-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by CiteSeerX

UNIVERSITY OF AMSTERDAM
X

UVA-DARE (Digital Academic Repository)

Uncertain data integration using functional dependencies

Ayat, S.N.; Afsarmanesh, H.; Akbarinia, R.; Valduriez, P.

Link to publication

Citation for published version (APA):
Ayat, N., Afsarmanesh, H., Akbarinia, R., & Valduriez, P. (2012). Uncertain data integration using functional
dependencies. Amsterdam: Informatics Institute, University of Amsterdam.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (http.//dare.uva.nl)

Download date: 02 Jul 2019

https://core.ac.uk/display/357210859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dare.uva.nl/personal/pure/en/publications/uncertain-data-integration-using-functional-dependencies(40b72eaa-e909-49c2-9aab-be522d8a928d).html

Uncertain Data Integration Using Functional
Dependencies

Naser Ayat#!, Hamideh Afsarmanesh#2, Reza Akbarinia*3, Patrick Valduriez**

#Informatics Institute, University of Amsterdam, Amsterdam, Netherlands
's.n.ayat@uva.nl, 2h.afsarmanesh@uva.nl
*INRIA and LIRMM, Montpellier, France
3’4{Firstname.Lastname@inria.fr}

Abstract. Data integration systems are crucial for applications that
need to provide a uniform interface to a set of autonomous and hetero-
geneous data sources. However, setting up a full data integration system
for many application contexts, e.g. web and scientific data management,
requires significant human effort which prevents it from being really scal-
able. In this paper, we propose IFD (Integration based on Functional
Dependencies), a pay-as-you-go data integration system that allows in-
tegrating a given set of data sources, as well as incrementally integrating
additional sources. IFD takes advantage of the background knowledge
implied within functional dependencies for matching the source schemas.
Our system is built on a probabilistic data model that allows capturing
the uncertainty in data integration systems. Our performance evaluation
results show significant performance gains of our approach in terms of re-
call and precision compared to the baseline approaches. They confirm the
importance of functional dependencies and also the contribution of using
a probabilistic data model in improving the quality of schema matching.
The analytical study and experiments show that IFD scales well.

Keywords: data integration, uncertain data integration, functional de-
pendency

1 Introduction

Data integration systems offer uniform access to a set of autonomous and het-
erogeneous data sources. Sources may range from database tables to web sites,
and their numbers can range from tens to thousands. The main building blocks
of a typical data integration application are mediated schema definition, schema
matching and schema mapping. The mediated schema is the schema on which
users pose queries. Schema matching is the process of finding associations be-
tween the elements (often attributes or relations) of different schemas, e.g. a
source schema and the mediated schema in the popular Local As View (LAV)
approach [1]. Schema mapping (also referred to as semantic mapping) is the
process of relating the attributes of source schemas to the mediated schema
(sometimes using expressions in a mapping language). The output of schema
matching is used as input to schema mapping algorithms [1].

Setting up a full data integration system with a manually designed mediated
schema requires significant human effort (e.g. domain experts and database de-
signers). For example, in the context of the web, we are faced with a lot of data
sources, even in a particular domain like travel, which makes it impossible to
manually integrate the data sources. On the other hand, there are many appli-
cation contexts, e.g. web, scientific data management, and personal information
management, which do not require full integration to provide useful services [2].
These applications need to start with a data integration application in a com-
plete automatic setting for reducing human effort and development time and
put more effort on improving it as needed. Let us present a motivating example
from the scientific data management context.

Example 1. Consider a researcher who is interested in the less-known or yet
unknown functions of the protein ABCCS related to diabetes. While biological
experiments are the ultimate means for verifying predicted functions, she must
first discover and suggest such functions. For doing this, she should perform
manual exploratory searches over numerous online sources. For example, she
should consider both well-known databases such as EntrezGene, EntrezProtein
and less-known databases of other research labs as well. In this case, spending
too much money and time for setting up a full data integration system is not
reasonable and even not feasible due to the large number of such databases.
Having a data integration system with approximate answers can considerably
save the time and reduce the research cost in this domain. It is sufficient to
set up such a system in a complete automatic setting and spend more effort to
improve it only if it is necessary. This recent setting, referred to by pay-as-you-go
data integration, has attracted considerable attention, e.g. [3-6]. The ultimate
goal of this setting is to reduce human burden, and thereby reduce the time and
cost of data integration while providing sufficient integration [3].

Our goal is to build a data integration system in a pay-as-you-go setting.
To capture the uncertainty arising during the matching process, we generate
Probabilistic Mediated Schemas (PMSs) which have shown to be promising [7].
The idea behind PMSs is to have several mediated schemas, each one with a
probability that indicates the closeness of the corresponding mediated schema
to the ideal mediated schema.

The related work closest to ours is that of Sarma et al. [4] which Based on
PMSs proposed UDI (Uncertain Data Integration), an uncertain data integration
system. However, there are significant differences between UDI and our work.
First, the execution cost of UDI’s algorithm for generating mediated schemas
is exponential, while ours is PTIME. Second, UDI may end up with an expo-
nential number of mediated schemas with low probabilities attached to them,
particularly if the system parameters are not adjusted carefully, but this is not
the case for our work. Another main difference is that UDI may fail to capture
some important attribute correlations, and thereby produce low quality answers.
Let us clarify this by an example which is the same as the running example in
[4].

Example 2. Consider the following schemas both describing people:
Sy (name, hPhone, hAddr,oPhone, 0Addr)
Sa(name, phone, address)
In S,, the attribute phone can either be a home phone number or an office
phone number, and the attribute address can either be a home address or an
office address.

An ideal data integration system should capture the correlation between
hPhone and hAddr and also between oPhone and oAddr. Specifically, it must
generate schemas which group the address and hAddr together if phone and
hPhone are grouped together. Similarly it should group the address and o Addr
together if phone and oPhone are grouped together. In other words either of the
following schemas should be generated (we abbreviate hPbone, oPhone, hAddr, o Addr
as hP,oP, hA, and oA respectively):

M ({name, name}, {phone, hP},{oP},{address,hA}, {0A})
Ms({name,name}, {phone,oP},{hP},{address,oA}, {hA})

Although these schemas are generated by UDI, they are overwhelmed by
schemas in which the attribute correlations are not respected. Thus, by produc-
ing a large number of schemas which can easily be exponential, the desirable
schemas get a very low probability. This occurs because UDI does not consider
attribute correlations. Most attribute correlations are expressed within Func-
tional Dependencies (FDs). For example let F; and F5 be the set of FDs of S
and Sy respectively:

Fy, = {hPhone — hAddr,oPhone — oAddr}

Fy, = {phone — address}

These FDs show the correlation between attributes. For example, hPhone —
hAddr indicates that the two attributes hPhone and hAddr are correlated.
Considering the pairs of FDs from different sources can help us extracting
these correlations and achieving the goal of generating mediated schemas that
represent these correlations. For example, the FD pair phone — address and
hPhone — hAddr indicates that if we group phone and hPhone together, we
should also group address and h Addr together, as well as the oPhone and o Addr.

