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Abstract

We demonstrate the surprising integrability of the classical Hamiltonian associated to a spin 1/2
system under periodic external fields. The one-qubit rotations generated by the dynamical evolution
is, on the one hand, close to that of the rotating wave approximation (RWA), on the other hand to
two different ‘‘average’’ systems, according to whether a certain parameter is small or large. Of par-
ticular independent interest is the fact that both the RWA and the averaging theorem are seen to
hold well beyond their expected region of validity. Finally, we determine conditions for the realiza-
tion of the quantum NOT operation by means of classical stroboscopic maps.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Advanced NMR techniques are able to manipulate qubits in order to implement several
quantum logic operations. In particular, by means of radio-frequency magnetic fields,
nuclear spin 1/2 can be controlled to the realization of the quantum NOT-gate, one of
the fundamental logic block in quantum computation [1]. On the other hand, in the field
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of quantum optics, the advent of strong laser pulses brings up the possibility of investigat-
ing the fundamentals of the radiation-matter interaction. In this scenario, models like a
two-level quantum system interacting with an external classical field have achieved a par-
adigmatic place, since it has been successfully applied by the theorists to make predictions
in NMR [1], quantum computation [2] and quantum optics [3].

From a mathematical point of view its importance emerges mainly from the low dimen-
sionality of its Hilbert space, which allows analytical analysis of the dynamics in many
cases of interest. For periodic external fields, e.g., such systems have been solved analyt-
ically only in the rotating wave approximation (RWA), which restricts the problem to
both resonance and weak coupling regimes. Far off this situation, sophisticated perturba-
tive methods have been applied [4–6] and exact solutions have been found only for specific
periodic fields [7]. An alternative approach for studying exactly the two-level problem is
provided by the picture of the classical gyromagnet [8]. The dynamics of the matrix ele-
ments of a pure density operator is mapped on a classical Hamiltonian and methods of
dynamical systems may be employed to study the dynamics of the system. Alternatively,
it is possible to define a classical dynamics over the Bloch sphere [9].

In this work we focus on these classical frameworks to study relevant questions as the
integrability of the underlying classical dynamics, the validity of the RWA (as well as its
derivation from the averaging method) and regimes for the realization of a unitary NOT
operation. The paper is organized as follows. In Section 2 we define the two classical
frameworks on which the analysis will take place. In Section 3 we demonstrate the integra-
bility of the classical dynamics associated to unitary two-level systems under arbitrary
external fields. In Sections 4 and 5 we present several results concerning the phase space
aspect of two important fields commonly used in experiments. In Section 6 we use the
results offered by the stroboscopic maps to make predictions about the quantum NOT
operation. Section 7 is reserved for some concluding remarks.

2. The classical framework

The dynamics of a spin 1/2 system interacting with an external time-dependent magnet-
ic field B(t) in the dipole approximation is given by the Hamiltonian

HðtÞ ¼ � 1

2
BðtÞ � R; ð1Þ

in which R = (r1,r2,r3) is the vector composed by the Pauli matrices. For simplicity we
have adopted �h = 1, so that magnetic field is given in units of frequency. The dynamics
of the density operator q(t) = jw(t)æÆw(t)j is governed by the von Neumann equation,
ı _q ¼ ½HðtÞ; q�.

As mentioned, according to Feynman et al. [8], it is possible to formulate the dynamics
in terms of a classical Hamiltonian systems. Consider the following parametrization for
the quantum dynamics in terms of a classical vector (S0, S):

qðtÞ ¼ 1

2
ðS01þ S � RÞ ¼ 1

2

S0 þ S3 S1 � ıS2

S1 þ ıS2 S0 � S3

� �
; ð2Þ

in which 1 stands for the unity matrix. The trace (Trq = 1) and purity (q2 = q) conditions
impose that S0 = 1 and S2 ¼ S2

1 þ S2
2 þ S2

3 ¼ 1, respectively. The quantum equation of mo-
tion for q is then transformed in a system of differential equations described by
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dS

dt
¼ S� B; ð3Þ

which may be obtained from the classical Hamiltonian

HðtÞ ¼ �BðtÞ � S: ð4Þ

Eqs. (3) and (4) define the classical geometric picture associated to quantum two-level sys-
tems: the unit vector S precesses around the vector B just like a classical gyromagnet pre-
cesses in a magnetic field.

Following reference [7] we consider the unit sphere S2 with the usual angular coordi-
nates 0 6 h 6 p, 0 6 u 6 2p, and let S = (sin h cos u, sin h sin u, cos h). Introducing
p = u and q = �cos h as canonically conjugate variables, we may write

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
cos p;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
sin p;�q

� �
; ð5Þ

with the usual Poisson brackets {S1, S2} = S3 (plus cyclic permutations). By (4) and (5) we
finally write

H ¼ �½B1ðtÞ cos p þ B2ðtÞ sin p�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� B3ðtÞq; ð6Þ

with equations of motion given by

_q ¼ ½B1 sin p � B2 cos p�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
; ð7aÞ

_p ¼ �½B1 cos p þ B2 sin p� qffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p � B3; ð7bÞ

in which the amplitudes Bi are functions of time.
In our analysis it will be useful to express the quantum states in terms of the classical

canonical pair (q,p). Consider a general quantum state of a single qubit as
jwæ = aj+æ + be�ı/j�æ being a and b positive real numbers satisfying a2 + b2 = 1 and / a
the relative phase. Composing the corresponding density operator, q = jwæÆwj, and com-
paring with (2) and (5), one may write

jwi ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� q

2

r
jþi þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ q

2

r
eıpj�i: ð8Þ

Thus, correspondence between classical phase space and quantum states becomes immedi-
ate. For instance, for q = «1, we have S3 = ±1 and jwæ = j±æ, with obvious interpreta-
tion. Notice that the relative phase of the quantum state has the status of a conjugate
momentum in classical phase space. It indeed emphasizes its dynamical relevance.

We will also consider a perpendicular state jw^æ, defined by Æw^jwæ = 0. According to (8)
it reads

jw?i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

2

r
jþi þ

ffiffiffiffiffiffiffiffiffiffiffi
1� q

2

r
eıðpþpÞj�i: ð9Þ

Thus, the transformation

jwi ! jw?i; ð10Þ

implies in the following classical counterpart

ðp; qÞ ! ðp þ p;�qÞ: ð11Þ
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By (5) we see that such a condition of orthogonality implies that S fi �S. These consid-
erations will be essential for our analysis of the quantum NOT operation in two-level sys-
tems.

3. Integrability

The classical Hamiltonian (6) may be written in a two-dimensional autonomous form
by means of Howland’s method [10]. In this case, since the new Hamiltonian is composed
by an integrable part added to a non-integrable perturbation, chaotic behavior is expected
to be present [7]. However, as we show now (see also [11]), the unitarity of the underlying
quantum dynamics guarantees that this is not the case. Consider the following distance in
the Bloch sphere:

DðtÞ � kS1ðtÞ � S2ðtÞk; ð12Þ

where different indices refer to different initial conditions. By (2) it is easy to show that D

may also be written as

DðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tr½q1ðtÞ � q2ðtÞ�

2
q

; ð13Þ

where different indices refer to different initial states q1,2(0). Since the dynamics is unitary,
we may write

q1;2ðtÞ ¼ UðtÞq1;2ð0ÞU yðtÞ; ð14Þ

in which U is the propagator satisfying ı _UðtÞ ¼ HðtÞUðtÞ. Eq. (12) allows us to define a
Lyapunov exponent as

k ¼ lim
Dð0Þ!0

lim
t!1

1

t
ln

DðtÞ
Dð0Þ

� �
; ð15Þ

which measures the mean exponential departure between two arbitrarily close initial con-
ditions on the Bloch sphere. By (14) and (13) it is immediate that D(t) = D(0) and thus, by
(15), k = 0. When a full set (i.e., equal to the number of degrees of freedom) of constants of
the motion in involution does not exist, so that we have a system which is not integrable,
sensitivity to initial conditions is certain to exist at least in some region pf the phase space,
i.e., there is inevitably chaotic behavior. Thus we may regard the proof that k = 0 as a
proof of integrability, although it may be difficult to find explicitly an additional constant
of the motion for the general autonomous system equivalent to (4) (see, e.g., [7], for the
description of these autonomous systems). It is worth emphasizing that our proof of inte-
grability is valid for an arbitrary time-dependent field, including the quasiperiodic case.
This contradicts the basic assertion of [12] and confirms the result of [13]. More important-
ly, we show the real reason for the integrability observed in [13] using double Poincarè sec-
tions. Notice also that a field in (4) depending of N incommensurate frequencies, would
yield, by Howland’s method [10], a N + 1 degrees of freedom autonomous system. Our
demonstration asserts that such a system is integrable for all N, a surprising result.

