase 
heat and mass transfer processes are active. The sys- 
tem initially is at a condition of thermodynamic equi- 
librium under atmospheric pressure and a temperature 
of 100°C. The densities of the vapour and liquid phase 
are 0.596 kg/m 3 and 960.61 kg/m 3, respectively. The 
latent heat of vaporisation is 2257 kJ/kg. 

In both cases the light fluid is assumed to be com- 
pressible, and the heavy fluid incompressible. Each 
fluid experiences friction with the other phase because 
of unequal phase velocities, but no wall friction is as- 
sumed because its influence on the sonic velocity is 
not very significant.9 Two classes of flow will be stud- 

ied: (a) a dispersed flow in which it is assumed that no 
gravitational forces act, and (b) a stratified flow in 
which gravity acts normally to the main flow direction 
but the stratification of the fluids produces a resultant 
force parallel to the flow direction. 

The system is set in motion because of the initially 
uniform and equal fluid velocities. As the two fluids 
approach the upstream closed end of the duct they 
retard with a consequent compression of the light phase. 
The increase in pressure results in a pressure wave 
being propagated upstream and conveying the retar- 
dation of flow to the column of fluid approaching the 
closed end along the upstream pipeline. There are two 
links between the fluids, the first coming from the vol- 
ume compatibility condition, the second from the in- 
terphase transport mechanisms. Thus, the pressure wave 
travels through the fluid at the appropriate sonic ve- 
locity, which depends not only on the properties of the 
medium but also on the interphase transfer processes. 
Similarly, on the downstream side of the pipe the re- 
tardation of flow causes a pressure reduction, resulting 
in a negative pressure wave which propagates along 
the downstream pipe and, in its turn, retards the fluid 
flow. 

The passage of the pressure wave along the pipe is 
accompanied by a thermal wave propagating with the 
same velocity. Temperature variations along the pipe 
result in small vaporisations and condensations at the 
interfaces involved. If thermodynamic equilibrium is 
to be maintained, the heat transfer should be rapid 
enough. Otherwise the process of condensation- 
vaporisation cannot follow the wave propagation, and 
when there is no heat transfer at all the sonic velocity 
finds an upper limit. 7 

Finally, when a stratified flow exists, a gravity wave 
also is expected to propagate along the pipe with a 
velocity much slower than that of the pressure wave. 

From the above discussion it is obvious that for the 
flow considered there are three classes of physical phe- 
nomena, each one having a different characteristic time 
scale of evolution. These are interphase exchanges, 
fluid convection, and wave propagation. It is therefore 
necessary that the model which will simulate the flow 
under consideration as well as the numerical algorithm 
which will solve the equations be able to predict well 
all the phenomena discussed. 

Mathematical formulation 

The two-fluid model of gas-liquid flow incorporates six 
separate conservation equations for the flow of the gas 
and liquid phases. These are derived from a balance 
of fluxes over a control volume large enough compared 
with microscopic length scales (e.g., bubble radius) but 
small relative to wavelength. The time scale should 
also be large compared with microscale fluctuations 
(e.g., turbulence) but small with respect to macro- 
scopic scales of interest (e.g., wave propagation period 
and interphase transport processes). Further it is as- 
sumed that each phase is a continuum, so derivatives 
can uniquely be defined, the density of the liquid phase 
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is constant,  and viscous effects other than interphase 
friction and conduction effects within phases are 
negligible. 

The following dependent  variables are used: 

• velocities of gas and liquid: u s, ue 
• pressure: P (in stratified flow a gravity source term 

G is active for the liquid phase) 
• stagnation enthalpies of gas and liquid: h e, he 
• volume fractions of  gas and liquid: r e, re 
• density of  gas: Pe 

The independent variables are the distance measured 
along the duct, x, and the time t. The equations have 
the following form: 

Cont inu i ty .  

O(rgpeu~) O(r~°e) + - -  - rheg 
Ot Ox 

pea(re) pea(reue) 
4- - -  -- rheg 

Ot Ox 

( l )  

(2) 

M o m e n t u m .  

O(rgpeue) + O(r~%u~_______) _ 

Ot ax 

O(reue) O(reu~) 
P e - -  + Pl 

at ax 

dP 
re a--x + Fd + rhgeue (3) 

OP 
= - r e -~x  x - Fd -- rhegug + G (4) 

Entha lpy .  