The set of attribute correlations that cannot be represented in one mediated
schema implies having several correct mediated schemas at the same time. In
Example 2, we cannot discard any of the schemas M; and M5 in favor of the other
because we do not know whether phone represents home phone or office phone, or
whether address represents home address or office address. Actually, we cannot
determine the correct schema without the help of the domain expert. Thus,
we keep both, as uncertain mediated schemas, and assign them a probability of
correctness. We discuss the details of generating mediated schemas and assigning
probabilities to them in section 3.2. Traditional data integration systems which
build only one mediated schema cannot capture this kind of uncertainty.

In this paper, we propose IFD (Integration based on Functional Dependen-
cies), a pay-as-you-go data integration system that takes into account attribute
correlations by using functional dependencies. We use a probabilistic data model

that enables us to capture uncertainty in mediated schemas. IFD sets up the
system by creating a set of PMSs automatically and lets the user improve them
when necessary. It uses algorithms that scale well in the number of sources. We
model the schema matching problem as a clustering problem with constraints.
This allows us to generate mediated schemas using algorithms designed for the
latter problem. In our approach, we build a custom distance function for rep-
resenting the knowledge of attribute semantics which we extract from FDs. We
also propose a new metric (i.e. FD-point) for ranking the generated mediated
schemas in the clustering process, and selecting high quality ones. IFD allows
integrating a given set of data sources, as well as incrementally integrating ad-
ditional sources, without needing to restart the entire process. To validate our
approach, we implemented IFD as well as baseline solutions. The performance
evaluation results show significant performance gains of our approach in terms
of recall and precision compared to the baseline approaches. They confirm the
importance of FDs in improving the quality of generated mediated schemas.

The rest of the paper is organized as follows. In Section 2, we make our as-
sumptions precise and define the problem. In Section 3, we propose IFD, and
describe its architecture, components and algorithms. We also analyze the exe-
cution cost of IFD’s algorithms. Section 4 describes our performance validation.
Section 5 discusses related work, and Section 6 concludes.

2 Problem Definition

In this section, we first give our assumptions and some background about PMSs.
Then, we state the problem we address in this paper.

For the applications which we consider (e.g., scientific data management), we
assume the availability of functional dependencies for the attributes of sources.
This is a reasonable assumption in the applications which we consider, in par-
ticular scientific applications, because the data source providers are willing to
provide the full database design information, including functional dependencies.
However, there are contexts such as the web in which functional dependencies
are not available. For these applications, we can use one of the existing solutions,
e.g. [8-11,5] to derive functional dependencies from data. Obviously, by using
functional dependencies, we can obtain the primary key. Another assumption,
which we make for ease of presentation, is that the data model is relational.

Now, we define some basic concepts, e.g. functional dependencies and medi-
ated schemas, and then state the problem addressed in this paper. Let S be a
set of source schemas, say S = {S1,...,S,}, where for each S;,i € [1,n],S; =
{ai1,...,a:1}, such that a;1,...,a,;, are the attributes of S;. We denote the
set of attributes in .S; by att(S;), and the set of all source attributes as A. That is
A = U;att(S;). For simplicity, we assume that S; contains a single table. Let F' be
the set of functional dependencies of all source schemas, say F = {Fy,...,F,}.
For each S;,i € [1,n], let F; be the set of functional dependencies among the
attributes of S;, i.e. att(S;), where each fd;, fd; € F; is of the form L; — R;
and L; C att(S;), R; C att(S;). In every F;, there is one fd of the form L, — Ry,
where R, = att(S;), i.e. L, is the primary key of S;.

We assume that every attribute in the data sources can be matched with at
most one attribute in other data sources, which means we only consider one-to-
one mappings. We do this for simplicity and also because this kind of mapping is
more common in practice. For a set of sources S, we denote by M = {A1,..., 4}
a mediated schema, where A; C A, and for each 7,5 € [1,m],i # j = A;NA; = 0.
Each attribute involved in A; is called a mediated attribute. Every mediated
attribute ideally consists of source attributes with the same semantics.

While traditional database integration approaches rely only on one mediated
schema, a probabilistic approach considers several mediated schemas each with
a probability that indicates the likelihood of closeness of the mediated schema
to the manually created mediated schema. A formal definition of probabilistic
mediated schemas is as follows.

A probabilistic mediated schema (PMS) for a set S of source schemas is the
set N = {(My, P(My)),..., (Mg, P(My))} where

— M; is a mediated schema for S, where i € [1, k].
— For each 4,5 € [1,k],i # j = M; # M, ie. M;, M; are different clusterings
of att(S).
— P(M;) € (0,1].
k
= 2o POM) =1

Since each mediated schema corresponds to a clustering of source attributes,
we can measure its quality by computing the F-measure of the clustering.

Let us now state the problem we address. Suppose we are given a set of source
schemas S, and a set of functional dependencies F' and a positive integer number
k as input. Our problem is to efficiently find a set of k& probabilistic mediated
schemas which have the highest F-measure.

3 Data Integration Based on Functional Dependencies

Setting up a data integration application requires significant human effort partic-
ularly in creating the mediated schema and in generating the mappings between
the mediated schema and the data sources [4]. Both activities require experts
with good knowledge of the domain. In this section, we describe IFD, a data
integration system that automatically performs the tasks of mediated schema
generation and the attribute matching, by taking advantage of functional de-
pendencies among the source attributes.

In the rest of this section, we first briefly describe the architecture of our
data integration system. Then, we describe our approach for schema matching.

3.1 System Architecture

Figure 1 depicts the architecture of our system, which consists of two main parts
of schema matching and query processing, in part A and part B respectively.
The components of schema matching which operate during the set-up time of
the system are as follows:

— Attribute similarity computing: this component computes the attribute name
similarity between every two source attributes.

— FD derivation: this component derives functional dependencies from data,
which is an optional component of the system and is only used in the cases
where functional dependencies are not given to the system.

— Distance assignment: this component uses attribute pairs similarity and func-
tional dependencies for generating the distance function.

— Schema matching: this component uses the distance function for generating
a set of probabilistic mediated schemas.

— Single schema building: this component generates one mediated schema for
the user by using the generated probabilistic mediated schemas.