We close this section with some remarks which may help to connect the present model
with the fundamental model of interaction between a (two-level) atom and the quantized
electromagnetic field in the dipole approximation [14], which we shall take as one-mode
for simplicity:
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H ¼ xaya� 1þ x0

2
1� rz þ gðaþ ayÞ � rx; ð16Þ

where a and a� are the annihilation and creation operators, respectively, and 1 is the iden-
tity matrix (properly defined in each subspace). Although ‘‘quantum integrability’’ is not a
well-defined concept in general, two natural definitions, with direct analogue in classical
mechanics are possible: (1) (16) is integrable if there exists a unitary transformation U1

such that U 1HU�1
1 ¼ HðN ; rzÞ, where N = a�a and rz are two ‘‘quantum actions’’ (com-

muting operators, whose spectrum and eigenvectors are known explicitly); (2) (16) is inte-
grable if there exists a unitary transformation U2 such that the spin and bosonic degrees of
freedom decouple. It has been proved in [15] that (16) is integrable according to (1) for
both large and small coupling g. In reference [16] it has been remarked that

~H ¼ U y2HU 2

¼ x0

2
rz cosðpayaÞ þ xayaþ gðay þ aÞ;

ð17Þ

where

U 2 ¼ expf�ıpðrx � 1Þaya=2g: ð18Þ
Thus, by (17), in each sector corresponding to the eigenvalues ±1 of rz the system is

equivalent to a one-dimensional model (equivalent to one degree of freedom in classical
mechanics), and thus the spin and bosonic degrees of freedom are decoupled. Notice, how-
ever, that the resulting model is highly ‘‘nonsoluble’’! This fact reflects upon the semiclas-
sical limit of (16), in which the ‘‘mean photon number’’ (properly defined) tends to infinity,
keeping the photon density fixed [17]: it yields our model (1), with B = BNR given by (30),
whose dynamics is known, since the seminal papers of Bloch and Siegert [18] and Autler
and Townes [19], to be highly non-trivial. For the system (16) there exist two commuting
operators: H, given by (16), and the parity operator

P ¼ exp ıp ayaþ 1

2
ðrz þ 1Þ

� �	 

: ð19Þ

The fact that P corresponds to a discrete symmetry without classical analogue might have
suggested that the semiclassical limit (1), with (30), is not integrable, which we have seen
not to be the case.

Above, we have considered one atom only. A different limit which may be performed on
(16) is the ‘‘many-atom limit’’ (properly defined [20]). The method of [20] justifies rigorous-
ly the results of [21–23], whereby the resulting coupled classical equations may be shown to
display chaotic behaviour.

4. The rotating field

In this section we will focus our analysis in a special case of periodic external field: the
radio-frequency field [1]. This field, which we will call rotating (R) in virtue of a rotation
symmetry around the direction 3, is defined as

BRðtÞ ¼ �2ðB0 cosðxt þ /Þ;B0 sinðxt þ /Þ;B3Þ; ð20Þ
being / the phase of the field and B0 and B3 constant amplitudes. By (6) and (20), we write
the corresponding Hamiltonian as
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Hðq; p; tÞ ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
cosðp þ /� xtÞ � 2B3q: ð21Þ

The integrability of this model may be explicitly verified by means of a canonical trans-
formation that produces an autonomous one-dimensional Hamiltonian. Consider the fol-
lowing generating function and respective transformation equations [24]:

F 3ðp;Q; tÞ ¼ �ðp þ /ÞQþ hðtÞQ; ð22aÞ

q ¼ � oF 3

op
¼ Q; ð22bÞ

P ¼ � oF 3

oQ
¼ p þ /� h; ð22cÞ

K ¼ Hþ oF 3

ot
¼ Hþ _hQ; ð22dÞ

being h(t) = xt in this case. It is just the classical counterpart of the usual unitary quantum
rotation given by exp(�ıxtr3). Equations above yield

KðQ; PÞ ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

q
cos P � 2XQ; ð23Þ

with X ¼ B3 � x
2
. Now we have an integrable Hamiltonian, since K is a constant of motion

in a one-dimensional system. Therefore, the system R defined by (21) is manifestly integra-
ble. Nonetheless, because the phase space (p, q) contains separatrices (as we will see latter)
finding analytical solutions for the equations of motion may not be a simple task. The sim-
plest (and more reliable) way of getting the solutions is solving the problem in the original
quantum system and then implementing the corresponding transformations. We present
the analytical solutions in Appendix A. In the next sections we will deal with the explicit
solutions. For now it is sufficient for our purposes to understand the general characteris-
tics of this integrable system.

Before constructing the stroboscopic maps, we point out one further interesting infor-
mation. By (22):

H ¼ Kðq0; p0Þ � xq; ð24Þ
or

dH

dq
¼ x; ð25Þ

which indicates that the time-dependent energy, H, keeps a linear relation with q for all
times.

4.1. Stroboscopic map

In the general case of a one-dimensional Hamiltonian system driven by an external peri-
odic field, for the which analytical analysis is not possible, stroboscopic maps are useful
tools to attest the integrability. In our case, although we have already proved the integra-
bility, it will be useful constructing the stroboscopic maps in order to obtain some sights
about the whole aspect of the integrable tori. As we will see, it will be essential in our anal-
ysis of the NOT operation.
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The stroboscopic map is obtained by marking the position and its conjugate momen-
tum at each multiple of the Hamiltonian period, T, which is defined by the relation
Hðq; p; t þ T Þ ¼ Hðq; p; tÞ. A rapid inspection of the Hamiltonian (21) yields T ¼ 2p

x . We
then define the stroboscopic instants as tk = kT, for k 2 N.

Since we have obtained the analytical solution for the system, the construction of the
stroboscopic map is trivial. However, another procedure based on qualitative description
of the stroboscopic map will be more appropriate for the comparative analysis that will be
realized in the next sections. Rewriting (22d) at the stroboscopic instants one obtains

K ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

k

q
cosðpk þ /Þ � 2 B3 �

x
2

� �
qk; ð26Þ

in which rk denotes r(tk). This formula allows one to construct the stroboscopic map by
means of the contour curves. It is an alternative indication of the integrability of the sys-
tem, since the map is composed only by tori (contour curves). This observation avoids
(numerical) dynamical evolution, although it does not offer information about the comen-
surability pattern of the torus (rational or irrational), which may be obtained only by the
analytical solutions. In fact, by means of the analytical equations of motion (see Appendix A)

we found the conditions of comensurability, given by the ratio B
x, being B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0 þ X2
q

the

amplitude of the magnetic field in the rotating frame (see Appendix B). Notice that
rational and irrational tori cannot coexist in the same map, since the comensurability
parameter, B

x, does not depend on the initial conditions. Fig. 1 illustrates these information
by some numerical examples.