O[r~oe(h g - P/pg)] a(rg,oeughg) 
+ 

at ax 

= UeFd + Qg + rheg(hei - h e) (5) 

O[repe (he - P/pe)] O(repeuehe) + 
at ax 

= - u g F d  - Qe - rheg(hei - he) (6) 

Finally, the volume fractions are related by the com- 
patibility equation 

re + re = 1 (7) 

In order to integrate the conservation equations, the 
conditions at the interface should be defined, and ad- 
ditional relations expressing the interphase transfer 
processes in terms of the bulk phase properties should 
be implemented. As far as the interface conditions are 
concerned,  it is assumed that interface pressures are 
equal to the common phase pressure (for stratified flow 
a gravity term is active in the liquid momentum bal- 
ance) and that the enthalpy values at the interface are 
constant and equal to their initial saturation values. 

Three kinds of interphase source terms are present 
in the equations above: those connected to interphase 
drag force Fd, those connected with the interphase 
mass transfer rate thee, and those connected with the 

heat transfer from one phase to the other,  Qg and Q~,. 
Finally, the gravity source term G introduces a second 
pressure for the stratified flow. 

The interphase drag force is modelled by 

Fd = f ( u e  - u s) 

where the interphase drag coefficient obeys the linear 
law 

f = Cdpgrgre 

The interphase mass transfer contributes to the mo- 
mentum of  each phase a quantity equal to the mass 
transfer rate times the velocity of  the mass• The in- 
terphase mass transfer rate is calculated by using a 
heat balance over  a control volume just  enclosing the 
interface• This gives 

kgi(hg - hgi) + ke i (he  - hei) 
meg  = hgi - -  hei 

where the subscript i denotes values at the interface 
(saturation values) and kg, kei are heat transfer coef- 
ficients from the bulk of  the gas phase to interface and 
from the bulk of the liquid phase to interface, respec- 
tively. It is assumed that these coefficients also obey 
a linear law: 

kgi = kgpgrgre and kei = kepergre 

The interphase heat transfer terms are equal to 

Qe = kei (he - hei) and Qg = kgi(hg - hgi) 

The gravity source term is active only when a strat- 
ified flow is considered,  and it is given by 

, Ore 
G = Ag(pe - pg)re-~x 

where A is a constant.  
Density is assumed to be related to pressure by an 

ideal-gas law equation of  state. Hence 

pg = P / R T  

Since the energy equations (5) and (6) are written for 
the enthaipy variables, an additional relationship be- 
tween enthalpy and temperature is needed• Curve fit- 
ting of the temperature-enthalpy relationship based on 
the ideal-gas heat capacity data from 0 ° to 150°C gives 
the linear equation 

T = - l l l 5 . 6  + 5.29.10-4hg 

We shall close this section with a remark on the 
mathematical difficulties that the system of equations 
(I)-(6) can pose when no interphase transfer processes 
and no second pressure for the liquid phase are present• 
Writing the system in the form O,u + AO,.u = 0, it can 
be shown 21 that the matrix A has a pair of complex 
eigenvalues. For  a linear system, this means that the 
solutions may not depend continuously on the initial 
conditions• This argument has not been proven to ap- 
ply to nonlinear systems, but even were it so the sit- 
uation would not be hopeless since the inclusion of any 
nonzero viscosity makes the model well-posed. 2~ Since 
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the inevitable numerical diffusion introduces artificial 
viscosity during the numerical solution of the equa- 
tions, the argument remains purely a theoretical one. 

Finite-domain equations and solution procedure 

The finite-domain equations are derived by integrating 
the governing differential equations over the volume 
of a cell enclosing a grid node. A staggered grid was 
used, and therefore the control volume for continuity 
is different from that for momentum. For volume frac- 
tions and enthalpies these control volumes are those 
centered on the grid nodes. The control volumes for the 
velocities are displaced in the x-direction by a distance 
which places the relevant velocity locations at the mid- 
distance of two consecutive grid nodes. The result of 
the integration is expressed in terms of the values of 
the variables pertaining to grid nodes. This is done by 
way of interpolation assumptions and leads to a set of 
equations which, because of their high degree of non- 
linearity and interlinkage, are solved by an iteration 
method of a successive-adjustment nature. The pro- 
cedure used for the numerical studies of the present 
work is the IPSA algorithm of Spalding 16"19"22 and the 
PHOENICS computer code, 23 which embodies this. 

Grid- and time-independency tests have been car- 
fled out on the basis of the wave velocity discussed in 
the subsequent section on wave velocity. Computa- 
tional cells of 0.1 m and time steps of 2.10 -4 s for the 
pressure wave studies and 0.05 s for the gravity wave 
studies were employed. The CPU time taken was 
8.5" 10 -4 S per grid node/per sweep/per time-step/per 
main variable on a Perkin-Elmer 3220 minicomputer. 

