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Abstract
In 1999 Juels and Wattenberg introduced the fuzzy commitment scheme. Fuzzy
commitment is a particular realization of a binary biometric secrecy system with
a chosen secret key. Three cases of biometric sources are considered, i.e. memory-
less and totally-symmetric biometric sources, memoryless and input-symmetric
biometric sources, and memoryless biometric sources. It is shown that fuzzy
commitment is only optimal for memoryless totally-symmetric biometric sources
and only at the maximum secret-key rate. Moreover, it is demonstrated that for
memoryless biometric sources, which are not input-symmetric, the fuzzy com-
mitment scheme leaks information on both the secret key and the biometric data.

1 Introduction

Fuzzy commitment, introduced by Juels and Wattenberg [1], is a particular realization
of a binary biometric secrecy system with chosen secret keys. In fuzzy commitment the
helper data are constructed as a codeword from an error-correcting code, used to encode
a chosen secret, masked with the biometric sequence observed during enrollment. The
scheme is primarily designed for binary uniform memoryless biometric sequences.

The scheme became a popular technique for designing biometric secrecy systems,
since it is convenient and easy to implement using standard error-correcting codes. Its
implementation for different biometric modalities can be found in Kevenaar et al. [2]
(faces), Hao et al. [3] (irises), etc. In practice, however, biometric data are rarely
uniform. Biometric data used in fuzzy commitment based systems, e.g. in the liter-
ature mentioned above, do not satisfy the criteria of being uniform and memoryless.
Nevertheless, it is assumed that these systems are secure. Also the privacy properties
of these systems are hardly investigated. In Smith [4], though, it was observed that in
fuzzy commitment the helper data leak information on the secret if the biometric data
are non-uniform, and that they must also leak some information about the biomet-
ric data. The privacy leakage corresponding to the maximum secret-key rate for the
original uniform memoryless setting was also determined by Tuyls and Goseling [5].

In this paper we investigate the properties of fuzzy commitment when the biometric
data statistic is memoryless and totally-symmetric, memoryless and input-symmetric,
and memoryless. We show that the fuzzy commitment scheme is only optimal for the
totally-symmetric memoryless case and only if the scheme operates at the maximum
secret-key rate. Moreover, we show that for the general memoryless case the scheme
reveals information on both the secret and biometric data.

2 The Fuzzy Commitment Scheme

2.1 Description

We start with description of biometric sources. A fuzzy commitment scheme pro-
cesses a binary biometric enrollment sequence xN = {x1, x2, . . . , xN} with symbols



xn ∈ {0, 1} for n = 1, 2, . . . , N and a binary biometric authentication sequence yN =
{y1, y2, . . . , yN} with symbols yn ∈ {0, 1} for n = 1, 2, . . . , N. The sequences are
generated by a biometric source according to some distribution {Q(xN , yN), xN ∈
{0, 1}N , yN ∈ {0, 1}N}. We distinguish between the following cases, i.e. the totally-
symme-tric memoryless case, the input-symmetric memoryless case, and the memory-
less case.

1. The Totally-Symmetric Memoryless Case. We assume that

Pr{XN = xN , Y N = yN} =
N∏

n=1

Q(xn, yn), (1)

for some joint probability distribution {Q(x, y), x ∈ {0, 1}, y ∈ {0, 1}}, satisfying
Q(0, 0) = Q(1, 1) = (1 − q)/2, and Q(0, 1) = Q(1, 0) = q/2, where 0 ≤ q ≤ 1/2.
Here the parameter q is called crossover probability.

2. The Input-Symmetric Memoryless Case. We assume that (1) holds for some joint
probability distribution {Q(x, y), x ∈ {0, 1}, y ∈ {0, 1}} that satisfies Q(1, 0) +

Q(1, 1) = 1/2. The crossover probability is defined as q
∆
= Q(0, 1) + Q(1, 0).