4.2. Periodic orbits

At stroboscopic instants both set of variables, (p,q) and (P,Q) yield the same map, since
Qk = qk and Pk(mod 2p) = pk (mod 2p). Then we can calculate the fixed points (periodic
orbits of period one), denoted by ð�P ; �QÞ, by imposing that _Q ¼ _P ¼ 0 in the equations of
Hamilton. This yields

�P ¼ lp ðl ¼ 0; 1; 2Þ; ð27aÞ

�Q� ¼ 	
2X
B
: ð27bÞ

According to (8) the corresponding quantum state (in the rotating frame) is

ju�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �Q2

�
2

r
jþi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �Q2

�
2

r
j�i: ð28Þ

Putting ð�P ; �QÞ in the Hamiltonian (23), we obtain the contour value K ¼ �E, to which the
fixed point belongs:

�E ¼ �B: ð29Þ
Eqs. (28) and (29) given the eigenstates and the eigenvalues of the quantum Hamiltonian
associated to K. Actually the eigenvalues are ±B/2, as one may guess by (1) and (4). This is
a very interesting example of the correspondence between eigenstates and periodic orbits.
Another interesting point is that the frequency X ¼ B3 � x

2
controls the vertical localiza-

tion of the fixed point and, consequently, the symmetry of the map. For instance, in the
resonance (X = 0) one obtains �Q ¼ 0, as can be seen in Fig. 1.



Fig. 1. Stroboscopic maps obtained numerically from the whole evolution (a,c,e) and respective contour curves
obtained by (26) (b,d,f) for the R field with: B0 = 1, B3 = 0, x = 1 and B

x ¼
ffiffiffi
5
p

(a,b), B0 = B3 = x = 0.5 and
B
x ¼

ffiffiffi
5
p

(c,d) and B0 = 1, B3 ¼ x
2
, w = 89 and B

x ¼ 2
89

(e,f). In (e) we see a case of rational tori. / = 0 in all cases.
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Finally we point out that initial conditions like (27) are fixed point for all times in the
phase space associated to variables (P,Q). However, this is not so for the original vari-
ables, since that by (22) we have ðpðtÞ; qðtÞÞ ¼ ð�P � /þ xt; �Q�Þ. In fact, in these phase
space the fixed point occurs only at stroboscopic instants.
5. The non-rotating field

We are now interested in analyzing the non-rotating (NR) field defined by [7]



R.M. Angelo, W.F. Wreszinski / Annals of Physics 322 (2007) 769–798 777
BNR ¼ �2ðB0; 0;B3 cos xtÞ; ð30Þ

being B0 and B3 constant amplitudes. Actually this is one of the most common fields used
in NMR experiments, mainly for quantum computation purposes [2], even more because
fields like (20) are difficult to manufacturate. The corresponding Hamiltonian reads

Hðq; p; tÞ ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
cos p � 2B3q cos xt: ð31Þ

The absence of a rotation symmetry destroys the manifest integrability of the model. In the
R system, BR = iBRi is constant, so that the time variation of the external field is given
only by changes in its direction. Then one may choose a frame that rotates with the field
frequency, getting a constant energy. Because in the NR system the field varies also in
modulus it is not possible to eliminate time-dependence just by defining a rotating frame.
In fact we are not able to find a canonical transformation that puts the Hamiltonian in an
autonomous form. The quantum version of this system has been analyzed in different con-
texts, but always in a perturbative way [4–6].
5.1. Numerical analysis

In this section we present some numerical results concerning the features of the strobo-
scopic map and its qualitatively resemblance with those of the R system. Consequently,
integrability is numerically verified.

The first interesting information that emerges from the numerical results is the linear
relation between the time-dependent energy, HðqðtÞ; pðtÞ; tÞ, and the coordinate q(t) at
the stroboscopic instants tk ¼ 2p

xk. In Fig. 2 we illustrate this information by means of stro-
boscopic bullets. It is also possible to notice, by the continuous flux, the complexity of the
NR dynamics (compare to (24)).

In Fig. 3 we show the same type of stroboscopic parametric plot for several initial con-
ditions under the same parameter interaction. It is possible to see that the slope (regression
coefficient), c, of each straight line has always the same value, i.e., it does not depend on
Fig. 2. Parametric plot between the time-dependent energy HðtÞ and the coordinate q(t) for the continuous flux
(solid line) and for the stroboscopic instants tk (bullets).The parameters used in this calculation were B0 = 1.0,
B3 = 1.5 and x = 3.0.
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qk

-4.0

-2.0
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Hk

Fig. 3. ‘‘Stroboscopic parametric plot’’ of H and q (symbols) for several initial conditions and respective fittings
(solid lines). The slopes of the fitting curves (c = 4.9559) are identical and independent of the initial condition.
The parameters used in this calculation were B0 = 1.0, B3 = 1.5 and x = 3.0.
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the initial condition. On the other hand, the regression constant, E, does depend on the
initial condition.

These numerical results allow us to write DH
Dq ¼ �c and

Hk ¼ Eðq0; p0Þ � cqk; ð32Þ
in which DH ¼ Hkþl �Hk, Dq = qk+l � qk and Hk ¼ Hðqk; pk; tkÞ. Using (31) we rewrite
equation above as

Eðq0; p0Þ ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

k

q
cos pk � 2 B3 �

c
2

� �
qk; ð33Þ

which is the equation of the stroboscopic map for the NR system as a function of the
numerical parameter c. Comparison between (32) and (24) emphasizes the resemblance be-
tween NR and R dynamics, at least at the stroboscopic instants.

On the other hand, Eq. (33) indicates that the maps of the NR system must be ‘‘iden-
tical in shape’’ to those of the R case, as can be seen by comparing (33) and (26) (with
/ = 0). The difference is only in the resonance condition, which is now given by B3 � c

2
,

instead of B3 � x
2
. c is a frequency determined numerically by the fittings shown in

Fig. 3, whereas x is the own frequency of the applied field. The qualitative agreement
between NR and R maps are shown in Fig. 4, which was made as follows: we determined
c numerically by fittings in the NR system and then we used a R field with x = c. Another
interesting difference can be noticed in these numerical results: in the NR system, rational
and irrational tori are allowed to coexist.

The above results explain the fact observed in [4] that the RWA accounts for several
results qualitatively even outside the regime where it is supposed to be a good approxima-
tion [14], namely, (i) resonance and (ii) weak coupling. In particular the solution found in
[4] in the case of resonance has a frequency which is very close to the Rabi frequency.

In the next sections we demonstrate the explicit integrability (i.e., the possibility of
obtaining explicit analytical solutions) of the NR system at some regimes of interest.



Fig. 4. (a) Stroboscopic map for the NR system with B0 = 1.0, B3 = 1.5 and x = 3.0 and (b) the corresponding
map for the R system with x = c = 4.9559 (see Eq. (26)). This value was obtained by the fitting shown in Fig. 3.
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5.2. Analytical analysis: average dynamics

The contour pattern (33) chosen by the NR system is not obvious. In fact it can not be
inferred directly from the Hamiltonian (31). The choice by one specific contour in the set
of possibilities offered by the time-dependence of the system suggests the existence of an
average dynamics. In this section we try to obtain some analytical evidence of such an
idea.