Presentation of results 

For all flow simulations to be discussed presently, SI 
units have been used, and unless otherwise specified 
the following initial conditions have been assumed: 

Ugo = Ueo = -4 .0  m/s 
Pgo = 1.105 Pa 

re = 0.01 

where the subscript 0 refers to the initial conditions. 
Also, all the profiles are plotted for half the length of 
the duct. 

tionless flow to a homogeneous equilibrium model 
(HEM). 

Dispersed f low. As expected, a wave is formed for 
each dependent variable of the compressible fluid (Fig- 
ures 1,2,3). For small values of the interphase friction 
no disturbance is shown to propagate in the liquid. 
Because of its initial velocity the incompressible fluid 
is moving and fills the upstream end of the duct. It is 
only when the friction increases greatly that the liquid 
starts to follow the motion of the gas (Figure 4). As 
friction increases, the velocity of the pressure wave 
decreases, and since momentum is transferred from 
liquid to gas, the pressure rise of the gas increases 
(Figures 2,3). 

t ~  ~ ' t  = 0"006 s o o . . . . . . . . . . . . . .  t=0.03s 

c d = 5.E5, Ag = 0.0 
........................ " Po = 1.E5 Pa 

• U o = -4. m/s 

~" t ~ . . .  - 

rl '""'. , . . . . . .  

i I I I I I I I I 
0.00 l .oo 2.00 3.~0 4.~0 ' 5.00 × 

Figure I Pressure rise profiles. Air-water system, dispersed f low 

O 

% - -  ~ , - - - - - - " ~  

d l .  ", ~, a_'*"~ " ":'~ 

:| , ' ,  
o.00  I. 

c d = 0.0 
. . . . . . . . . . . . .  c d = 1.E5 
. . . . . . . . . .  cd =5.E5 
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Ag = 0.0 
Po = I.E5 Pa 
U o = -4. m/s, t = 0.006 s 

X 
' 4 . ~ 0  ' s . ~ 0  

Figure 2 Pressure rise profiles. Air-water system, dispersed f low 

Isothermal f low o f  an air-water system 
The thermodynamic evolution of the compressible 

fluid was assumed to be known and obeying an isen- 
tropic law. There was no need, therefore, for solving 
the enthalpy equations, and the pressure was related 
to gas density by 

pg = otpU~ 

where a is a constant defined by the initial conditions 
and 3' is the specific heat ratio, equal to 1.4 for air. 
Simulations were performed for dispersed and strati- 
fied flows. Different values of the interphase friction 
were considered, varying progressively from a fric- Ft 

- -  c d = o.0 
~ -J - - -~  ~ . . . . . . . . . . .  c d = 1.E5 
c~/~'~ ~ " ~  . . . . . . .  c- = 5 E5 "~ " a " 

:3,~/ ' t \  k Ag = 0.0 
e, l l  I'\ • ~ Po = I.E5 Pa 
I ]  ~ "\, " "  ~k U0 =-4"m/s ' t  =0.006s 

41 , . . . .  

10.00 1 .00 2 .00  3 .00  4 .00  5 .00  
X 

rure 3 Gas v e l o c i t y  profiles. Air -water  system, dispersed f low 

Appl. Math. Modell ing, 1988, Vol. 12, June 315 



Wave propagation and nonequilibrium interphase processes: D. Assimacopoulos 

O 

L . ' 
L. 

0.00 1.00 

- -  C d = 0 . 0  
. . . . . . . . . . . . .  C~ = H E M  

A g  = 0 , 0  
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X 

Figure 4 Liquid vo lume fraction profiles. Air-water system dis- 
persed f low 

coefficients. For simplicity, equal values were as- 
sumed for ks~ and k~. The full set of equations described 
in the third section was solved. 

The developed pressure waves have the same char- 
acteristics as those in the isentropic flow discussed 
previously (Figure 8). Wave velocities appear to have 
increased, but this is justified by the different value of 
the vapour density. No noticeable change is introduced 
in the pressure field from the variation in the interphase 
heat transfer coefficients. 