Part B of Figure 1 depicts the components of the query processing part. We
include these components in the architecture of our system to provide a complete
picture of a data integration system but our focus is on the schema matching
part (part A). The components of part B which operate at query evaluation time
are as follows:

— Query reformulation: This component uses the probabilistic mediated schemas
to reformulate the user query posed against the mediated schema to a set of
queries posed over the data sources.

— Query result aggregation: This component combines the results of reformu-
lated queries and assigns a probability to every tuple in the result, based on
both the probabilities of the mediated schemas and the dependency among

data sources.
Mediated Schema Query
s _—

Part A Single Schema Rgsult Part B
Building

A A4

> Query
PMSs| PMSs Reformulation

Schema Matching Reformulategl
Queries
A 4
Distance Function Query Result
Aggregation
Distance Assignment I_A
>, (distance function)
FD:. y Attributes
Schema[, & FDs Similarity Results Queries
FD Derivation Attribute Similarity
Computing

A A
Schemas

Schemas

Fig. 1. Architecture of our data integration system

A

3.2 Mediated Schema Generation

To build the mediated schema automatically, we cluster the source attributes
by putting semantically equivalent attributes in the same cluster. In order to do
this without using domain expert’s knowledge, we rely on two clues: attributes’
name similarity and FDs between attributes. In some cases, attributes with the
same semantics also have similar names, so attribute similarity alone can lead
to good attribute clustering. However, this is not suitable for our underlying
applications where there are many attributes with the same semantics which
have completely different names, and vice versa. Therefore, as the second clue,
we use FDs for identifying semantically equivalent attributes.

Typically, since we are not sure about the semantics of attributes, uncer-
tainty arises while clustering the attributes. To capture the uncertainty and im-
prove the result of clustering over time, we use a probabilistic data model with
which we create probabilistic mediated schemas (instead of only one mediated
schema). This helps us to better capture the inherent uncertainty in clustering
the attributes. In traditional data integration systems, queries are posed over one
mediated schema, but in a probabilistic approach we generate several mediated
schemas.

Distance Assignment To cluster the source attributes, we use a clustering al-
gorithm that works based on a distance matrix (i.e. the distance between every
two attributes). Specifically we use the single-link CAHC (Constrained Agglom-
erative Hierarchical Clustering) algorithm [12]. The problem is how to assign the
distances between the attributes in order to obtain good mediated schemas. In
our work, we do this by using the attributes’ name similarity as well as some
heuristics we introduce about FDs.

Distance is a number between 0 and 1. We set the distance between attributes
from the same source to a value equal to 1 (i.e. maximum value), because it is
not reasonable to put such attributes in the same cluster. For other attribute
pairs, if the FD heuristics are not applicable to them, we set the distance equal
to 1 minus the name similarity (which is also a number between 0 and 1), e.g.
if a pair’s name similarity is 0.3, then we set the distance to 0.7. For the other
cases, we use our heuristics which will be described later.

Before describing our heuristics, let us first define Match and Unmatch con-
cepts. Consider a; and as as two typical attributes. If we want to increase their
chance of being put in the same cluster, we set their distance to MD (i.e. Match
Distance) which is 0 or a number very close to 0. In this case, we say that we
matched a; with as, and we show this by Match(ay,az). In contrast, if we want
to decrease their chance of being put in the same cluster, then we set their
distance to UMD (i.e. Un-Match Distance) which is 1 or a number very close
to 1. In this case, we say that we unmatched a; and as and we show this by
Unmatch(ay, az).

FD Heuristics We use a number of heuristic rules related to FDs in order to
assign the distance of attributes. Let us use the following example to illustrate
our heuristics.

Example 3. Consider two source schemas, both describing a university
course schedule. In this example, primary keys are underlined; F; and F, are
the sets of FDs of S; and S5 respectively:

Sy (term, c#, section#t, cour sename, instructor, name, time, room)
Sa(semester, course, sec#, name, instructor, ins_name, location)
Fy = {c# — coursename, instructor — name}

Fy = {course — name, instructor — ins_name}

Heuristic 1 Let S, and Sy, p # q, be two source schemas. Then,
Match(ap i, aqr) = unmatch(ap;, aq,1) N unmatch(ag i, ap, ;)
where ap; € att(Sy), ap j € att(Sy) \{ap:}, aqr € att(Sy), aq1 € att(Sy) \ {aqr}-

The reason behind heuristic 1 is that each attribute can be matched with at
most one attribute of the other source.

Heuristic 2 Let fd, : ap; — ap; and fdg : aqr — aq; be two FDs, where
fd, € Fy, fd, € Fy,p # q. Then, similarity(api,aqr) > tr, = Match(ap j,aq.)
where ty, is a certain threshold and similarity is a given similarity function.

The reason behind heuristic 2 is that we consider the set of facts that the two
sources are assumed to be from the same domain, and both attributes a,, ; and
aq, are functionally determined by the attributes a,;, and a,; respectively,
which themselves have close name similarity. Thus, we heuristically agree that:
the probability of Match(ay, j,aq,;) is higher than that of Match(a, ;,aqs) and
Match(aq,, ap), where aq s € att(Sy) \ {aq,;} and ap € S, \ {ap, ;}. Therefore,
in such a case we match a, ; with aq; to reflect this fact. Note that this heuristic
has a general form in which there are more than one attribute on the sides of
the FDs (see Section 3.2).

By applying heuristic 2 on Example 3, we have the FD instructor — name
from Sp, and instructor — ins_name from Ss. There is only one attribute at
the left side of these FDs, and their name similarity is equal to 1 that is the
maximum similarity value. Thus, we match the name with the ins_-name which
appear on the right side of these FDs. Notice that in this example, FDs guided
us to recognize that the name in Sy is in fact the instructor’s name, and not the
course’s name. This kind of mistake is typically made by approaches which only
rely on name similarity for attribute matching.

Heuristic 3 Let PK, and PK,,p # q, be the primary keys of S, and S, re-
spectively. Then,

(Japi € PKp,aq,; € PKy| (ap,i,aq,;) = arg max similarity(ay, aq))A
ap,€PKy,a,€PK,

(similarity(ap,i, aq,;) > tpx) = Match(ap, aq,;)

where tpg is a certain threshold and similarity is a given similarity function.

The reason behind heuristic 3 is simple. Since we assume sources are from
the same domain, there are a number of specific attributes which can be part of
the primary key. Although these attributes may have different names in different
sources, it is reasonable to expect that some of these attributes from different
sources can be matched together. Obviously, we can set tpg to a value less than
the value we set for 7 because typically the probability of finding matching
attributes in the primary key attributes is higher than the other attributes.
After matching a, ; with a4 ;, we remove them from PK,, and PK, respectively,
and continue this process until the similarity of the pair with the maximum
similarity is less than the threshold ¢px or one of the PK,, or PK, has no more
attributes to match.

