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Abstract

The Wiener index of a graph, which is the sum of the distances between all pairs
of vertices, has been well studied. Recently, Sills and Wang in 2012 proposed two
conjectures on the maximal Wiener index of trees with a given degree sequence.
This note proves one of the two conjectures and disproves the other.

1 Introduction

The Wiener index of a molecular graph is one of the most classic and well-known topolog-

ical indices in the molecular graph, which was introduced by and named by Wiener [14]

in 1947. It has been extensively studied by chemists and mathematicians over the past

years, see for instance [2]. In the past decade years, the extremal trees that maximize

or minimize the Wiener index among trees with prescribed maximum degree, diameter,

matching and independence numbers, etc., have been studied (see [5, 9, 15] etc.).

Since the degrees of a molecular graph corresponds to the valences of the atoms, it is

one of the most interesting aspects to consider all trees with a prescribed degree sequence.

Wang [12] and Zhang at al. [15] independently proved the extremal tree that minimizes

the Wiener index is greedy tree through different approaches. Moreover, the extremal

tree that maximizes the Wiener index in this category in [12] is incorrect by pointed out

in [13] and [16]. Therefore it is still open problem.
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Problem 1.1. Characterize the extremal trees that maximize the Wiener index with pre-

scribed degree sequence.

Zhang et al. [16] provided some part results with less than 7 internal vertices. Cela et

al. [2] provide an efficient algorithm for finding the extremal trees with prescribed degree

sequence. Recently, Sills and Wang [11] further studied the maximal Wiener index and

disclosed some relations between the candidate trees for the maximal Wiener index and

the symmetric Dyck paths.

Let T = (V,E) be a tree of order n. The Wiener index W (T ) of T is defined as

W (T ) :=
∑

{u,v}⊆V

d(u, v),

where d(u, v) is the number of edges in a shortest path from u to v. A nonincreasing

sequence of nonnegative integers π = (d1, d2, · · · , dn) is called graphic if there exists a

simple graph having π as its vertex degree sequence. In particular, if
∑n

i=1 di = 2(n− 1),

then π is graphic and any graph with degree sequence π is tree and let Tπ denote the set

of all trees with degree sequence π. Moreover, if

d1 ≥ d2 ≥ · · · ≥ dk ≥ 2 > dk+1 = dk+2 = · · · = dn = 1,

then b = (b1, . . . , bk) := (d1− 1, . . . , dk− 1) is called the decremented degree sequence [11].

A caterpillar is a tree in which a single path (called Spine) is incident to (or contains)

every edge. For other terminologies and notions, we follow from [1,11]. Since it has been

proved [16] that a tree with maximum Wiener index in Tπ has to be a caterpillar, it is

interesting and important to study the Wiener index of caterpillars. Let T be a caterpillar

of order n with n − k leaves and the non-leaf vertices v1, . . . , vk. Then the Winer index

of T is presented in [16]

W (T ) = (n− 1)2 + q(x) ,

where q(x)is the quadratic form

q(x) =
1

2

k∑
i=1

k∑
j=1

|i− j|xixj = xTAkx , (1)

Ak = (aij) with aij = 1
2
|i − j|, x = (x1, . . . , xk)

T , and xi = deg(vi) − 1 for i = 1, . . . , k.

In order to obtain some useful upper bounds for the Wiener index in Tπ, Sills and Wang
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observed the largest eigenvalue of Ak is about to

λmax ≈
√
3k2 − 2

10
. (2)

Further, they disclosed some interesting combinatorial relations to other objects from this

study and proposed the following conjecture.

Conjecture 1.2. [11] Let Ak = (aij) be the k × k matrix with aij = 1
2
|i − j|. If

Ck(λ) = det(Ak − λIk) is the characteristic polynomial of Ak, then

Ck(λ) = (−1)kλk

(
1− k

4

k−1∑
j=1

j

j + 1

(
k + j
2j + 1

)
λ−j−1

)
. (3)

On the other hand, Silly and Wang [11] characterized all extremal trees that maximize

in all chemical trees with prescribed degree sequence π = (d1, . . . , dn) with 4 ≥ d1 ≥ · · · ≥
dn = 1. This result can be stated as follows:

