The restrained geodetic number of a graph

H. Abdollahzadeh Ahangar
Department of Basic Science
Babol University of Technology
Babol, Iran
ha. ahangar@nit.ac.ir
V. Samodivkin
Department of Mathematics
University of Architecture Civil Engineering and Geodesy
Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria
vlsam_fte@uacg.bg
S.M. Sheikholeslami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
s.m.sheikholeslami@azaruniv.edu
Abdollah Khodkar
Department of Mathematics
University of West Georgia
Carrollton, GA 30082, USA
akhodkar@westga.edu

April 23, 2013

Abstract

A geodetic set $S \subseteq V(G)$ of a graph $G=(V, E)$ is a restrained geodetic set if the subgraph $G[V \backslash S]$ has no isolated vertex. The minimum cardinality of a restrained geodetic set is the restrained geodetic number. In this paper, we initiate the study of the restrained geodetic number.

Key Words: geodetic set, restrained geodetic set, restrained geodetic number
MSC 2012: 05C12

1 Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ and size $|E|$ of G are denoted $n=n(G)$ and $m=m(G)$, respectively. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)=|N(v)|$. The minimum and maximum degrees of a graph G are denoted
$\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. The complement \bar{G} of G is the simple graph whose vertex set is V and whose edges are the pairs of nonadjacent vertices of G. We write K_{n} for the complete graph of order n, C_{n} for a cycle of order n and P_{n} for a path of length $n-1$. For terminology and notation on graph theory not given here the reader is referred to [?].

Let $d(u, v)$ denote the minimum length of a path from vertex u to vertex v. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. A vertex v is said to lie on an $x-y$ geodesic P if v is an internal vertex of P. The closed interval $I[x, y]$ consists of x, y and all vertices lying in some $x-y$ geodesic of G, while for $S \subseteq V(G), I[S]=\cup_{x, y \in S} I[x, y]$.

A set S of vertices is a geodetic set if $I[S]=V(G)$. The minimum cardinality of a geodetic set is the geodetic number of G, and is denoted $g(G)$. A geodetic set of cardinality $g(G)$ is called a $g(G)$-set. The geodetic number was introduced in [?] and has been studied by several authors (see for example [?, ?, ?, ?, ?]).

A set of vertices S in a graph G is a restrained geodetic set (RGS) if S is a geodetic set and the subgraph $G[V \backslash S]$ induced by $V \backslash S$ has no isolated vertex. The minimum cardinality of a restrained geodetic set, denoted $g_{r}(G)$, is called the restrained geodetic number of G. A $g_{r}(G)$-set is a restrained geodetic set of cardinality $g_{r}(G)$. As the assumption $\delta(G) \geq 1$ is necessary, we always assume that when we discuss $g_{r}(G)$, all graphs involved satisfy $\delta(G) \geq 1$. Since each restrained geodetic set is a geodetic set, and since the complement of each restrained geodetic set has cardinality different from 1 , we have

$$
\begin{gather*}
2 \leq g(G) \leq g_{r}(G) \leq n \tag{1}\\
g_{r}(G) \neq n-1 \tag{2}
\end{gather*}
$$

A vertex of G is simplicial if the subgraph induced by its neighbors is a complete graph. Note that every end-vertex is simplicial. We make use of the following results in this paper.

Proposition A. ([?]) If G is a connected nontrivial graph, then every simplicial vertex belongs to every geodetic set.

Observation 1. Let G be a connected graph of order $n \geq 3$. Then $g_{r}(G)=2$ if and only if $g(G)=2$ and $\operatorname{diam}(G) \geq 3$ or $G=\bar{K}_{2} \vee H$, where $\delta(H) \geq 1$.

Proof. First assume $g(G)=2$. If $\operatorname{diam}(G) \geq 3$, then obviously every $g(G)$-set is a restrained geodetic set and hence $g_{r}(G)=2$. If $G=\bar{K}_{2} \vee H$ and $\delta(H) \geq 1$, then clearly $V\left(\overline{K_{2}}\right)$ is a restrained geodetic set of size 2 and it follows from (??) that $g_{r}(G)=2$.

Now assume $g_{r}(G)=2$. Then $g(G)=2$ by (??). If $\operatorname{diam}(G) \geq 3$, then we are done. Suppose $\operatorname{diam}(G)=2$ and let $\{u, v\}$ be a $g_{r}(G)$-set and $H=G[V(G) \backslash\{u, v\}]$. Clearly, $d(u, v)=2$ and $\delta(H) \geq 1$. Since every vertex $x \in V(G) \backslash\{u, v\}$ lies on a u-v geodetic path, we must have $u x, v x \in E(G)$ for each $x \in V(G) \backslash\{u, v\}$. Thus $G=\bar{K}_{2} \vee H$. This completes the proof.