Now we apply heuristic 3 to Example 3. It is reasonable to match the at-
tributes: term, c#, and section# of S1 with semester, course, and sec# of Ss
rather than with other attributes of Sy, and vice versa. The attribute pair with
the maximum similarity is (section#, sec#). If we choose a good threshold, we
can match these attributes together. The similarity of other attribute pairs is
not high enough to pass the wisely selected threshold values.

Heuristic 4 Let PK, and PK,,p # q, be the primary keys of S, and S, re-
spectively. Then,

(3ap: € PKy,a,,; € PKy, fd, € F,, fd, € Fy |
fdp:ap; = Ry, fdq : aq; — Ry) = Match(ap;,aq,;) (1)

and also
(RHS(1) AR, ={ap+} NRy ={aqs}) = Match(ap . aq,s) (2)

We can apply heuristic 4 when we have two attributes in two primary keys
which each of them is the single attribute appearing at the left side of a FD.
In this case, we match these attributes with each other(rule 1). We also match
the attributes on the right sides of the two FDs if there is only one attribute
appearing at the right side of them (rule 2).

By applying heuristic 4 on Example 3, we match c¢# with course which is
a right decision. We do this because of the two FDs: ¢# — coursename and
course — name. We also match coursename with name which are the only
attributes appearing at the right side of these FDs. Had we used name similarity
only, we would have very likely matched coursename with course for example,
which is a wrong decision.

Heuristic 5 Let PK, and PK,,p # q, be the primary keys of S, and S, re-
spectively. Then,

(Vapr € PKp\ {ap,i},Jaqs € PKy\ {aq;} | Match(apr,aq,s))A
(|PK,| = |PKy|) = Math(ap,i, aq,;)

We can apply heuristic 5 when all attributes of PK, and PK, have been
matched, and only one attribute is left in each of them. We match these two
attributes with each other hoping that they are semantically the same. Coming
back to Example 3, there is only one attribute left in each of the primary keys
that we have not yet matched (i.e. term, semester) that we can match using
this heuristic.

Distance Assignment Algorithm Algorithm 1 describes how we assign dis-
tances to attribute pairs and build the distance matrix that is used in schema
matching. It takes as input the source schemas, the set of PK (Primary Key)
of every source, and the set of FDs of every source such that each fd € F; is
of the form L — R, where L. and R are attribute subsets from source S, i.e.
L, R C att(S;). Notice that the FD related to the PK of S; is removed from F;.
Steps 2-10 of the algorithm find FD pairs from different sources which their left
sides match together and then try to match attribute pairs on the right sides of
these FDs. Steps 5-7 find the attribute pairs (a,, a;) whose similarity is maxi-
mum. If the similarity of a, and a, is more than threshold ¢r, their distance is
set to M D (Match Distance), and the distances between each of them and any
other source-mates are set to UMD (Unmatch Distance). The algorithm uses
the DoM atch procedure for matching and unmatching attributes. It gets the at-
tributes which should be matched as parameter, matches them, and unmatches
every one of them with the other ones’ source-mates. Generally, whenever the
algorithm matches two attributes with each other, it also unmatches the two of
them with the other one’s source-mates because every attribute of a source can
be matched with at most one attribute of every other source. Steps 8-10 remove
the matched attributes from the list of unmatched attributes, and repeats the
matching process if there are still some attributes remaining for matching.

Step 3 uses the IsMatch function. This function takes as parameter the left
sides of two FDs and returns true if they can be matched together, otherwise
it returns false. It first checks whether the input parameters are two sets of the
same size. Then, it finds the attribute pair with maximum name similarity and
treats it as matched pair by removing the attributes from the list of unmatched
attributes if their similarity is more than threshold ;. It repeats the matching
process until there is no more attribute eligible for matching. After the matching
loop is over, the function returns true if all attribute pairs have been matched
together, otherwise it returns false which means the matching process has not
been successful.

Notice that we do not reflect the matching of attributes of the left sides of
FDs in the distance matrix. The reason is that for these attributes (in contrast
to those on the right side), the matching is done just based on attribute name
similarity and not the knowledge in FDs.

In these algorithms, we use three different similarity thresholds (i.e. ¢y, tg,
and tpg). We do this to have more flexibility in the matching but we need to set
them carefully. If we set them to high values, we prevent wrong matching but
may miss some pairs that should have been matched. On the other hand, if we
set thresholds to low values, we increase the number of correctly matched pairs

but also increase the number of wrongly matched pairs. In other words, setting
the threshold values is a trade off between precision and recall. Aside from this,
the inequality between them is important as we explain below. We know that ¢y,
is the similarity threshold for matching attributes at the left sides of FDs. Since
the matching of left sides of FDs is taken as evidence for matching the right sides
of them, ¢;, needs to be chosen carefully. Setting it to low values, results in wrong
matchings. On the other hand, we use tr as similarity threshold for matching
attributes on the right sides of FDs. Since we already have evidence for matching
them, we can be more relaxed in setting tz by setting it to values lower than ¢,.
The same argument goes for the value of t p. t p is the similarity threshold for
matching PK attributes. Since these attributes are a subset of source attributes,
it is reasonable to set tpx to lower values than ¢, and tg.

Coming back to Algorithm 1, steps 11-26 apply PK heuristics to every PK
pair and try to match their attributes based on these heuristics. Steps 13-18
check every attribute pair of two PKs to see if they are the only attributes at
the left sides of two FDs. If yes, then these attributes are matched together. Steps
19-24 find the attribute pair with the maximum name similarity and if it is more
than threshold ¢pg, the attributes are matched together. The matching process
continues until there is at least one attribute in every PK and the similarity
of the attribute pair with the maximum similarity is more than threshold tpg.
After the matching process, if each of the two PKs has only one attribute left,
their attributes are matched with each other by steps 25-26.

Steps 27-31 set the distances of attribute pairs which have not been computed
by the heuristic rules. Step 28 checks if the attributes are from the same source,
in which case their distance is set to UM D; otherwise the distance is set to their
name similarity by step 31.

Steps 32-33 perform a transitive closure over the match and unmatch con-
straints using the following two rules:

1. If match(a;, a) and unmatch(a, a;), then unmatch(a,, a;). If a; and ay, are
in the same cluster and a, and a; are not in the same cluster, then it is clear
that a; and a; should not be in the same cluster either.

2. If match(a;, ar) and match(ay, a;), then match(a;,a;). If a; and ay are in
the same cluster and ay and a; are also in the same cluster, then it is obvious
that a; and a; should also be in the same cluster.