3. The Memoryless Case. Now we assume that (1) holds for an arbitrary joint
probability distribution {Q(x, y), x ∈ {0, 1}, y ∈ {0, 1}}. Again the crossover

probability is defined as q
∆
= Q(0, 1)+Q(1, 0). Now also the probability that X is

equal to 1 becomes an important parameter, and we define ρ
∆
= Q(1, 0)+Q(1, 1).
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Figure 1: A fuzzy commitment scheme.

Now consider the fuzzy commitment scheme, presented in Fig. 1. In this scheme a
secret key k from alphabet {1, 2, . . . , |K|} is chosen uniformly at random independently
of biometric data, hence Pr{K = k} = 1/|K| for all k ∈ {1, 2, . . . , |K|}. The chosen
secret key k is observed at the enrollment side together with a biometric enrollment
sequence xN . The secret key k is encoded into a binary codeword cN = (c1, c2, . . . , cN)
with cn ∈ {0, 1} for n = 1, 2, . . . , N. We write cN = e(k), where e(·) is the encoding
function. Then the biometric enrollment sequence is added modulo 2 to the codeword.
This results in the sequence zN = (z1, z2, . . . , zN) with zn ∈ {0, 1} for n = 1, 2, . . . , N,
hence zN = cN ⊕ xN = e(k) ⊕ xN . This sequence is referred to as helper data and is
public. The helper data are released to the authentication side.

During authentication, a biometric authentication sequence yN is observed and
added modulo 2 to the received helper data zN , resulting in a binary sum rN = zN ⊕
yN = e(k)⊕xN⊕yN . This sum rN = {r1, r2, . . . , rN} with rn ∈ {0, 1} for n = 1, 2, . . . , N
can be seen as the codeword cN to which a noise sequence xN ⊕ yN is added. This

codeword rN is then decoded, hence the estimate k̂ of the secret key k is determined

as k̂ = d(rN) = d(e(k)⊕ (xN ⊕ yN)), where d(·) is the decoding function.

Now we require the scheme to be such that the error probability Pr{K̂ 6= K} is as
small as possible, while the number of secret keys |K| should be as large as possible.
Moreover, we want the amount of information that the helper data leak about the
secret I(K; ZN) and about the biometric data I(XN ; ZN) to be as small as possible.



Definition 2.1 For fuzzy commitment a rate - leakage triple (R, Lk, Lx) with R ≥ 0
is achievable if for all δ > 0 and for all N large enough, there exist encoders e(·) and
decoders d(·) such that

Pr{K̂ 6= K} ≤ δ,

R + δ ≥ log |K|/N ≥ R− δ,

I(K; ZN)/N ≤ Lk + δ,

I(XN ; ZN)/N ≤ Lx + δ. (2)

Moreover, we define Rfc to be the region of all achievable rate - leakage triples for

a fuzzy commitment scheme. We also define the secret-key vs. privacy-leakage rate

region Rfc|Lk = 0
∆
= {(R,Lx) : (R, 0, Lx) ∈ Rfc}, for the zero secrecy-leakage case.

In the next sections we will investigate the properties of the region of achievable
rate-leakage triples for each of the three biometric statistics cases described before.

First, however, note that the secrecy and privacy leakage can be rewritten as

I(K; ZN) = H(ZN)−H(CN ⊕XN |K) = H(ZN)−H(XN), (3)

I(XN ; ZN) = H(ZN)−H(XN ⊕ CN |XN) = H(ZN)−H(CN). (4)

3 The Totally-Symmetric Memoryless Case

3.1 Statement of Results, Discussion

We have a complete result for the totally-symmetric memoryless case.