Consider the following arbitrary Hamiltonian

Hðq; p; tÞ ¼ H0ðq; pÞ þ f ðxtÞV ðq; pÞ; ð34Þ

in which f(xt) is a periodic function with period T ¼ 2p
x . We now calculate the time-deriv-

ative of the Hamiltonian,

_H ¼ V otf ¼ otðVf Þ � f otV ; ð35Þ

and then integrate the result over the arbitrary interval [t1, t2] to get a time-dependent func-
tion given by

H2 �H1 ¼ f2V 2 � f1V 1 �
Z t2

t1

f ðxtÞ _V ðtÞdt; ð36Þ

in which we used the notation Ai = A(ti), with A standing for H, V and f. Now, assuming
that V(t) is not a constant of motion, we multiply and divide the last term of the equation
above by V 2 � V 1 ¼

R t2

t1
_V ðtÞdt and reorganize the equation in the form

H2 �H1 ¼ ðf2 � hf i2;1ÞV 2 � ðf1 � hf i2;1ÞV 1 ð37Þ

in which we have defined the average

hf i2;1 �
R t2

t1
f ðxtÞ _V ðtÞdtR t2

t1
_V ðtÞdt

: ð38Þ

This equation can be rewrite as
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Z t2

t1

f ðxtÞ _V ðtÞdt ¼ hf i2;1ðV 2 � V 1Þ; ð39Þ

which presumes that the integral of f _V may be identified to the product of the integral of
_V alone multiplied by a certain average.

At arbitrary stroboscopic instants, namely t1 = iT and t2 = jT, with i and j 2 N, (38)
and (39) may be sufficiently manipulated to yield

hf ij;i ¼

R T
0

f ðxtÞ
Pj�1

n¼i

_V ðt þ nT Þdt

R T
0

Pj�1

n¼i

_V ðt þ nT Þdt

ð40Þ

and

ðV j � V iÞhf ij;i ¼
Xj�1

n¼i

ðV nþ1 � V nÞhf inþ1;n: ð41Þ

Convenient transformations of variable were performed in order to put the formulas in
terms of integrals over only one period.

Consider the behavior of the mean (40) at consecutive stroboscopic instants for long
times (k
 1). In such case we have

hf ikþ1;k ¼
R T

0 f ðxtÞ _V ðt þ kT ÞdtR T
0

_V ðt þ kT Þdt
: ð42Þ

For any value of T there exist a value of k large enough to guarantee that kT
 t. It allows
us to expand _V ðkT þ tÞ in Taylor’s series, being t the small parameter. This procedure
leads to

hf ikþ1;k ¼

P1
n¼0

on
tk

_V ðtkÞ
n!

1
xnþ1

R 2p
0

f ðuÞun du
h i

P1
n¼0

on
tk

_V ðtkÞ
n!

1
nþ1

2p
x

� �nþ1
h i ; ð43Þ

in which u = xt. In this result all dependence with x was made explicit. Then, the regime
of high frequency becomes evident for well-defined functions f and _V :

lim
x!1
ðk
1Þ

hf ikþ1;k ¼
1

T

Z T

0

f ðxtÞdt � �f : ð44Þ

In such situation, according to (41), we have hf ij;i ¼ �f . Then, choosing t2 = tk, t1 = 0 and
putting results above in (37) we obtain

Hk ¼ ½H0ðq0; p0Þ þ �f V ðq0; p0Þ� þ ½f0 � �f �V k; ð45Þ

or

Eðq0; p0Þ ¼ Hk � ½f0 � �f �V k; ð46Þ

with Eðq0; p0Þ ¼ H0ðq0; p0Þ þ �f V ðq0; p0Þ. This result attests the integrability of the system,
since it provides the analytical expression for the stroboscopic map. Notice that
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DH
DV
¼ f0 � �f ; ð47Þ

and thus (45) and (47) can be directly compared to respective results (24) and (25) for the
integrable system R. Once the system is notably integrable for k
 1 it is expected that it is
also true for every k. It must be so to guarantee that the map is composed by the same
contours at any stroboscopic instant.

The regime of low frequency can not be predicted directly from the formulas developed
in this section and numerical work is necessary. However, the high frequency regime illus-
trates the necessary and sufficient condition for the integrability of the system (34):

hf ikþ1;k ¼ hf i: ð48Þ

This condition requires that the average defined by (42) be time-independent. One further
observation should be done in order to emphasize that the average dynamics is weighted
up by the time-derivative of the potential and not only by the time-average of the function f.
This fact credits a non-trivial character to the identification of such an average.

In the next section, we obtain some explicit regime of integrability by applying the aver-
age we defined above, the averaging theorem and the RWA.
5.3. Analytical solutions in the NR system

5.3.1. High frequency regime

In this section we consider the regime of high frequency, in which the frequency of the
external field x is much larger than B0 or B3. In fact, we will work in a regime that allows
us to disregard higher order terms in (43).

At first we investigate the terms

An �
1

xnþ1

Z 2p

0

f ðuÞundu ð49aÞ

and

Bn �
1

nþ 1

2p
x

� �nþ1

; ð49bÞ

that appear in the brackets in (43). For f(u) = cos u the integral above can be performed
analytically, leading to a hyper-geometric function with a maximum at n = 2. In Fig. 5 we
show the behavior of x3An/4p as a function of n for two values of x. For high frequency
regimes we indeed verify that only n = 2 contributes significantly to the sum, i.e., only A2 is
non-null, though small. On the other hand, for Bn, the major contribution comes from
n = 0, as it is evident from its own definition.

According to Fig. 5, we can write An ¼ 4p
x3 dn;2. Then, (43) assumes the form

hf ikþ1;k ¼
1

x2

o2
tk

_V ðtkÞ
_V ðtkÞ

: ð50Þ

Now, by noticing that _V ¼ �2B3 _q and using the equations of motion of the NR system, we
get
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Fig. 5. x3An
4p as a function of integers n for x = 10 (dashed line) and x = 100 (solid line), in arbitrary units. The

maximum value of the function plotted does not depend on x.
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hf ikþ1;k ¼ �4
B2

0 þ B2
3

x2

� �
� hf i; ð51Þ

which is notably k-independent. This result explicits the condition of high frequency that
we supposed initially.

For large values of x (not infinity) we can replace �f in (45) by the result (51). Then, by
comparing (45) with (32), we establish the connection between the analytical (Æf æ) and
numerical (c) results as follows

c ¼ 2B3ð1� hf iÞ: ð52Þ
In Fig. 6, the validity of this relation for high frequencies is verified, showing that our
approximations are adequate.

The analytical expression for the stroboscopic map in the regime of high frequency can
be constructed by putting Vk = �2B3qk in (45) with the explicit form of Hk:
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Fig. 6. Comparison between the numerical c and analytical 2B3(1 � Æf æ) slopes for several values of x.
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Eðq0; p0Þ ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

k

q
cos pk � 2B3hf iqk; ð53Þ

with Æf æ given by (51). Notice that c fi 2B3 and Æf æ fi 0 in the limit of x fi1. It shows
that the map will have periodic orbits localized in the line q = 0. In this limit, accordingly
to both (33) and (53), the stroboscopic map reads

Eðq0; p0Þ ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

k

q
cos pk: ð54Þ

The approach adopted in this section allows us to predict the form of the stroboscopic
map in the regime of high frequency, defined precisely by (51). However this cannot be
achieved for any periodic function f. In fact, it is possible to show that the average is
k-dependent for f(t) = sin xt.
5.3.2. Strong coupling regime

In order to analyze the strong coupling regime (B0� x) we apply the canonical trans-
formation (22) but now with h ¼ 2B3

x sin xt (and / = 0). The new Hamiltonian reads

K ¼ 2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

q
cos P þ 2B3

x
sin xt

� �
ð55Þ

and the equations of motions are given by

_Q ¼ �2B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

q
sin P þ 2B3

x
sin xt

� �
; ð56aÞ

_P ¼ 2B0
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Q2
p cos P þ 2B3

x
sin xt

� �
: ð56bÞ

If B0T is small these equations will be in the form

_x ¼ ef ðx;xtÞ; ð57Þ

with eT� 1, and the averaging theorem can be applied [25]. The mean solution, xm, sat-
isfying jx � xmj < ce, being c independent of e, for t 2 ½0; 1

e�, will be given by

_xm ¼ ef 0ðxmÞ; ð58aÞ

f 0ðxÞ ¼ 1

T

Z T

0

f ðx;xtÞdt; ð58bÞ

where T ¼ 2p
x is the period defined by f(x, xt + xT) = f(x, xt).