A thermal wave has also formed (Figure 9); as the 
interphase heat transfer coefficient increases, thermal 
equilibrium tends to be established immediately after 
the passage of the wavefront (Figure 9, kg = 1.105). 

o 7  ~ o / ~.~ ~ c d = 0.0 
d - ]  ~ '\', . . . . . . . . . .  c d = 1.E5 
~ /  " '~ . . . . . . . . . .  C d =5.E6 

~:) .q ~ . . . . . .  c~ = HEM 
% - - o  

~ J  !~ Ag= '.E9 
L O /  ~', • ~ P ^  = 1 E 5  P a  ' ¢ ' /  ~ \  . ~ .  U ' 

(3- J '.'\, ~ Uo=-4. m/s,t=0"006s 

o /  ', ' , ,  \ 
= 1 ' . . . " . . _  . ~ ,  
~ I  , , ~ ~ 't ~ , , , , 

0.00 1.00 2.00 X 3.00 4.00 5.00 

Figure 5 Pressure rise profile. Air-water system, stratif ied f low 
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Figure 7 Liquid vo lume fraction profiles. Air-water system 
stratif ied f low 
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Figure 6 Velocity profiles. Air-water system stratif ied f low 

Stratified flow. When the second pressure is acti- 
vated, because of the additional link introduced be- 
tween the two fluids, a number of changes take place. 
Now, the pressure rise is not high, and the propagation 
velocities of each flow variable are smaller than the 
dispersed case (Figures 5,6). The most important change, 
however, is related to the liquid: a gravity wave having 
been developed with a velocity almost independent of 
the interphase friction (Figure 7) with its height de- 
creasing as the coupling of the liquid with the gas in- 
creases. 

Steam-water flow with heat and mass transfer 
A parametric study was performed for a steam-water 

flow for different values of the interphase heat transfer 

o 
o - - k g  = 1.E-2 

................................. ~ . . . . . . . . . . . .  kg = 1.E4 
. ~ ~ .  .. . . . . . . . . .  k~=l E6 

 =o2 . . . . . . .  

13_ Po = 1. E5 Pa "~LL__---LLL~ . . . . . .  
U o = -4. m/s, t = 0.006 s 

o 
,~1-0.0 0 u u i ~ l l 1.oo 2.60 3.~o '4.~o 5.00 

× 

Figure 8 Pressure rise profiles. Steam-water system 
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Figure 9 Temperature profiles. Steam-water system 
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For very large values of this coefficient, complete equi- 
librium is reached instantaneously and no thermal wave o- 
can be detected. The above observations should be 
related to the corresponding patterns of the mass trans- 
fer rate profiles (Figure 10). When the interphase trans- 
fer coefficient becomes very large, the whole mass 
transfer process takes place as a "delta"-Iike pulse 
following the passage of the thermal wavefront. 

Wave velocity 
It was mentioned at the beginning that the prediction 
of wave propagation velocity can be useful in verifying 
and quantifying nonsteady interactions in two-phase 
flows. A direct application of this can be realised in 
the choice of the best time step and grid size. The wave 
velocity is 

Ithe travelling distance of wave[ 
c - -  

e l a p s e d  time 

The travelling distance of the wave was defined as the 
distance travelled in which the phase velocity reverses 
direction (zero velocity of the corresponding phase). 
The computed wave velocities for a frictionless isen- 
tropic flow of the air-water system for different grid 
sizes and time steps are presented in Figures 11 and 
12. Since the liquid volume fraction is very small, the 
coupling between the phases is negligible and the pre- 
dicted wave velocities can be compared to the sonic 
speed in a single-phase flow given by 

(Tpo I ,/2 C = U +  
\ Po/ 

For the grid and time step chosen, the error between 
predicted and calculated sonic speeds is less than 0.39%. 

The calculation of the wave velocities allows the 
study of the effect that the different parameters have 
on the flow. In Figures 13 and 14 the wave velocities 
are shown for different values of the interphase friction 
in both dispersed and stratified flows. The existence 
of a gravity wave for low values of the interphase fric- 
tion in the stratified flow, as well as the progressive 
coupling of the two phases with the increase of friction, 
is illustrated. Pressure and gravity waves degenerate 
into a single pressure wave when the HEM is activated. 
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The predicted value of the wave speed at this limit has 
a 4% difference from the velocity calculated by the 
homogeneous model theory. 24 

In Figure 15 the wave velocities for different values 
of the liquid volume fraction for a dispersed flow and 
for two different values of the interphase friction are 
presented. The characteristic concave shape of the 
curves as well as the order of magnitude of the wave 
velocities agrees well with literature data 9.25 in spite of 
the very simple interphase laws used. 

In Figure 16 the wave velocities for different values 
of the interphase heat transfer coefficient in the steam- 
water system are shown. The lower limit of the wave 
velocity corresponds to thermal equilibrium between 
the phases; the upper limit is reached when no phase 
change takes place during the passage of the pressure 
wave, and it is only determined by the compressibility 
of the mixture. Comparison with the sonic velocity 
calculated of an isentropic law (with 3' = 1.3) gives an 
error of 1.4%. 