Theorem 3.1 For fuzzy commitment in the totally-symmetric memoryless case with
crossover probability q, the achievable region Rfc is given by

Rfc =
{
(R, Lk, Lx) : 0 ≤ R ≤ 1− h(q),

Lk ≥ 0,

Lx ≥ 1−R
}
. (5)

Here h(a) = −a log(a)− (1− a) log(1− a) is the binary entropy function.
Moreover, if we restrict ourselves to the secrecy leakage Lk = 0 in Thm. 3.1, then

Rfc|Lk = 0 =
{
(R, Lx) : 0 ≤ R ≤ 1− h(q),

Lx ≥ 1−R
}
. (6)

This result can be compared to the corresponding secret-key vs. privacy-leakage rate
region Ru

ck in a biometric model with a transmitted (chosen) key, where we do not
restrict ourselves to fuzzy commitment. This region was determined in [6]. Although
the achievable regions Rfc|Lk = 0 and Ru

ck are defined slightly different, the general

region Ru
ck also provides for a given secret-key rate the corresponding minimum privacy

leakage. Thus we can compare regions Rfc|Lk = 0 and Ru
ck for given secret-key rates.

Region Ru
ck can be stated for the totally-symmetric memoryless case as

Ru
ck =

{
(R, Lx) : 0 ≤ R ≤ 1− h(q ∗ p),

Lx ≥ h(q ∗ p)− h(p),

for some 0 ≤ p ≤ 1/2
}
, (7)



where p ∗ q
∆
= p(1− q) + (1− p)q. Now it follows that for the privacy leakage for fuzzy

commitment we obtain

Lx ≥ 1−R = h(q) ≥ h(q ∗ p)− h(p). (8)

The last inequality follows from the observation that h(q ∗ p) − h(p) = H(U |Y ) −
H(U |X) = I(U ; X|Y ) ≤ H(X|Y ) = h(q), where Markov condition U → X → Y holds
and the “channel” between X and U is binary symmetric with crossover probability p.
Equality in (8) can only be established if R = 1−h(q). Hence for rates strictly smaller
than 1−h(q) the privacy leakage of fuzzy commitment is strictly larger than necessary.
The coding methods proposed in [6] achieve smaller privacy leakage.
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Figure 2: Secret-key vs. privacy-leakage rate regions for two values of q.

In Fig. 2 we have depicted (marked with “o” and “2”) the boundary of the optimal
rate-leakage region Ru

ck for two values of the crossover probability, i.e. for q = 0.05
and q = 0.15. Moreover, we have plotted in both figures the boundary of the fuzzy-
commitment region Rfc|Lk = 0 (marked with “*” and “×”). From Fig. 2 it is clear

that the privacy leakage of the fuzzy commitment scheme, even in the totally-symmetric
memoryless case, is much larger than necessary for secret-key rates smaller than the
maximum rate 1− h(q). This is the main conclusion of this section.

3.2 Proof of Thm. 3.1

Achievability proof: In the memoryless case we can write for the transition proba-
bilities of the “channel” from CN to RN that

Pr{RN = rN |CN = cN} =
N∏

n=1

Pr{Rn = rn|Cn = cn}, (9)

where for all n = 1, 2, . . . , N

Pr{Rn 6= cn|Cn = cn} = 1− Pr{Rn = cn|Cn = cn} = Pr{Xn 6= Yn} = Q(1, 0) + Q(0, 1).

Therefore, see Fig. 3, the channel between CN and RN is a binary symmetric chan-
nel (BSC) with crossover probability Q(1, 0)+Q(0, 1). By definition for all memoryless
cases we have for the crossover probability Q(1, 0) + Q(0, 1) = q.

The capacity of BSC with crossover probability q is 1− h(q) (see e.g. Gallager [7],
p. 146). In other words, for 0 ≤ R ≤ 1 − h(q), for all ε > 0 and all N large enough,
there exist encoders e(·) and decoders d(·) such that

R + ε ≥ log |K|/N ≥ R− ε, (10)

Pr{K 6= K̂} ≤ ε. (11)
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Figure 3: In the memoryless cases the channel between CN and RN is a binary sym-
metric channel with crossover probability q = Q(0, 1) + Q(1, 0).

Using an expurgation argument, see e.g. Gallager [7], p. 151, we may assume that this
code does not contain two identical codewords, and then H(CN) = log |K|.