By applying this scheme to the equations of motion (56) we get

_Qm ¼ �2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

m

q
sin P m; ð59aÞ

_P m ¼ 2x0

Qmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

m

q cos P m; ð59bÞ

being

x0 ¼ B0J 0

2B3

x

� �
: ð60Þ
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J0(x) is the Bessel function of first kind. Notice that we may have dynamical localization
(x0 = 0) for values of B3 and x that produce zeros in J0 [26,27].

Equations above were obtained by expanding the (co)sine in terms of Bessel functions
sums. The system (59) can be solved analytically by noticing that

Km � 2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

m

q
cos P m ð61Þ

is a constant of motion. Note that this result can be obtained by applying the formula
(58b) to Hamiltonian (55). Then, since by the averaging theorem Q(t) � Qm, P(t) � Pm

and KðtÞ � Km for t 6 1
B0

, we can return to the original set of variables to obtain the ana-
lytical solution. However, for our purpose, its sufficient to establish the connection be-
tween the original and the new Hamiltonian at the stroboscopic times. For all t

satisfying the condition of validity of the averaging theorem, namely B0T ¼ 2pB0

x � 1, we
have Km ¼ Hþ 2B3q cos xt, which allows us to conclude that

Hk ¼ Km � 2B3qk: ð62Þ
This equation allows us to obtain the analytical expression for the stroboscopic map in the
strong coupling regime:

Km ¼ 2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

k

q
cos pk; ð63Þ

which could had been obtained from (61) by noticing that (Pm(tk), Pm(tk)) = (Pk,
Qk) = (pk, qk).

Direct comparison with (32) and (52) indicates that this regime is equivalent to that of
high frequency, since here we have c = 2B3 and Æf æ = 0. Then, once more the map will be
completely symmetric in q and p, with central periodic orbits, as those of the Fig. 1(e and f).
The strong coupling regime has been studied in a more general case (quasi-periodic fields)
in [5].
10
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Fig. 7. The average weighted up by the potential time-rate, Æf æ, as a function of tmax

T ¼ 1
B0T ¼ 1

2p
x
B0

, the maximal
normalized instant for the which is valid the average theorem solution. In this simulation we fixed B3 = 1.0,
x = 10 and made vary B0. According to the averaging theorem Æf æ = 0.
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It is also worth to observe that the averaging theorem must be valid for all times and
not only until tmax ¼ 1

B0
. If not, the map would mix two types of contours, one deter-

mined by Æf æ = 0 and other by a general Æf æ „ 0. In this case, tori crossing would be
inevitable.

We emphasize this point by means of the numerical calculation shown in Fig. 7. The
plot shows the time-independent average Æf æ, calculated numerically from the whole evo-
lution (valid for all time), as a function of tmax

T ¼ 1
B0T ¼ 1

2p
x
B0

. For small values of tmax/T we
have Æf æ „ 0, but at such regime the averaging theorem is no longer applicable. In fact,
according to the numerical results Æf æ already differs from zero for tmax/T � 1.6, which
corresponds to B0T � 0.6, whereas the theorem is valid only for B0T� 1. Consider
now the region of large values of tmax/T. We see that Æf æ is null, in agreement with
the averaging theorem. Since Æf æ is the value valid for all times (and not only until tmax)
we may conclude that the averaging theorem, proved valid for large times, must be valid
for all times.

5.3.3. Resonant weak coupling regime: RWA

In this section we apply the averaging theorem to treat the NR system in a regime
defined by both a resonance condition and one small parameter. These two assumptions
are essential to the application of the RWA. Actually our aim is showing that the averag-
ing theorem ensures the validity of the RWA.

Consider the Scrödinger equation corresponding to BNR. After a time independent
rotation of p/2 around the y-axis we obtain

ı
dw
dt
¼ �2ðB0rz � B3 cos xtrxÞw: ð64Þ

We now perform a unitary transformation to the rotating frame,

wðtÞ ¼ RðtÞw0ðtÞ; ð65aÞ

with

RðtÞ ¼ expð�ıxtrz=2Þ; ð65bÞ

obtaining

ı
dw0

dt
¼ B0 �

x
2

� �
rz � B3 cos xtðR�1rxRÞ

h i
w0: ð66Þ

Now,

cos xtR�1rxR ¼
rx

2
þ 1

2
ðrx cos 2xt � ry sin 2xtÞ: ð67Þ

The second term at the r.h.s. of (67) produces the high frequency oscillations. According to
the heuristics [28], they may be neglected for the purposes of ascertaining the ‘‘mean’’
behaviour in time. We now show the conditions under which this is true. Assume that

x ¼ 2B0 ðresonanceÞ ð68aÞ

and

B3=x� 1 ðweak couplingÞ: ð68bÞ
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Putting (67) into (66) we obtain

ı
dw0

dt
¼ �B3

2
ðrx þ rx cos 2xt � ry sin 2xtÞw0: ð69Þ

Under assumption (68b), it follows, from the averaging theorem [25] (Theorem 11.2,
p. 154):

kw0ðtÞ � w00ðtÞk ¼ OðB3=xÞ ð70Þ

in the time-scale O(x/B3), i.e., for all t 2 ½0; c
ðB3=xÞ�, where c is a constant, i Æ i is the Euclid-

ean norm in spinor space and w00ðtÞ satisfies the ‘‘averaged equation’’

ı
dw00
dt
¼ �B3

2
rxw

0
0: ð71Þ

From (65), (70) and (71) we see that

kwðtÞ � wRWAðtÞk ¼ OðB3=xÞ; ð72Þ
for t 2 ½0; c

B3=x
�, where

wRWAðtÞ � RðtÞeıB3trx=2wð0Þ: ð73Þ
It is possible to estimate the effect of being slightly off resonance by [25] (Theorem 11.2,
pg. 154). By (66) and (67), defining the Rabi frequency

XR ¼ ½ð2B0 � xÞ2 þ B2
3�

1=2
; ð74Þ

then w 0 given by (69) is close (in the sense of (72)) to the solution

w0ðtÞ ¼ e�ıXRtr=2w0ð0Þ; ð75Þ
where

r ¼ ð2B0 � xÞ
XR

rz �
B3

XR

rx; ð76Þ

with r2 = 1. It is to be remarked that an exact method suggested by the RWA was devised
in [29]. This powerful method (called in [29] rotating wave transformation) goes well be-
yond the simple idea of the RWA, and has recently been applied to the quantum case
(16) in [15]. We have been concerned, in this section, with the standard problem of justi-
fying the replacement of BR, given by (20), by BNR, given by (30), for which, surprisingly,
no precise estimates on the parameters seen to have been given.

6. Unitary quantum NOT operation

In this section we focus on the potential capability of the two-level systems in working
as quantum NOT gates. We are interested mainly in determining the conditions for the
realization of the NOT operation, pointing out the alternative regimes for its experimental
implementation.

General principles of quantum computation require that NOT operation be unitary
[30]. References [30,31] propose different constructions of the unitary NOT operation,
e.g., working in an extended Hilbert space. Although these formalisms are also applicable
to our case, we are, primarily, concerned with the dynamics We thus choose to keep the
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original setting, in particular, the same Hilbert space. In this case, unitary of the NOT
operation may restrict us to special cases of initial superpositions. It indeed occurs, as
we will see.

Our analysis starts by the analytical study of the rotating field treated in Section 4, for
the which all analytical solutions are available (Appendix A). Since a resonant NR field in
the regime of weak coupling can be mapped on a system governed by a rotating field, as
showed in the last section, this case will be automatically included in the analysis.