It is well known that [?]:
(a) $g\left(K_{m}\right)=m, m \geq 2$,
(b) for $r \geq 2, g\left(C_{2 r}\right)=2$ and $g\left(C_{2 r+1}\right)=3$,
(c) if $m \geq n \geq 2$, then $g\left(K_{m, n}\right)=\min \{4, n\}$,
(d) $g\left(Q_{k}\right)=2$ for $k \geq 2$, where Q_{k} is the k-dimensional cube, and
(e) $g\left(W_{n+1}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$ for $n \geq 4$, where $W_{n+1}=C_{n} \vee K_{1}$.

Observation 2. (i) For any tree T different from star, $g_{r}(T)=|L(T)|$, where $L(T)$ is the set of all leaves of T. Moreover, $g_{r}\left(K_{1, r}\right)=r+1$.
(ii) For $m \geq 2, g_{r}\left(K_{m}\right)=m$.
(iii) For $n \geq 3, g_{r}\left(C_{2 n}\right)=2$ and $g_{r}\left(C_{2 n+1}\right)=3$, and $g_{r}\left(C_{m}\right)=m$ for $m \in\{3,4,5\}$.
(iv) Let $m \geq n \geq 2$ be integers. Then $g_{r}\left(K_{2, m}\right)=m+2$ and $g_{r}\left(K_{m, n}\right)=4$ if $n \geq 3$.
(v) For $k \geq 3, g_{r}\left(Q_{k}\right)=2$.
(vi) For $n \geq 4, g_{r}\left(W_{n+1}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$.
(vii) $g_{r}\left(K_{1} \vee\left(K_{m_{1}} \cup K_{m_{2}} \cup \cdots \cup K_{m_{r}}\right)\right)=1+m_{1}+\cdots+m_{r}$ where $r \geq 1$ and $m_{i} \geq 1$ for $1 \leq i \leq r$.

Proof. (i) It is well known [?] that $L(T)$ is the unique $g(T)$-set which is also a restrained geodetic set of G. It follows from (??) that $g_{r}(T)=|L(T)|$.
(ii) It is an immediate consequence of (??) and (a).
(iii) It is easy to see that $g_{r}\left(C_{m}\right)=m$ for $m \in\{3,4,5\}$. Let $n \geq 3$. Then $\left\{x_{1}, x_{n+1}\right\}$ is a RGS of $C_{2 n}$ and $\left\{x_{1}, x_{n+1}, x_{n+2}\right\}$ is a RGS of $C_{2 n+1}$. Thus $g_{r}\left(C_{2 n}\right) \geq 2$ and $g_{r}\left(C_{2 n+1}\right) \geq 3$. Now the result follows from (b).
(iv) Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the partite sets of $K_{m, n}$. If $n \geq 3$, then clearly $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is a RGS of $K_{m, n}$ and so $g_{r}\left(K_{m, n}\right) \leq 4$. If $n \geq 4$, then it follows from (??) and (c) that $g_{r}\left(K_{m, n}\right)=4$. Let $n=3$ and suppose to the contrary that $g_{r}\left(K_{m, 3}\right)<4$. It follows from (c) that $g_{r}\left(K_{m, 3}\right)=3$. Assume S be a $g_{r}\left(K_{m, 3}\right)$-set. Since X is not a RGS of $K_{m, 3}$, we must have $X-S \neq \emptyset$. We may assume without loss of generality that $x_{3} \in X \backslash S$. This implies that $|S \cap Y| \geq 2$. A similar argument shows that $|S \cap X| \geq 2$, implying that $|S| \geq 4$, a contradiction. Thus $g_{r}\left(K_{m, 3}\right)=4$.

The proof of $g_{r}\left(K_{m, 2}\right)=m+2$ is straightforward and we leave it to the reader.
(v) It is easy to see that $\{(0, \ldots, 0),(1, \ldots, 1)\}$ is a $g_{r}\left(Q_{k}\right)$-set for $k \geq 3$. Hence, $g_{r}\left(Q_{k}\right)=$ 2.
(vi) Let $C_{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $W_{n+1}=C_{n} \vee K_{1}$. Then obviously $\left\{x_{i} \mid i\right.$ is odd $\}$ is a RGS of W_{n+1} and so $g_{r}\left(W_{n+1}\right) \geq\left\lfloor\frac{n+1}{2}\right\rfloor$. Now the result follows from (e).
(vii) Let $V\left(K_{1}\right)=\{x\}, V\left(K_{m_{1}}\right)=\left\{x_{1}^{1}, \ldots, x_{m_{1}}^{1}\right\}, \ldots, V\left(K_{m_{r}}\right)=\left\{x_{1}^{r}, \ldots, x_{m_{r}}^{r}\right\}$. Then for each pair y, z of vertices, $I[y, z]=\{y, z\}$ or $I[y, z]=\{x, y, z\}$. Thus $V(G)$ is the unique RGS of G and hence $g_{r}(G)=|V(G)|$.