We concentrate on such codes. Consider the secrecy leakage first. From (3) we get

I(K; ZN) = H(CN ⊕XN)−H(XN) = 0 ≤ ε. (12)

Next for the privacy leakage we write

I(XN ; ZN)
(a)
= H(CN ⊕XN)−H(CN)

(b)
= N − log |K|

(c)

≤ N(1−R + ε), (13)

where step (a) follows from (4), step (b) holds, since the code does not contain identical
codewords, and (c) follows form (10). Then letting N → ∞ and ε ↓ 0, we conclude
from (11)-(13), that the triple (R, 0, 1−R) is achievable for 0 ≤ R ≤ 1− h(q).
Converse: Assume that for the fuzzy commitment scheme the triple (R,Lk, Lx) is
achievable. Consider first the entropy of the secret, note that H(K) = log |K|, then

log |K| = I(K; RN) + H(K|RN) ≤ H(CN ⊕XN ⊕ Y N)−H(CN ⊕XN ⊕ Y N |K)

+H(K|K̂)
(a)

≤ N −H(XN ⊕ Y N) + δ log |K|+ 1
(b)

≤ N −Nh(q) + δ log |K|+ 1,(14)

here (a) holds, since CN is a function of K, (XN , Y N) are independent of K, since for

achievable triples (R,Lk, Lx) we have Pr{K 6= K̂} ≤ δ and due to Fano’s inequality,
and (b) holds, since XN ⊕Y N is a sequence of i.i.d. pairs with crossover probability q.

From the above expression we obtain for achievable triples (R,Lk, Lx) that

R− δ ≤ log |K|/N ≤ 1/(1− δ)(1− h(q) + 1/N). (15)

Next we consider the secrecy leakage and, using (3), we get

Lk + δ ≥ I(K; ZN)/N = (H(CN ⊕XN)−H(XN))/N = (N −N)/N = 0. (16)

For the privacy leakage we obtain using (4) that

Lx + δ ≥ I(XN ; ZN)/N
(a)

≥ (N − log |K|)/N (b)
= 1−R− δ, (17)

here (a) holds, since H(CN) ≤ log |K|, and (b) since for achievable triples (R, Lk, Lx) :
log |K| ≤ N(R + δ). Letting N →∞ and δ ↓ 0, the converse follows from (15)-(17).

4 The Input-Symmetric Memoryless Case

4.1 Statement of Results, Discussion

In this section we present the result obtained for the input-symmetric memoryless case.
The proof of this result is identical to the proof of Thm. 3.1, and therefore is omitted.



Theorem 4.1 For a fuzzy commitment scheme in the input-symmetric memoryless
case with crossover probability q, the achievable region Rfc is given by

Rfc =
{
(R, Lk, Lx) : 0 ≤ R ≤ 1− h(q),

Lk ≥ 0,

Lx ≥ 1−R
}
. (18)

Now if we again restrict the secrecy leakage to be Lk = 0 in Thm. 4.1, then

Rfc|Lk = 0 =
{
(R, Lx) : 0 ≤ R ≤ 1− h(q),

Lx ≥ 1−R
}
. (19)

As before, we can compare the resulting zero secrecy-leakage region Rfc|Lk = 0 to the

region Ru
ck for the input-symmetric case when we do not restrict ourselves to fuzzy

commitment. In [6] it was shown that

Ru
ck =

{
(R, Lx) : 0 ≤ R ≤ I(U ; Y ),

Lx ≥ I(U ; X)− I(U ; Y ),

for some P (u, x, y) = Q(x, y)P (u|x)
}
. (20)

The maximum secret-key rate that is achievable in the optimal case is I(X; Y ), if
we take U ≡ X, see Ahlswede-Csiszár [8]. Note that

I(X; Y ) = H(X)−H(X|Y ) = 1−H(X ⊕ Y |Y ) ≥ 1−H(X ⊕ Y ) = 1− h(q), (21)

where 1 − h(q) is the maximum secret-key rate achievable with fuzzy commitment.
Therefore fuzzy commitment is suboptimal if X ⊕ Y is not independent of Y .