The unitary quantum NOT operation is characterized by the transformation
S(0) fi S(tnot) in the classical phase space. This transition, achieved by means of a unitary
Hamiltonian dynamics, leads the initial vector S(0) to its antipode S(tnot) in the unit
sphere. tnot, defined by S(tnot) Æ S(0) = Snot Æ S0 = �1, is the instant at which the NOT
operation occurs.

Thus, imposing Snot Æ S0 = �1 in the analytical result given in A.6 we find several
regimes of operation for the NOT-gate. Bellow we list all of them.

Case 1

Satisfied the resonance condition

x2 ¼ B2
0 þ B3 �

x
2

� �2

; ð77aÞ

which corresponds to x ¼ B
2
, the NOT operation will occur periodically at

tðnÞnot ¼ ð2nþ 1Þ p
x

ðn 2 NÞ ð77bÞ

for the following (equivalent) sets of initial conditions

ðp0; q0Þ ¼ ð8; 0Þ; ð77cÞ
S0 ¼ ðcos p0; sin p0; 0Þ; ð77dÞ

jw0i ¼
1ffiffiffi
2
p ðjþi þ eıp0 j�iÞ: ð77eÞ

Note that the only participants of the unitary NOT operation are initial conditions belong-
ing to the plane xy, specifically on the equatorial line of the unit sphere. This situation cor-
responds to a kind of universal phase NOT-gate, since all relative phase p0 will be
transformed into p0 + p at tnot. We will refer to these solutions as ‘‘bu’’, denoting the
branch in which all u is valid (equatorial line). From now on we will use the notation
‘‘bp0’’ to denote the branch of solutions corresponding to the initial conditions related
to p0.

Case 2

Under the resonance conditions

B3 ¼
x
2
; ð78aÞ

B0 ¼ ð2mþ 1Þx
2

ðm 2 NÞ; ð78bÞ

the NOT operation occurs periodically at
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tðnÞnot ¼ ð2nþ 1Þ p
x

ðn 2 NÞ ð78cÞ
for the following initial conditions

ðp0; q0Þ ¼ ð8;	1Þ; ð78dÞ
S0 ¼ ð0; 0;�1Þ ðpolesÞ; ð78eÞ
jw0i ¼ j�i; ð78fÞ
and

ðp0; q0Þ ¼ ðlp; 8Þ ðl ¼ 0; 1; 2Þ; ð78gÞ

S0 ¼ ð�1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

q
; 0;�q0

� �
; ð78hÞ

jw0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0

2

r
jþi þ ð�1Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q0

2

r
j�i: ð78iÞ
The set of initial conditions referent to the poles has already been reported in [2]. Notice
that the points corresponding to the poles in the unit sphere are transformed in separatri-
ces (q = ±1) in the phase space qp. It is just a manifestation in pq of the ambiguity related
to u in the poles of the unit sphere.

The last set corresponds to the case of a universal real NOT-gate, since the initial quan-
tum state is composed only by real coefficients. Note that there exist two different branch-
es, depending on the value that l assume. The branch b0, for l = 0, 2p, contains all initial
condition satisfying S1 > 0. On the other hand, for the branch bp (l = 1), one has S1 < 0.
These branches meet each other at S1 = 0 (q0 = ±1, poles), onto which pass a separatrix.

Case 3

Provided

B3 ¼
x
2
; ð79aÞ

B0 ¼ x; ð79bÞ
the NOT operation occurs periodically for

tðnÞnot ¼ ð2nþ 1Þ p
2x

ðn 2 NÞ; ð79cÞ

ðp0; q0Þ ¼ ð8;	1Þ; ð79dÞ
S0 ¼ ð0; 0;�1Þ ðpolesÞ; ð79eÞ
jw0i ¼ j�i; ð79fÞ
and for
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tðnÞnot ¼ ð4nþ �Þ p
2x

ðn 2 NÞ; ð79gÞ

ðp0; q0Þ ¼ ½2lþ 3� p
4
; 8

� �
; ð79hÞ

S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

q
cos p0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

q
sin p0;�q0

� �
; ð79iÞ

jw0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0

2

r
jþi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q0

2

r
eıp0 j�i; ð79jÞ

in which

� ¼
1; for l even;

3; for l odd:

	
ð79kÞ

Note that in this case, tnot depends on the choice for the p0. Once again, there are several
branches contributing to the NOT operation, namely, bp

4
, b3p

4
, b5p

4
and b7p

4
, each one of them

corresponding to a given l. These cases correspond to quantum states with complex phases
in the form eıp0 ¼ ð�1� ıÞ=

ffiffiffi
2
p

, for all combinations of signals, for any q0. Therefore, also
in these cases, there exist a type of universality for the NOT operation.

Case 4

With

B3 ¼
x
2
; ð80aÞ

B0 ¼
x

4m
ðm 2 NÞ; ð80bÞ

the NOT operation occurs periodically for

tðnÞnot ¼ mð2nþ 1Þ 2p
x

ðn 2 NÞ; ð80cÞ

ðp0; q0Þ ¼ lþ 1

2

� �
p; 8

� �
; ð80dÞ

S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

q
; 0;�q0

� �
; ð80eÞ

jw0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0

2

r
jþi þ ı

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q0

2

r
j�i: ð80fÞ

This case corresponds to the branches b p
2

and b 3p
2

.
For completeness, we point out that all information got above concerning the initial

conditions emerged from the following simple expressions derived from (A.6) at a specific
tnot:

ð1Þ Snot � S0 ¼ 1� 2q2
0; ð81aÞ

ð2Þ Snot � S0 ¼ �q2
0 þ ðq2

0 � 1Þ cosð2p0Þ; ð81bÞ
ð3Þ Snot � S0 ¼ �q2

0 þ ð�1Þlþ1ðq2
0 � 1Þ sinð2p0Þ; ð81cÞ

ð4Þ Snot � S0 ¼ �q2
0 þ ð1� q2

0Þ cosð2p0Þ; ð81dÞ



Fig. 8. Set of initial conditions that allows for the implementation of the NOT operation in the R system (solid
lines and the points corresponding to the poles of the sphere). The solutions are shown in both the phase space pq

(on the left) and the tridimensional phase space xyz. By simplicity, only the north hemisphere is shown, since the
south presents the same contents.
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in which we have to impose that Snot Æ S0 = �1. Fig. 8 presents an overview of the global
symmetry presented by the set initial conditions allowed to implement the unitary NOT
operation.

It is interesting to note that the initial conditions found in the Case 4 are just localized
over the separatrix of motion in phase space pq. However this is not relevant to the quan-
tum dynamics, since the separatrix exists only in this particular phase space. It occurs in
virtue of the topology change from a tridimensional phase space (sphere) to a bidimen-
sional one (plane qp). A deeper analysis of the classical picture associated to the quantum
dynamics may be found in Appendix B.