Theorem 1.3. [11] Let π = (d1, . . . dk, dk+1, . . . , dn) with 4 ≥ d1 ≥ · · · ≥ dk >

dk+1 = · · · = dn = 1 and let b = (b1, . . . , bk) be the decrmented degree sequence. If

{b1, b2, . . . , bk} = {as, . . . , as︸ ︷︷ ︸
ms

, as−1, . . . , as−1︸ ︷︷ ︸
ms−1

, . . . , a1, . . . , a1︸ ︷︷ ︸
m1

} with as > as−1 > · · · > a1,

then q(x) is maximized by

x = {as, . . . , as︸ ︷︷ ︸
ls

, as−1, . . . , as−1︸ ︷︷ ︸
ls−1

, . . . , a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , , as−1, . . . , as−1︸ ︷︷ ︸
rs−1

, as, . . . , as︸ ︷︷ ︸
rs

},

where |li − ri| ≤ 1 and li + ri = mi for i = 2, . . . , s.

Further, they [11] proposed the following conjecture

Conjecture 1.4. [11] When k is much larger than s, for

{b1, b2, . . . , bk} = {as, . . . , as︸ ︷︷ ︸
ms

, as−1, . . . , as−1︸ ︷︷ ︸
ms−1

, . . . , a1, . . . , a1︸ ︷︷ ︸
m1

}

with as > as−1 > · · · > a1, then q(x) is maximized by

x = {as, . . . , as︸ ︷︷ ︸
ls

, as−1, . . . , as−1︸ ︷︷ ︸
ls−1

, . . . , a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , , as−1, . . . , as−1︸ ︷︷ ︸
rs−1

, as, . . . , as︸ ︷︷ ︸
rs

},

where |li − ri| ≤ 1 and li + ri = mi for i = 2, . . . , s.

This note is motivated by the above two conjectures. The rest of the note is organized

as follows: In next Section, we prove Conjecture 1.2; while in Section 3, we disprove

Conjecture 1.4.
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2 Proof of Conjecture 1.2

Before presenting a proof of Conjecture 1.2, we need some notations. Let G = (V,E) be

a connected graph with V = {v1, . . . , vn}, Graham and Pollak [6] introduced the distance

matrix D(G) = (dij) of G with dij = d(vi, vj) arising from a data communication problem.

Graham and Lovász [7] proved that the coefficients of the characteristic polynomial of the

distance matrix of a tree can be expressed in terms of the number of certain subforests of

the tree and conjectured that the sequence of coefficients was unimodal with peak at the

center. Colllins [3] proved that the coefficients for a path on n vertices are unimodal with

peak at (1− 1/
√
5)n. From the context, it is easy to get the following Lemma from [3]

Lemma 2.1. [3] Let Pn be a path of order n and distance matrix D(Pn) = (dij) with

dij = |i− j|, i.e.,

D(Pn) =

⎛
⎜⎜⎝

0 1 2 . . . n− 1
1 0 1 . . . n− 2
. . . . . . . . . . . . . . .
n− 1 n− 2 n− 3 . . . 0

⎞
⎟⎟⎠ .

let δi be the coefficient of λi in the distance matrix polynomial det(D(Pn)− λIn). Then

δn = (−1)n, δn−i = (−1)n−12
i−2n(i− 1)

i

(
n+ i− 1
2i− 1

)
, for i = 1, . . . , n.

Proof. It follows from [3].

Now we are ready to prove Conjecture 1.2

Theorem 2.2. Let Ak = (aij) be the k × k matrix with aij = 1
2
|i − j|. If Ck(λ) =

det(Ak − λIk) is the characteristic polynomial of Ak, then

Ck(λ) = (−1)kλk

(
1− k

4

k−1∑
j=1

j

j + 1

(
k + j
2j + 1

)
λ−j−1

)
.

Proof. Clearly, Ak =
1
2
D(Pk). Then by Lemma 2.1

Ck(λ) = det(Ak − λI) = det(
1

2
D(Pk)− λI)

= (
1

2
)k det(D(Pk)− (2λ)Ik)

= (
1

2
)k((−1)k(2λ)k + · · ·+ δn−i(2λ)

n−i + · · ·+ δ0)

= (−1)kλk + · · ·+ (−1)k−1(i− 1)k

4i

(
k + i− 1
2i− 1

)
λk−i + · · ·+ (−1)k−1(k − 1)

4

= (−1)kλk

(
1− k

4

k−1∑
j=1

j

j + 1

(
k + j
2j + 1

)
λ−j−1

)
.
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Hence Theorem 2.2 holds.