It is easy to see that independence can only occur for I(X; Y ) > 0, if in addition
to input-symmetric the source is totally-symmetric. Conclusion is that in the input-
symmetric case, when the source is not totally-symmetric, with fuzzy commitment we
cannot achieve a positive maximum rate I(X; Y ).

Looking at the privacy leakage of fuzzy commitment we can say that

Lx ≥ 1−R ≥ h(q) = H(X ⊕ Y ) ≥ H(X|Y ) ≥ I(U ; X)− I(U ; Y ), (22)

for all U → X → Y. For I(X; Y ) > 0, equality in the above expression is only possible
if the biometric source is totally-symmetric and if in addition R = 1 − h(q). Thus we
may conclude that in the input-symmetric case, when I(X; Y ) > 0 and the source is
not totally-symmetric, with fuzzy commitment we cannot achieve a privacy leakage
which is optimal in the sense of results in [6].

5 The Memoryless Case

5.1 Statement of Results, Discussion

We do not have a complete result for the memoryless case in general. What we do have
is an outer bound on the achievable region.

First we define the inverse of the binary entropy function h(·) for 0 ≤ α ≤ 1 as

h−1(α)
∆
= a, if 0 ≤ a ≤ 1/2 and h(a) = α.



Theorem 5.1 For fuzzy commitment in the memoryless case with crossover probability
q and probability Pr{X = 1} = ρ, we obtain for the achievable region Rfc

Rfc ⊆
{
(R,Lk, Lx) : 0 ≤ R ≤ 1− h(q),

Lk ≥ h[ρ ∗ h−1(R)]− h(ρ),

Lx ≥ h[ρ ∗ h−1(R)]−R
}
. (23)

Moreover, there exist codes with rates up to 1− h(q).

Note that the maximum achievable rate 1 − h(q) for fuzzy commitment can be
either smaller, equal, or larger than I(X; Y ). In Section 4 we have seen that for the
general input-symmetric case I(X; Y ) > 1− h(q), see (21). On the other hand, for the
general memoryless case for which X ⊕ Y is independent of Y we obtain

I(X; Y ) = H(X)−H(X|Y ) = H(X)−H(X ⊕ Y |Y ) ≤ 1−H(X ⊕ Y ) = 1− h(q),(24)

hence also I(X; Y ) < 1− h(q) is possible. Ahlswede-Csiszár [8] result implies that for
rates larger than I(X; Y ) it is not possible to achieve non-zero secrecy leakage. Indeed,

H(K) = I(K; RN) + H(K|RN) ≤ I(K; ZN , RN) + H(K|K̂)

= I(K; ZN) + H(Y N |ZN)−H(Y N |ZN , K, XN) + H(K|K̂)

≤ I(K; ZN) + H(Y N)−H(Y N |XN) + δ log |K|+ 1

= I(K; ZN) + NI(X; Y ) + δ log |K|+ 1, (25)

This demonstrates that a secret-key rate which is ∆ larger than I(X; Y ) results in a
secrecy leakage of at least ∆.

Observe also that Thm. 5.1 implies that zero secrecy leakage is only possible if
R = 0 or ρ = 1/2, and zero privacy leakage is only possible if ρ = 0 or R = 1. These
cases are of no interest, though.

Moreover, observe that for non-trivial cases for I(X; Y ) ≥ 1 − h(q) the privacy
leakage in fuzzy commitment is larger than necessary. Indeed, if R > 0, then

h[ρ ∗ h−1(R)]−R > h(ρ)− (1− h(q)) ≥ H(X|Y ) ≥ I(U ; X|Y ) = I(U ; X)− I(U ; Y ),

where I(U ; X)− I(U ; Y ) is the privacy leakage that is achieved in the optimal setting.

5.2 Proof of Thm. 5.1

The statement that there exist codes with rates up to 1 − h(q) follows directly from
the capacity theorem for the BSC. Therefore we continue with the converse part.