6.1. NOT operation in the NR system

The precedent analysis shows that practically all NOT regimes occurs for the resonance
B3 ¼ x

2
, which produces stroboscopic maps with centered periodic orbits. The connection

between R and NR maps verified in Section 5 indicates that we have to search regimes
such that B3 ¼ c

2
in the NR system, since the parameter c plays the role of the R frequency

x for the map symmetry (see 26 and 33). According to (51) and (52) this regime will be
achieved only asymptotically, provided x2ðB2

0 þ B2
3Þ
�1 ! 0. We have verified numerically

for the case 2 (Fig. 9) that the NOT operation indeed occurs asymptotically, i.e.,
SnotS0 fi �1 as B0

x ! 0, with B3 = B0.
The most interesting and non-trivial regime of NR NOT operation was found at a res-

onance equivalent to Case 1. Obeying the analogy between c and x we obtain the follow-
ing resonance condition for the NR system:

c2 ¼ B2
0 þ B3 �

c
2

� �2

; ð82Þ

being c a parameter determined by the choices of the NR frequencies x, B3 and B0, i.e.,
c = c(x, B0, B3). We determined numerically the parameters satisfying (82) by fixing x
and B3 and varying B0. The result is shown in Fig. 10. Once found the solutions for
Eq. (82), we verified the realization of the NOT operation for the NR system for a univer-
sality class given by ðp0; q0Þ ¼ ð½lþ 1

2
�p; 8Þ, with l 2 N, as can be seen in Fig. 11(a). We also

plot the R NOT operation with analog parameters.
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Fig. 9. NR NOT operation with B0 = B3 = 0.2 and (a) x = 3.0 or (b) x = 10.0. c tends to 2B3 asymptotically,
thus satisfying the resonance conditions of the case 2. However, here the universality class is ðp0; q0Þ ¼ ð3p
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vertical dashed line stands for the analytical NOT instant given by tnot = 7.854 (see Appendix B).
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Fig. 10. Numerical determination of the B0 value that satisfies (82) (tick solid line) for x = 1.0 and B3 = 1.5. For
each value of B0 we determine c (bullets) by means of the fitting procedure described in Section 5.
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Although not shown by the figure, the NR NOT operation is also periodic, with
tnot = (2n + 1)5p. Notice that the first occurrence of the NOT operation happens in the
NR system five times latter than in the R system. This is an adverse point for the NR sys-
tem, since decoherence effects may be not negligible in this time scale.

At last we point out that the prediction of NOT operations in the NR system was based
on the comparison of stroboscopic maps with those of the R system. These classical math-



Fig. 11. (a) NR NOT operation for x = 1.0, c = 1.486, B3 = 1.5 and B0 = 1.279 occurring at tnot = 5p for several
initial conditions with p0 ¼ p

2
. (b) R NOT operation for x = 1.486, B3 = 1.5 and B0 = 1.279, with tnot ¼ ð2nþ 1Þ p

x

for initial conditions given by (p0,q0) = (", 0) (Case 1).
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ematical tools, based on the concept of trajectories flowing in the phase space, were crucial
in the determination of the connection between the R frequency x and its NR counterpart
c, parameters that define the symmetry of the maps. It stresses the usefulness of the clas-
sical gyromagnetic picture, being an example of classical analysis allowing quantum
predictions.
7. Summary and final remarks

We have presented some relevant results concerning the underlying classical aspects ref-
erent to the two-level systems under time-dependent external fields. The main results were
obtained in virtue of the application of the classical gyromagnet picture, which has been
shown to be a powerful approach to investigate quantum two-level dynamics.

We have shown that the underlying classical dynamics is integrable for arbitrary exter-
nal fields as a consequence of the unitary quantum dynamics. The numerical stroboscopic
maps, which are in perfect agreement with our analytical proof of integrability, were cru-
cial mainly to the identification of the similarities between the R and NR dynamics. On the
other hand, the average weighed up by the potential and the application of the averaging
method allowed us to identify several interesting regimes with explicit analytical solutions.

It also should be remarked that we have arrived at other two results of independent
interest: (i) it has been established beyond doubt (although not by rigorous proofs) that
both the RWA and the averaging theorem are valid for such systems well outside their
expected regions of validity; (ii) we have shown that the RWA is a formal consequence
of the averaging theorem.

Concerning the realization of the NOT-gate in two-level systems, we have found several
regimes for its experimental implementation for two types of external periodic fields. For a
rotating field, the quantum dynamics has been solved and universality classes for the initial
quantum state have been identified analytically, thus indicating all control parameters for
the NOT-gate working. On the other hand, for the non-rotating field, analytical equations
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of motion were not found and predictions about the NOT operations were possible thanks
to the classical analysis based on stroboscopic maps.
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Appendix A. Analytical solutions

As we mentioned, the solutions for the rotating field treated in Section 4 were found by
solving the quantum problem. Applying usual unitary transformations, namely
exp(�ıxtr3), we led the system to the rotating frame, in which the system is no longer
time-dependent. Then the solution was promptly obtained. The last step consisted in
applying the parametrization for classical canonical variables, S = (S1, S2, S3) and
(p,q). The final solutions, including that one for S(t) Æ S(0), are given bellow as functions

of the initial condition (p0, q0), with B ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0 þ X2
q

and X ¼ B3 � x
2
.

S1ðtÞ ¼ �
4q0B0

B2
2X cosðxtÞ sinðBt=2Þ2 þ B

2
sinðxtÞ sinðBtÞ

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

p
B2

2B2
0 cosðp0 þ xtÞ þ B

2
� X

� �2

cosðp0 þ xt � BtÞ
"

þ B
2
þ X

� �2

cosðp0 þ xt þ BtÞ þ 4B2
0 cosðp0 � xtÞ sinðBt=2Þ2

#
ðA:1Þ

S2ðtÞ ¼ �
4q0B0

B2
2X cosðxtÞ sinðBt=2Þ2 � B

2
sinðxtÞ sinðBtÞ

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

p
B2

2B2
0 sinðp0 þ xtÞ þ B

2
� X

� �2

sinðp0 þ xt � BtÞ
"

þ B
2
þ X

� �2

sinðp0 þ xt þ BtÞ � 4B2
0 sinðp0 � xtÞ sinðBt=2Þ2

#
ðA:2Þ

S3ðtÞ ¼ �
4q0

B2
½X2 cosðBtÞB2

0� þ
4B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

p
B2

	
X cosðp0Þ½1� cosðBtÞ�

þB
2

sinðp0Þ sinðBtÞ


: ðA:3Þ

qðtÞ ¼ �S3ðtÞ: ðA:4Þ

pðtÞ ¼ arctan
S2ðtÞ
S1ðtÞ

� �
þ

0; if S1ðtÞP 0;

p; if S1ðtÞ < 0:

(
ðA:5Þ
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SðtÞ � Sð0Þ ¼ 2B2
0

B2
cosðxtÞ þ 1

2
þ 2X2

B2

� �
cosðxtÞ cosðBtÞ � 2X

B
sinðxtÞ sinðBtÞ

� 8q2
0

1

2
cosðBt=2Þ sinðxt=2Þ

�
þ X

B
cosðxt=2Þ sinðBt=2Þ

�2

� 8B0

B
q0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

q

� cosðp0 � xt=2Þ 2X
B

cosðxt=2Þ sinðBt=2Þ2 þ 1

2
sinðxt=2Þ sinðBtÞ

� �

þ 4B2
0

B2
sinðBt=2Þ2fcosð2p0 � xtÞ � q2

0½1þ cosð2p0 � xtÞ�g: ðA:6Þ
Appendix B. Geometric picture

The classical version of to the two-level quantum system may be understood as a clas-

sical gyromagnet, with S precessing around the external field B. In this appendix this anal-
ogy is emphasized by means of a geometrical picture of the classical dynamics, which
illustrates questions concerning the separatrix, the periodic orbits and the NOT operation.

We start our analysis by focusing on the R system in its rotated version, namely,

K ¼ �B � S ¼ �B cos W; ðB:1aÞ

B ¼ ðBx;By ;BzÞ ¼ �2ðB0; 0;XÞ; ðB:1bÞ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

q
cos P ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

q
sin P ;�Q

� �
; ðB:1cÞ

with B = iBi and being W the angle between the external field and the unit vector S. The
dynamics is governed by

v � dS

dt
¼ S� B; ðB:2Þ

which defines the velocity of the unit vector S. We may calculate the acceleration a ¼ _v
noting that the external field is time-independent. This yields

a ¼ v� B: ðB:3Þ

Consider two orthogonal versors, say ei (parallel to the B) and e^ (perpendicular to B),
such that we may decompose: S = cos W ei + sin W e^ and B = Bei. Since K and B are
constants the only option for S is performing a precession around the static magnetic field.
This consideration makes the versor e^ time-dependent.