Step 34 deals with the symmetric property of the distance between attributes.
It ensures that the returned distance is independent from the order of attributes.

The matching and unmatching decisions made by a distance function should
be consistent with each other. More precisely, a consistent distance function
should not satisfy the following condition:

Ja;,aj,ar, € A | match(a;,a;) A match(a;, ar) A unmatch(a;, ar). (3)
The following proposition shows that our distance function is consistent.

Proposition 1. Algorithm 1 returns a consistent distance function.

Proof. We first show that if inconsistency exists, it is removed by step 32 of
the algorithm, i.e. the first transitive closure rule. Then, we show that order
of applying the transitive closure rules in Algorithm 1 is the only correct or-
der. Let us prove the first part. Suppose steps 1-31 of the algorithm create an
inconsistency so that condition (3) satisfies. Then, as the result of step 32 of
the algorithm, either match(a;, a;) changes to unmatch(a;, a;) or match(a;, ax)
changes to unmatch(a;,ay). It is clear that the inconsistency between a;,a;,
and ay is removed with either of the changes. Without the loss of generality,
we assume that match(a,, a;) changes to unmatch(a;, a;). Then, if there exists
a; € A, so that condition (3) satisfies for a;,a;, and q; as a result of the change,
step 32 removes it too. Thus, step 32 removes all of the inconsistencies in the
cost of losing possibly correct match pairs.

Let us prove the second part. Suppose that steps 1-31 of the algorithm cre-
ate an inconsistency so that condition (3) satisfies and we change the order
of transitive closure rules. By first applying rule 2, unmatch(a;,aj) changes to
match(a;, ar,). However, we already unmatched a; with ay, as the result of match-
ing a; with one of the source-mates of ay, say a;. Thus, we have: match(ay, a;)
and match(a;, a;), which results in match(ag, a;) by applying rule 2 to them. This
means that we matched two attributes a; and a; from the same source. Thus,
changing the order of transitive closure rules does not remove the inconsistency
but propagates it.

Generating Clusters The distances between attributes are used for computing
the distance between clusters in the clustering method, i.e. CAHC. By defini-
tion, the distance between two clusters is the minimum distance between the
attributes from different clusters. The generation of attribute clusters proceeds
as follows. In the first step, we begin with a number of clusters each having only
one attribute, i.e. n clusters, when n is the number of attributes. Then, we find
the two clusters with the minimum distance, and we combine them. We con-
tinue this process until the minimum distance between clusters is greater than
or equal to the value we have set for the distance between attributes from the
same source. We continue merging clusters until the number of clusters becomes
equal to the arity of the source (i.e. the number of attributes in that source)
with the maximum arity.

Since each mediated schema is a clustering of attributes, we have in fact
created one mediated schema at every step. However, these mediated schemas
are not all of the same quality. We would like to select the best one(s). We defer
the definition of the quality of a mediated schema to Section 4 where we formally
define the quality metrics for measuring the quality of a mediated schema. Since
for all generated mediated schemas we do not let unmatched attributes to be
put in the same cluster, we count the number of matched pairs which has been
respected by the mediated schema, as a metric for ranking mediated schemas. We
call this metric the FD-point. As we will show in Section 4, there is a correlation
between the FD-point and the quality of the mediated schema. Thus, we select
the mediated schema(s) with the maximum FD-point, as the schema(s) with the

Algorithm 1 Distance Assignment

—

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:

32:

33:
34:

Input: 1) Source schemas Si,...,Sn; 2) The sets of FDs Fi,...,F, (the FDs
related to PK are omitted); 3) P = {PKy,...,PK,} The set of primary keys of
all sources.
Output: Distance matrix D[m][m)].
compute A = {a1,...,am} the set of all source attributes
// match attributes on the right sides of FDs
for all FD pair fd; € Fy, fd; € Fi,k # 1 do
if IsMatch(L;i, L;) then
make local copies of fd;, fd;
find the attribute pair a, € R;,a, € R; with the maximum similarity s
if s > tr then
DoMatch(ap, aq)
Ri < Ri\{ap}; R < R; \ {aq}
if | R; |> 0 and | R; |> 0 then
go to 5
// match PK attributes
for all pair PK;, PK; € P, where they are PKs of S; and S; respectively do
make local copies of PK; and PKj
for all pair a, € PK;,aq € PK; do
if 3fdi € F; and fd; € F; such that Ly = {ap} and L; = {aq} then
DoMatch(ap, aq)
PK,; + PK; \ {ap}; PK]' — PKj \ {aq}
if Rr = {as} and R; = {a:} then
DoMatch(ayp,aq)
find the attribute pair a, € PK; and a4 € PK; with maximum similarity s
if s > tpx then
DoMatch(ap, aq)
PKi = PKi\{ap}; PK; = PK; \ {aq}
if | PK; |[> 0 and | PK; [> 0 then
go to 19
if PK; = {ap} and PK; = {aq} then
DoMatch(ap, aq)
for all attribute pair a;,a; € A which Dla;][a;] has not been computed yet do
if a;,a; € Sk (the same source) then
D[ai][aj] «~ UMD
else
Dla;][aj] < similarity(as, a;)
Vai,aj,ar € A if (Dlas][ax] = MD and Dla]la;] = UMD) then Dia;]a;] <
UMD
Vai,aj,ar € A if (Dla;][ar] = M D and Dlak][a;] = M D) then Dia;][a;] + MD
Vai,a; € AD[a;][a;] < Dlaj]{a]

highest quality. We assign equal probabilities to all selected mediated schemas,
since we do not have any other metrics for differentiating between the selected
mediated schemas.

Algorithm 2 Schema Matching

Input: 1) Source schemas Si, ..., Sn; 2) Distance matrix D[m|[m]; 3) Number of
needed mediated schemas k.

Output: A set of probabilistic mediated schemas.

compute A = {a1,...,am} the set of all source attributes

let C be the set of clusters ¢; such that ¢; = {a;},a; € A,i € [1,m]

M+ C

find two clusters c¢;,c; € C having the minimum distance dmqn while distance d;;
between ¢; and c¢; is computed as follows:

5 if Jar € ci, a1 € ¢j,ak,a; € Sp then

6: dij — o0

7 else

8: dij < Min(Dlag][ai]),ar € ci, a1 € ¢;

9: if dmin # oo then

10: merge ¢; with ¢;

11: Add the newly added mediated schema to M
12: go to 4

13: for each C; € M compute the F' Dpoint; as the number of attribute pairs recom-
mended by distance matrix and respected by C;

14: FDpointmaes <+ Max(F Dpoint;),C; € M

15: M «+ {C; | C; € M, F Dpoint; = F Dpointmaz }

16: if k <| M | then

17: select k mediated schemas randomly from M
18: assign probability % to every selected mediated schema and return them
19: else

20: assign probability ﬁ to every C; € M and return them

Schema Matching Algorithm Algorithm 2 describes how we match different
source schemas and create probabilistic mediated schemas. This algorithm takes
as input the source schemas, distance matrix, and the needed number of mediated
schemas which is specified by the user. Steps 1-2 create the first mediated schema
by putting every attribute in a cluster. The algorithm stores all created mediated
schemas in the set M, and so does for the first created mediated schema in step
3.