We will use Mrs. Gerber’s lemma of Wyner and Ziv [9] to proof our results.
Assume that the rate-leakage triple (R, Lk, Lx) is achievable. Then in the same way

as (15), we obtain for achievable triples (R, Lk, Lx) that

R− δ ≤ log |K|/N ≤ 1/(1− δ)(1− h(q) + 1/N). (26)

Next we consider the secrecy and privacy leakage. First we show that

log |K| = I(K;RN) + H(K|RN)
(a)

≤ I(CN;RN) + H(K|K̂)
(b)

≤ H(CN) + δ log |K|+ 1,(27)

where (a) follows from the data-processing inequality, from the fact that for achievable

triples (R,Lk, Lx) we have that Pr{K̂ 6= K} ≤ δ, and (b) from Fano’s inequality.



Using (27), we may conclude that for achievable triples (R, Lk, Lx) it holds that

H(CN)/N ≥ ((1− δ) log |K| − 1)/N ≥ R− δ − δR− 1/N. (28)

For the secrecy leakage we can write, using Mrs. Gerber’s lemma and (3), that

Lk + δ ≥ I(K; ZN)/N ≥ h[ρ ∗ h−1(R− δ − δR− 1/N)]− h(ρ). (29)

In a similar manner we find for the privacy leakage that

Lx + δ
(a)

≥ (H(CN ⊕XN)− log |K|)/N
(b)

≥ h[ρ ∗ h−1(R− δ − δR− 1/N)]−R− δ. (30)

where step (a) follows from (4) and the fact that H(CN) ≤ log |K|, and (b) follows
from the definition of achievable rates, since then log |K| ≤ N(R + δ).

Now Thm. 5.1 follows from (26), (29) and (30), if we let δ ↓ 0, and N →∞.

6 Conclusions

In this paper we have investigated secrecy and privacy leakage properties of fuzzy
commitment. Our analysis has shown that fuzzy commitment is only optimal for the
totally-symmetric memoryless case if it operates at the maximum secret-key rate. For
secret-key rates which are below the capacity, the scheme is not optimal with respect
to privacy leakage. For the input-symmetric memoryless case, fuzzy commitment is
suboptimal with respect to both achievable secret-key rate and privacy-leakage rate.
However, it still enjoys zero secrecy leakage. In the general memoryless case we could
only determine outer bounds on the achievable regions. The results for the memoryless
case have shown that fuzzy commitment results in both secrecy and privacy leakage
larger than necessary.

References

[1] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in ACM Conf. on
Computer and Communications Security, 1999, pp. 28–36.

[2] T. A. M. Kevenaar, G. J. Schrijen, M. van der Veen, A. H. M. Akkermans, and
F. Zuo, “Face recognition with renewable and privacy preserving binary templates,”
in AutoID, 2005, pp. 21–26.

[3] F. Hao, R. Anderson, and J. Daugman, “Combining crypto with biometrics effec-
tively,” IEEE Transactions on Computers, vol. 55, no. 9, pp. 1081–1088, 2006.

[4] A. Smith, “Maintaining secrecy when information leakage is unavoidable,” Ph.D.
dissertation, MIT, 2004.

[5] P. Tuyls and J. Goseling, “Capacity and examples of template-protecting biometric
authentication systems,” in ECCV Workshop BioAW, 2004, pp. 158–170.

[6] T. Ignatenko and F. Willems, “Secret rate - privacy leakage in biometric systems,”
in to appear in Proc. of 2009 IEEE ISIT, June 28-July 3, 2009, Seoul, Korea, 2009.

[7] R. Gallager, Information Theory and Reliable Communcation. Wiley, 1968.

[8] R. Ahlswede and I. Csiszar, “CR in information theory and cryptography - part I:
Secret sharing,” IEEE Trans. on Inf. Th., vol. 39, pp. 1121–1132, 1993.

[9] A. Wyner and J. Ziv, “A theorem on the entropy of certain binary sequences and
applications–i,” IEEE Trans. on Inf. Th., vol. 19, 1973.