Consequently, the velocity and acceleration can be written respectively as

v ¼ B sin Wðe? � ekÞ; ðB:4aÞ
a ¼ B2 sin Wð�e?Þ: ðB:4bÞ

Being K and B constants, we conclude by (B.1a) that W, v = ivi and a = iai are all con-
stants too. Moreover, (B.4b) indicates that a is centripetal, stressing the fact that S devel-
ops a precession motion around B.

By (B.1a) we note that W 2 [0, p] and K 2 ½�B;B�. This allows us to rewrite Eqs. (B.4) in
terms of the energy as
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v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 �K2

p
ðe? � ekÞ; ðB:5aÞ

a ¼B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 �K2

p
ð�e?Þ: ðB:5bÞ

Finally, we may define the angular velocity w = (sin We^) · v which defines the precession
direction. Using equations given above we get

w ¼ B sin2 Wð�ekÞ ¼ �ðB2 �K2Þek; ðB:6Þ

which shows that the angular velocity is always anti-parallel to B. This helps us to under-
stand the direction of the trajectories flux. Moreover, since w = iwi is constant we may
define a rotation angle as U(t) = U0 + wt.
B.1. Periodic orbits (Eigenstates)

A first interesting consequence of the simple scheme developed up to here is that the
initial condition corresponding to the periodic orbits (eigenstates) of the system may be
promptly obtained for K2 ¼ B2, thus yielding v = a = 0. Therefore, these periodic orbits
correspond to ‘‘static’’ quantum states (eigenstates). In this situation, S and B are parallel
(W = 0, p), and there is no external torque.
B.2. Separatrix

The classical gyromagnet presents in the space pq a separatrix of motion associated to
the specific energy ±2X. Therefore, by (26) with X ¼ B3 � x

2
and / = 0, the explicit con-

tour for the separatrix at stroboscopic instant is given by

B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

k

q
cos pk ¼ ð�1þ qkÞX: ðB:7Þ

This equation offers all forms for the separatrix, as is shown in Fig. B.1.
We then have K ¼ �Bz, in which the signals indicate the direction of the vector S com-

pared to B fixed. Consider now that H is the projection angle of the magnetic field along
the direction z, i.e., Bz = B cosH. Hence, according to (B.1a) we obtain W = H or
W = p � H, which indicates that the vector S will be necessarily parallel (or anti-parallel)
to the versor z at some instant. Therefore, inevitably S will pass through the poles during
its precession motion. However, concerning the dynamics of the unit vector S on the
0 π 2 π
p

−1

0

1

q

a,b

0 π 2 π
p

−1

0

1

q
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q

e,f

Fig. B.1. Separatrices of motion plotted with the same parameters of the respective graphics shown in Fig. 1.
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Fig. B.2. Unit sphere projected in the plane xz. For the separatrix energy K ¼ �Bz the vector S precesses around
B with W = H. In this situation the unit vector crosses the poles of the sphere, which corresponds to the unstable
points of the space PQ. The angular velocity w and the flux direction are also indicated.
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sphere, there is absolutely nothing special in this situation. For instance, the period of the
precession in this case is

s ¼ 2p
w
¼ 2p

B2
x

¼ p

2B2
0

; ðB:8Þ

which is remarkably smaller than the period (infinity) expected for a separatrix. In this
sense, there does not exist a separatrix in the classical unit sphere. It appears only in
the pq (or PQ) phase space reflecting the peculiarities of its topology, which transforms
‘‘localized’’ states on the sphere (poles) into ‘‘delocalized’’ ones on the plane (lines
(p, q) = (", ±1)).

In addition, we note that the hyperbolic fixed points ðp
2
;�1Þ by the which the separatrix

passes through, have no special physical interpretation on the sphere. Fig. B.2 illustrates
geometrically our argumentation.
B.3. NOT operation

Let us work with matrix notation, using ST
R ¼ ðSxSySzÞ and ST

r ¼ ðS1S2S3Þ for the line
matrices corresponding to the unit vectors in phase spaces PQ (index R) and pq (index
r) respectively. The superscript T denotes the transposition operation. According to the
canonical transformation (22) we may write

SRðtÞ ¼ GðtÞSrðtÞ; ðB:9aÞ

GðtÞ ¼
cos xt sin xt 0

� sin xt cos xt 0

0 0 1

0
B@

1
CA; ðB:9bÞ
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being G(t) a rotation matrix around the axes z (or ‘‘3’’). Consequently,
G�1(t) = GT(t) = G(�t) and Sr(t) = G(�t)SR(t). Now, it is easy to see that

ST
RðtÞSRð0Þ ¼ ST

r ðtÞGð�tÞSrð0Þ; ðB:10aÞ
ST

r ðtÞSrð0Þ ¼ ST
RðtÞGðtÞSRð0Þ: ðB:10bÞ

This result shows that in general the NOT operation does not occur simultaneously in
both frame.

The NOT operation instant snot in the frame R may be determined from the geometrical
picture developed in this appendix. It reads snot ¼ p

w ¼ p
B, which is a half of the precession

period with W ¼ p
2
. This value for W is a necessary condition for the NOT operation in the

frame R.
All regimes found for the NOT operation in Section 6 may be formulated in terms of a

single relation. To get it we rewrite Eq. (B.1a) at t = 0 as

B cos W ¼ BxS1ð0Þ þ BzS3ð0Þ; ðB:11Þ

in which S1(0) = Sx(0) and S3(0) = Sz(0), since (P0, Q0) = (p0, q0). In all regimes identified
we have either S3(0) = 0 (q0 = 0) or Bz = 0 (resonance B3 = x/2). Then, using the projec-
tion angle H defined in Section B.2, we get

cos W ¼ S1ð0Þ sin H; ðB:12Þ

with S1ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

p
cos p0. Relation (B.12) puts together information about the preces-

sion angle W (related to the energy), the magnitudes of the magnetic field projections
(related to resonances) and the initial conditions (related to the initial quantum state).
All regimes of the NOT operation obey this simple formula.

By (B.12) we see that the NOT operation will occur in both frames either if
ðp0; q0Þ ¼ ðp2 ; 8Þ or if (p0, q0) = (", ±1), since B0 and H are always different of zero. This
conditions are verified in cases 2, 3 and 4. Furthermore, in theses cases B3 = x/2, so
B = 2B0 and snot ¼ p

2B0
¼ tnot. Therefore, the NOT operation will occur simultaneously in

both frames.

B.4. Mean NR NOT operation

Let us consider the NR system, for the which the magnetic field is given by
B(t) = �2(B0, 0, B3 cosxt). In the high frequency limit we may apply the averaging theo-
rem to get

�H ¼ �B � S ðB:13aÞ

�B ¼ 1

T

Z T

0

BðtÞdt ¼ ð�2B0; 0; 0Þ: ðB:13bÞ

We see that in average, the field behaves like a time-independent external perturbation,
allowing us to use the gyromagnet picture developed above. Thus, we may describe the
precession motion by means of a constant average angle �W such that �H ¼ ��B cos �W, with
�B ¼ jj�Bjj. This equation may be written at the initial instant with (B.13) as

cos �W ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

q
cos p0: ðB:14Þ
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Following the steps of the precedent sections one may determine the angular velocity. The
result is simply w ¼ �B sin �W. But we know that the NOT operation occurs only with �W ¼ p

2
.

In this situation, the NOT instant is directly calculated from the expression for w as the
time spent for performing a half rotation: tnot ¼ p

w ¼ p
�B. Moreover, in this regime Eq.

(B.14) reads
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

p
cos p0 ¼ 0, which is satisfied in general for ðp0; q0Þ ¼ ð½lþ 1

2
�p; 8Þ.

This result explain the universality class found in Section 6 for the NR system in the high
frequency limit. Furthermore, using the numerical parameters of the Fig. 9 we get
tnot = 7.854, in perfect agreement with the numerical results.
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