Steps 4-8 look for the two clusters with the minimum distance while the
distance between two clusters is defined as follows: if the clusters have two at-
tributes from the same source, the distance between them is infinity; otherwise
the minimum distance between two attributes, each from one of the two clusters,
is regarded as the distance between the two clusters. Steps 9-12 merge these clus-
ters together and store this newly created mediated schema in M and continues
this process by going to step 4. The necessary condition for merging clusters is
that their distance should not be equal to infinity. We get the infinity as the min-
imum distance between clusters when every two clusters have attributes from
the same source. In such a case, we stop creating the mediated schemas.

For every created mediated schema, Step 13 computes its FD-point, which
is a metric for measuring the quality of mediated schemas and for selecting only
the high quality ones. Distance matrix recommends some attribute pairs to be

put in the same cluster by returning their distance as MD. FD-point is defined
as the number of these recommendations which are respected by the mediated
schema. Steps 14-15 select the mediated schemas with the maximum FD-point.
We call them as eligible mediated schemas.

If the user specifies the number of mediated schemas (k) which she needs,
steps 16-20 return k randomly selected mediated schemas to the user. Since the
algorithm has no means for differentiating between eligible mediated schemas,
it assigns equal probabilities to all returned mediated schemas.

On-the-fly Adding of Data Sources IFD starts with a given set of sources
and ends up generating several mediated schemas from these sources. A useful
property of IFD is that it allows new sources to be added to the system on the
fly. Let S,,+1 be the source which we want to add. By comparing 5,1 with each
S;,1 € [1..n], we can compute the distance between every attribute of S, 1 and
every attribute of S; in the same way that we did for computing the distances
between the attributes of S57..S,. After computing the distances, we consider
every PMS, say M;,j € [1..k] and for every attribute a, € Sp+1, we find the
closest attribute a, € A and put a, in the same cluster as that of a,. We repeat
this process for every PMS.

This is a useful property of IFD which is needed in the contexts which we
do not have all sources at hand when we start setting up the data integration
application and we need to add them incrementally when they become available.

3.3 Schema Mapping

The result of schema matching is fed to the schema mapping algorithm for gen-
erating the mappings which are used in query processing. In our data integration
solution, we assume that every attribute in the data sources can be matched with
at most one attribute in other data sources which means we only consider one-to-
one mappings. We do this for simplicity and also because this kind of mapping
is more common in practice. We also assume single-table data sources. These
two assumptions greatly simplify the schema mapping algorithm. For generat-
ing the mappings, we can rely on PMSs which implicitly contain the mappings
for answering user queries. We do not provide the details of the schema mapping
algorithm here due to its simplicity and also lack of space.

3.4 Cost Analysis

In this section, we study the execution costs of our schema matching and distance
function algorithms.

Theorem 1. Let m be the number of the attributes of all sources, then the
running time of algorithms 1 and 2 together is 6(m3).

Proof. The basis for our schema matching algorithm is the single-link CAHC
(Constrained Agglomerative Hierarchical Clustering) algorithm in which the
number of clusters is determined by the arity of the source with the maximum

arity. Let m be the number of the attributes of all sources. The time complex-
ity of the single-link AHC algorithm implemented using next-best-merge array
(NBM) is ©(m?) [13].

Let us now analyze the running time of the distance function algorithm.
Most of the algorithm is devoted to matching left and right sides of FDs, or the
attributes of PKs. Let ¢ be the arity of the source with the maximum arity, and
f the maximum number of FDs that a source may have, which is a constant. The
number of attributes on the left and right side of a FD is at most equal to the
arity of its source, so its upper bound is ¢. Thus, matching both sides of two FDs
takes ©(c?) time which is equal to ©(1) because c is a constant. This argument
also holds for matching PKs’ attributes because the algorithm only checks the
FDs of the two sources (which each one at most has f FDs), not the FDs of all
sources.

Let n be the number of sources, then we have at most f x n FDs. The
algorithm checks every FD pair for matching. Thus, it takes W x O(1)
time for matching FDs which is equal to (n? x f2). By taking f, i.e. the maximum
number of FDs, as a constant, the complexity is ©(n?). In the same way, the
time complexity for matching PKs is ©(n?).

The transitive closure part of the algorithm is done in 6(m?) time, where m
is the total number of attributes. The last part of the algorithm that guarantees
symmetric property takes 6(m?). Since the number of attributes is at least the
number of sources, we have m > n. Thus, the transitive closure of attributes
dominates all other parts of the algorithm and the running time of the algorithm
is 6(m3). As a result, the running time of the schema matching and the distance
function algorithms together is 6(m?).

4 Performance Evaluation

In this section, we study the effectiveness of our data integration solution. In
particular, we show the effect of using functional dependencies on the quality
of generated mediated schemas. We compare our solution with the one pre-
sented in [4] which is the closest to ours. To examine the contribution of using a
probabilistic approach, we compare our approach with two traditional baseline
solutions that do not use probabilistic techniques, i.e. they generate only one
single deterministic mediated schema.

The rest of this section is organized as follows. We first describe our ex-
perimental setup. Then we compare the performance of our solution with the
competing approaches.

4.1 Experimental Setup

We implemented our system (IFD) in Java. We took advantage of Weka 3-7-3
classes [14] for implementing the hierarchical clustering component. We used
the SecondString tool! to compute the Jaro Winkler similarity [15] of attribute
names in pair-wise attribute comparison. We conducted our experiments on a
Windows XP machine with Intel core 2 GHz CPU and 2GB memory.

! Secondstring. http://secondstring.sourceforge.net/

In our experiments, we set the number of mediated schemas (denoted as n) to
1000, which is relatively high, in order to return all eligible mediated schemas.
Our experiments showed similar results when we varied n considerably (e.g.
n = 5). The default values for the parameters of our solution are as follows.
We set similarity threshold for PK attributes (tpx) to 0.7, similarity threshold
for attributes on the left side of functional dependencies (¢1) to 0.9, similarity
threshold for attributes on the right side of functional dependencies (tg) to 0.8,
the distance between attributes being matched (MD) to 0, and the distance
between attributes being unmatched (UMD) to 1.