On the largest eigenvalue of Ak, there is the following result.

Theorem 2.3. The largest eigenvalue of Ak = (aij) with aij =
1
2
|i− j| is equal to

λmax =
1

2(cosh θ − 1)
,

where θ is the positive solution of tanh( θ
2
) tanh(kθ

2
) = 1

k
. Moreover,

λmax =
k2

4a2
− 2 + a2

12a2
+ o(

1

n2
),

where a is the root of a tanh(a) = 1, i.e, a ≈ 1.199679.

Proof. It follows from Ak =
1
2
D(Pk), Theorem 2.1 and Corollary 2.2 in [10]

3 Disproof of Conjecture 1.4

In order to disprove Conjecture 1.4, we first present the following result

Theorem 3.1. Let {b1, b2, . . . , bk} = {as, . . . , as︸ ︷︷ ︸
ms

, as−1, . . . , as−1︸ ︷︷ ︸
ms−1

, . . . , a1, . . . , a1︸ ︷︷ ︸
m1

} with as >

as−1 > · · · > a1. If as >
∑s−1

i=1 miai and ms = 2h+ 1, then q(x) is uniquely maximized by

x = {as, . . . , as︸ ︷︷ ︸
h+1

, a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , as−1, . . . , as−1︸ ︷︷ ︸
rs−1

, as, . . . , as︸ ︷︷ ︸
h

}.

Proof. It is easy to see that the assertion hold for s = 2 or k ≤ 5. Now assume that q(x)

is maximized by x = {x1, . . . , xk} for k > 5 and s ≥ 3. Then by Theorem 2.7 in [16],

there exists a 2 ≤ t ≤ k − 2 such that

t−2∑
i=1

xi ≤
k∑

i=t+1

xi,

t−1∑
i=1

xi >

k∑
i=t+2

xi, (4)

and either x1 ≥ · · · ≥ xt, xt ≤ xt+1 ≤ · · · ≤ xk or x1 ≥ · · · ≥ xt−1, xt−1 ≤ xt+1 ≤ · · · ≤
xk. Hence x can be rewritten as

x = {as, as, ..., as︸ ︷︷ ︸
ls

, as−1, as−1, ..., as−1︸ ︷︷ ︸
ls−1

, ..., a1, a1, ..., a1︸ ︷︷ ︸
m1

, ...., as−1, ..., as−1︸ ︷︷ ︸
rs−1

, as, as, ..., as︸ ︷︷ ︸
rs

},

where ls + rs = ms = 2h+ 1. Clearly t > ls and ls > rs. Further we have the following

claim t = ls + 1 and ls = rs + 1. In fact, suppose that t ≥ ls + 2. Then by the condition

of Theorem 3.1,

t−2∑
i=1

xi ≥ lsas ≥ (rs + 1)as > raas +
s−1∑
i=1

miai ≥
k∑

i=t+1

xi,
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which is contradiction to (4). Hence t = ls + 1. Moreover, by (4), we have

(ls − 1)as =
t−2∑
i=1

xi <
k∑

i=t+1

xi ≤ rsas +
s−1∑
i=1

miai < (rs + 1)as.

So ls − 1 < rs + 1, i.e., ls = rs + 1. Therefore the assertion holds.

Remark When k is much larger than s. Let

{b1, . . . , bk} = k + s2, k + s2, k + s2︸ ︷︷ ︸
3

, s− 1, s− 1︸ ︷︷ ︸
2

, s− 2, s− 2︸ ︷︷ ︸
2

, . . . , 2, 2︸︷︷︸
2

, 1, . . . , 1︸ ︷︷ ︸
k−2s+1

},

with k + s2 > s − 1 > · · · > 1. By Theorem 3.1, q(x) is uniquely maximized by x =

(k+ s2, k+ s2, 1, . . . , 1, 2, 2, 3, 3, . . . , s− 1, s− 1, k+ s2). Hence Conjecture 1.4 is not true

for this case.
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