C o m p a r i s o n  w i t h  t h e o r e t i c a l  r e su l t s  

It was pointed out earlier, in the discussion of the air- 
water system, that when the volume fraction of the 
liquid is kept low and when the interphase friction is 
also low the flow conditions are not far from those 
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applying to single-phase flows. This was shown to be 
the case in the simulation studies in Figure 14, where 
the relative velocity of the pressure and gravity waves 
gives a measure of the interlinking of the two phases. 
On the other hand, when the interphase friction is quite 
large, the coupling of the two fluids is so strong that 
the results of the homogeneous fluid model theory can 
be applied. Some simple tests can be devised, then, to 
check the validity of the model and of the numerical 
scheme employed at both these limits. The area be- 
tween limits should be checked against experimental 
data. 

Flow of air-water system with low interphase friction 
Gasflow. In a travelling plane wave the initial fluid 

velocity is related to the pressure rise Ap and to density 
in a simple manner: 26 

AP = Pg0CgUg0 

where cg is the sonic velocity. Results from the appli- 
cation of this equation for different values of gas ve- 
locity and gas density along with predictions of the 
present model are shown in Figures 17and 18. Pressure 
rise follows a linear increase with velocity and density, 
and in all cases the excellent agreement between theory 
and simulation is evident. 

Flow of liquid. The velocity of the gravity wave and 
the extent of the rise in the liquid level depend on the 
initial conditions, and, as can be shown, t these two 
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variables are interrelated by 

and 

h2  Ueo 
- - =  1 + -  ( 8 )  
hi ce 

- (1 + 2 F r ) ~ ,  + l = 0 (9) 
E 

where ce is the velocity of the gravity wave, h, and h2 
are the initial and final heights of the liquid, and Fr is 
the Froude number, defined by 

u20 
F r = - -  

gh, 

The system (8)-(9) has three real roots for all positive 
values of h~ and Fr < 1, the positive ones only being 
relevant to the present situation. Comparison for dif- 
ferent values of the Fr number in Figure 19 shows the 
excellent agreement between the predicted and theo- 
retically calculated wave thicknesses. 
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Flow o f  air-water system with high interphase 
friction 

It can be shown 24 that the wave velocity of the ho- 
mogeneous model in such a flow is 

C 2 = (rgpg + repe) re + r~ 
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When Ce >> cg and pe > Pg, this is simplified to 

c = [c~og/pergre] 1/2 

The calculated and predicted wave velocities are shown 
in Figure 20. Again, complete agreement is found be- 
tween predictions and theory. 

Flow with heat and mass transfer 
As we did for the air-water system, we could have 

specified a priori the nature of the evolution of the 
stream-water flow relating the pressure to density 
through an isentropic law. There are two reasons why 
in this case this practice was not followed. First, the 
exact nature of the thermodynamic evolution in two- 
phase flows, because of the different nonequilibrium 
processes that take place, is not known. 6 Second, we 
wanted to show that implementation of the transfer 
laws themselves onto the model can lead to some in- 
teresting results. The relation of interphase heat trans- 
fer coefficients to wave speed has already been dis- 
cussed in the last section. Here, their relation to the 
polytropic exponent (in a generalised isentropic law) 
will be shown. 

Since, initially, the fluid state along the duct was 
assumed to be uniform, its final states along the duct 
should lie on the same adiabatic. This curve, then, 
should represent the polytropic law 

pg = uP  TM (10) 

that the evolution of the compressible vapour has fol- 
lowed. In Figure 21 the pressure field along the duct 
is plotted against the density field for different values 
of the interphase heat transfer coefficient. A curve 
fitting of these state conditions to equation (10) gave 
a value to the polytropic exponent equal to 1.33 when 
kg = 1.10 -2 (no heat and mass transfer) varying con- 
tinuously up to 1.0 when k s tends to infinity. 

Conclusions 

Simulation of a compressible transient two-phase flow 
in a duct was carried out. Two different flow regimes 
and nonequilibrium interphase processes were as- 
sumed. Wave propagation was studied, and quantifi- 
cation of different phenomena accompanying the pres- 
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sure and gravity waves was performed. Numerical 
results referring to wave velocities, wave pressure rises, 
wave thickness, and thermodynamic evolution of the 
compressible phase were compared with available an- 
alytical solutions. Verification of the model and the 
numerical scheme employed in two limiting cases, those 
of low and high interphase friction was carried out and 
found to be excellent. 

Additional study in this area should concentrate on 
implementation of more realistic correlations for the 
interphase processes, the study of other flow regimes, 
and the adjustment of the model parameters to the 
available experimental data. 
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