We evaluated our system using a dataset in the university domain. This
dataset? consists of 17 single-table schemas which we designed ourselves. For
having variety in attribute names, we used Google Search with ”computer sci-
ence” and ”course schedule” keywords and picked up the first 17 related results.
For every selected webpage, we designed a single-table schema which could be
the data source of the course schedule information on that webpage and we used
data labels as attribute names of the schema. Also, we created primary key and
functional dependencies for every schema using our knowledge of the domain.

To evaluate the quality of generated mediated schemas, we tested them
against the schema which we created manually. Since each mediated schema
corresponds to a clustering of source attributes, we measured its quality by
computing the precision, recall, and F-measure of the clustering. Let TP (True
Positive) be the number of attribute pairs that are clustered correctly, F'P (False
Positive) be the number of attribute pairs that are clustered wrongly, and FN
(False Negative) be the number of attribute pairs which are clustered together in
the manually created schema but such pairs do not exist in the aforementioned

schema. The three metrics are defined as follows: Precision: P = %; Recall:
- _TP .F. . = 2xXPxR
R = 7517 F-measure: F' = =55,

We computed the metrics for each individual mediated schema, and summed
the results weighted by their respective probabilities.

To the best of our knowledge, the most competing approach to ours (IFD)
is that of Sarma et al. [4] which we denote by UDI as they did. Thus, we com-
pare our solution with UDI as the most competing probabilistic approach. We
implemented UDI in Java. UDI only considers attributes whose frequency are
more than some threshold and omits the rest, but our approach considers all
attributes regardless of their frequency. To be fair in comparison, we set the
frequency threshold to 0 to consider all attributes. We used the same tool in
our approach for computing pair-wise attribute similarity as in UDI. Also, we
set the parameters edge-weight threshold and error bar to 0.85 and 0.02 respec-
tively. Since the time complexity of UDI approach is exponential to the number
of uncertain edges, we selected the above values carefully to let it run.

To examine the performance gain of using a probabilistic technique, we con-
sidered two baseline approaches that create a single mediated schema:

2 The dataset is available at http://www.science.uva.nl/C0O-IM/papers/IFD/
IFD-test-dataset.zip

of IFD with

1,00
0,90

0,80
= Single-Med

0,70
0,60 =upI
0,50

IFD
0,40
030 =FD1
0.20 =WFD
0,10
0,00 . -

Precision Recall F-measure

Fig. 2. Performance comparison of IFD with competing approaches

— FDI1: creates a deterministic mediated schema as follows. In Algorithm 2, we
count the number of FD recommendations and obtain the maximum possible
FD-point, then we stop at the first schema which gets this maximum point.

— SingleMed: creates a deterministic mediated schema based on Algorithm 4.1
in [4]. We set frequency threshold to 0 and the edge weight threshold to 0.85.

Also, to evaluate the contribution of using functional dependencies in the
quality of generated mediated schemas, we considered Algorithm 2 without tak-
ing advantage of the FD recommendations (WFD) and compared it to our ap-
proach.

4.2 Results

Quality of Mediated Schemas In this section, we compare the quality of
mediated schemas generated by our approach (IFD) with the ones generated by
UDI and other competing approaches.

Figure 2 compares the results measuring precision, recall, and F-measure of
IFD, UDI, Single-Med, FD1, and WFED. It shows that IFD obtains better results
than UDI. It improves precision by 23%, recall by 22%, and F-measure by 23%.

Figure 2 also shows the contribution of using FD recommendations in the
quality of the results. WFD (Without FD) shows the results of our approach
without using FD recommendations. It is obvious that using these recommen-
dations has considerable effect on the results.

Furthermore, Figure 2 shows the performance gain of using a probabilistic
approach rather than a single deterministic schema approach. FD1 applies all of
the FD recommendations to obtain the mediated schema with the maximum FD-
point, then stops and returns the resulted mediated schema. On the other hand,
IFD does not stop after applying all FD recommendations but since there is no
further FD recommendation, it starts merging clusters based on the similarity of
their attribute pairs. This increases recall considerably, but reduces precision a
little because some pairs are clustered wrongly. Overall, IFD improves F-measure
by 8% compared to FD1. On the other hand, this Figure shows that UDI does
not get such performance gain compared to Single-Med which creates a single
deterministic schema. This happens because UDI cannot select the high quality
schemas among the generated schemas.

Scalability To investigate the scalability of our approach, we measure the effect
of the number of sources (n) on its execution time. By execution time, we mean

Scalability Effect of FD-point on F-measure (IFD approach)

7

D S

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 0 100 200 300 400 500 600 700
Number of Sources FD-point

s
=)
3

=+=UDI —=—IFD

4
%
3

F-measure
s o
x 9
8 3

o
~
S

o N & o o

o
3
3

Setup Time (Seconds)

Fig. 3. Execution time of IFD and UDI Fig. 4. Effect of FD-point on F-measure in
(seconds) IFD approach

the setup time needed to integrate n data sources. For IFD, the execution time
equals to the execution time of computing distances using Algorithm 1 plus the
execution time of generating mediated schemas using Algorithm 2. For UDI,
we only consider the time needed to generate mediated schemas to be fair in
our comparison. For UDI, the execution time is the time needed to create the
mediated schemas.

Figure 3 shows how the execution times of IFD and UDI increase with in-
creasing n up to 17 (the total number of sources in the tested dataset). The
impact of the number of sources on the execution time of IFD is not as high as
that of UDI. While in the beginning, the execution time of UDI is a little lower
than ITFD, it dramatically increases eventually. This is because the execution
time of IFD is cubic to the number of the attributes of sources (see Section 3.4).
But, the execution time of UDI is exponential to the number of uncertain edges.
This shows that IFD is much more scalable than UDI.

Effect of FD-point In this section, we study the effect of FD-point on F-
measure. Figure 4 shows how F-measure increases with increasing FD-point up
to 680 which is the maximum possible value in the tested dataset. The starting
point is when we have one cluster for every attribute. We have not used any
recommendation at this point yet; as a result, F'D — point = 0. Also it is clear
that precision = 1 and recall = 0, thus F' — measure = 0. As we begin merging
clusters using recommendations, FD-point increases and this increases the F-
measure as well. The increase in FD-point continues until it reaches its maximum
possible value in the tested dataset. We consider all generated mediated schemas
with maximum FD-point value as schemas eligible for being in the result set.

5 Related Work

There has been much work in the area of schema matching during the last three
decades. Many of them have tried to provide automatic approaches to this prob-
lem (see [16] for a survey). They studied how to use various clues such as attribute
names, data values, descriptions, data types, and constraints to identify the se-
mantics of attributes and match them. An important class of approaches, which
are referred to by constraint matchers, uses the constraints in schemas to deter-
mine the similarity of schema elements. Examples of such constraints are data
types, value ranges, uniqueness, optionality, relationship types, and cardinalities.

OntoMatch [17], SemInt [18], SKAT [19], TranScm [20], DIKE [21], ARTEMIS
[22], and CUPID [23] use this type of matcher. OntoMatch takes advantage of
a constraint matcher which decides on matching the attributes based on being
part of primary keys, foreign keys or being related to each other by some other
constraint such as being of identical or compatible data types. ARTEMIS uses
primary keys and foreign keys, and CUPID uses referential constraints for match-
ing attributes. Our approach is different, since we use an uncertain approach for
modelling and generating mediated schemas. Thus, the heuristic rules we use
as well as the way we decrease the distance of the attributes is completely dif-
ferent. In addition, we take advantage of FDs. The proposals in [24] and [25]
also consider the role of FDs in schema matching. However, our heuristic rules
and the way we combine it with attribute similarity is completely different with
these proposals. The Similarity Flooding algorithm (SF) [26] uses a similarity
graph to propagate the similarity between attributes. Our work is different from
SF in the ways that we do not propagate attribute similarity but instead we
propagate the matching and unmatching of the attributes. In our work, we have
not considered foreign keys, since we assumed single-table sources.

There has been a flurry of recent work on using probabilistic techniques for
data integration [7,27-29]. For instance in [7], Dong et al. introduce the concept
of probabilistic schema matching. We used the concepts introduced in that paper
as the foundation of uncertain data integration.

The closest work to ours is that of Sarma et al. [4] which we denote as
UDI in this paper. UDI creates several mediated schemas with probabilities
attached to them. To do so, it constructs a weighted graph of source attributes
and distinguishes two types of edges: certain and uncertain. Then, a mediated
schema is created for every subset of uncertain edges. Our approach has several
advantages over UDI. The time complexity of UDI’s algorithm for generating
mediated schemas is exponential to the number of uncertain edges (i.e. attribute
pairs) but that of our algorithm is PTIME (as shown in Section 3.4), therefore
our approach is much more scalable. In addition, the quality of mediated schemas
generated by our approach has shown to be considerably higher than that of UDI.
Furthermore, the mediated schemas generated by our approach are consistent
with all sources, while those of UDI may be inconsistent with some sources.

6 Conclusion

In this paper, we proposed IFD, a data integration system with the objective of
automatically setting up a data integration application. IFD takes advantage of
the background knowledge implied in FDs for finding attribute correlations and
using it for matching the source schemas and generating the mediated schema.
We built IFD on a probabilistic data model in order to model the uncertainty
in data integration systems.

We validated the performance of IFD through implementation. We showed
that using FDs can significantly improve the quality of schema matching (by
26%). We also showed the considerable contribution of using a probabilistic ap-
proach (10%). Furthermore, we showed that IFD outperforms UDI, its main

competitor, by 23% and has cubic scale up compared to UDI’s exponential exe-
cution cost.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd Edition.
Springer (2011)

Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Record 34(4) (2005) 27-33
Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: Proc. of CIDR.
(2007)

Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integra-
tion systems. In: Proc. of SIGMOD. (2008)

Wang, D.Z., Dong, X.L., Sarma, A.D., Franklin, M.J., Halevy, A.Y.: Functional
dependency generation and applications in pay-as-you-go data integration systems.
In: Proc. of WebDB. (2009)

Akbarinia, R., Valduriez, P., Verger, G.: Efficient Evaluation of SUM Queries Over
Probabilistic Data. TKDE to appear (2012)

Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. VLDB J.
18(2) (2009) 469-500

Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-
dencies. TKDE 23(5) (2011) 683-698

Golab, L., Karloff, H.J., Korn, F.; Srivastava, D., Yu, B.: On generating near-
optimal tableaux for conditional functional dependencies. PVLDB 1(1) (2008)
376-390

Huhtala, Y., Kirkkéinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm
for discovering functional and approximate dependencies. Comput. J. 42(2) (1999)
100-111

Ilyas, I.F., Markl, V., Haas, P.J., Brown, P.G., Aboulnaga, A.: Cords: Automatic
generation of correlation statistics in db2. In: Proc. of VLDB. (2004)

Davidson, I., Ravi, S.S.: Using instance-level constraints in agglomerative hier-
archical clustering: theoretical and empirical results. Data Min. Knowl. Discov.
18(2) (2009) 257282

Manning, C., Raghavan, P., Schutze, H.: Introduction to information retrieval.
Volume 1. Cambridge University Press Cambridge (2008)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, [.H.: The
weka data mining software: an update. SIGKDD Explorations 11(1) (2009) 10-18
Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proc. of IIWeb. (2003)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4) (2001) 334-350

Bhattacharjee, A., Jamil, H.M.: Ontomatch: A monotonically improving schema
matching system for autonomous data integration. In: Proc. of Conference on
Information Reuse & Integration. (2009)

Li, W.S., Clifton, C.: Semint: A tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data Knowl. Eng. 33(1) (2000)
49-84

Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic integration of knowledge
sources. In: Proc. of Conference on Information Fusion. (1999)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data trans-
lation. In: Proc. of VLDB. (1998)

Palopoli, L., Terracina, G., Ursino, D.: Dike: a system supporting the semi-
automatic construction of cooperative information systems from heterogeneous
databases. Softw., Pract. Exper. 33(9) (2003) 847-884

Castano, S., Antonellis, V.D., di Vimercati, S.D.C.: Global viewing of heteroge-
neous data sources. TKDE 13(2) (2001) 277297

Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: Proc. of VLDB. (2001)

Biskup, J., Embley, D.W.: Extracting information from heterogeneous information
sources using ontologically specified target views. Inf. Syst. 28(3) (2003) 169-212
Larson, J.A., Navathe, S.B., Elmasri, R.: A theory of attribute equivalence in
databases with application to schema integration. IEEE Trans. Software Eng.
15(4) (1989) 449-463

Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proc. of ICDE.
(2002)

Florescu, D., Koller, D., Levy, A.Y.: Using probabilistic information in data inte-
gration. In: Proc. of VLDB. (1997)

Magnani, M., Montesi, D.: Uncertainty in data integration: current approaches
and open problems. In: Proc. of Workshop on Management of Uncertain Data.
(2007)

Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based
on uncertain semantic mappings. In: Proc. of Conference on Conceptual Modeling.
(2005)