2 Graphs with large restrained geodetic numbers

If G is a connected graph of order $n \geq 2$, then $g_{r}(G) \leq n$ by (??). In this section, we characterize the graphs achieving this bound.

Lemma 3. If G is a connected graph of order n with $\operatorname{diam}(G) \geq 3$, then $g_{r}(G) \leq n-$ $\operatorname{diam}(G)+1$.

Proof. Let $d=\operatorname{diam}(G)$ and let $P=x_{0} x_{1} \ldots x_{d}$ be a diametral path in G. Then obviously $V(G) \backslash\left\{x_{1}, \ldots, x_{d-1}\right\}$ is a restrained geodetic set of G, hence $g_{r}(G) \leq n-\operatorname{diam}(G)+1$.

The next corollary is an immediate consequence of Lemma ??.
Corollary 4. If G is a connected graph of order $n \geq 2$ with $g_{r}(G)=n$, then $\operatorname{diam}(G) \leq 2$.
Lemma 5. Let G be a connected graph of order n with $\operatorname{diam}(G) \leq 2$. If $K_{4}-e$ is an induced subgraph of G, then $g_{r}(G) \leq n-2$.

Proof. Let $K_{4}-e$ be an induced subgraph of G with $V\left(K_{4}-e\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E\left(K_{4}-e\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{1} v_{4}, v_{1} v_{3}\right\}$. Then $d\left(v_{2}, v_{4}\right)=2$ and v_{i} for $i=1,3$ lies on the $v_{2}-v_{4}$ geodetic path $v_{2} v_{i} v_{4}$. Thus $V(G) \backslash\left\{v_{1}, v_{3}\right\}$ is a restrained geodetic set of G, hence $g_{r}(G) \leq n-2$.

Lemma 6. Let G be a connected graph of order n with $\operatorname{diam}(G) \leq 2$ and $g_{r}(G)=n$. If G has a cut vertex v, then all components of $G-v$ are complete graphs.

Proof. Let G_{1}, \ldots, G_{k} be the components of $G-v$. Since $\operatorname{diam}(G) \leq 2$, each vertex of $G-v$ must be adjacent to v. Assume to the contrary that G_{1} is not a complete graph. Then there are three vertices v_{1}, v_{2}, v_{3} in G such that $v_{1} v_{2}, v_{1} v_{3} \in E(G)$ and $v_{2} v_{3} \notin E(G)$. Then the set $\left\{v, v_{1}, v_{2}, v_{3}\right\}$ induces the subgraph $K_{4}-e$ in G, which leads to a contradiction by Lemma ??.

Theorem 7. Let G be a connected graph of order $n \geq 2$. Then $g_{r}(G)=n$ if and only if one of the following holds:
(i) $G=K_{n}$;
(ii) $G=K_{2, n-2}, n \geq 3$;
(iii) $G=K_{1} \vee\left(K_{m_{1}} \cup K_{m_{2}} \cup \cdots \cup K_{m_{r}}\right)$, where $r \geq 1, m_{i} \geq 1$ for $1 \leq i \leq r$ and $1+m_{1}+\cdots+m_{r}=n ;$
(iv) G is the graph obtained from $K_{2, n-3}, n \geq 4$, by subdividing an edge once.

Proof. Sufficiency: Obvious.
Necessity: Let $g_{r}(G)=n$. By Corollary ??, $\operatorname{diam}(G) \leq 2$ and hence the girth of G is at most 5. If $\operatorname{diam}(G)=1$, then $G=K_{n}$ and we are done. Let $\operatorname{diam}(G)=2$. If G is a tree, then it follows from Observation ??(i) that G is a star (hence satisfies (iii)) and we are done. So let G have a cycle. We consider three cases.
Case 1 The girth of G is 5 .
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ be a cycle of order 5 in G. If $n=5$, then $G=C_{5}$ and satisfies (iv). Let $n \geq 6$. Clearly, each vertex in $V(G) \backslash V(C)$ has at most one neighbor in $V(C)$. Since G is connected, there is a vertex such as x_{1} that is adjacent to some vertex in $V(C)$. Assume without loss of generality that $v_{1} x_{1} \in E(G)$. Since $\operatorname{diam}(G)=2, x_{1}$ must have a common neighbor with v_{3} and v_{4}. Suppose $x_{2} \in N\left(x_{1}\right) \cap N\left(v_{3}\right)$ and $x_{3} \in N\left(x_{1}\right) \cap N\left(v_{4}\right)$. Note that v_{1} lies on the $v_{2}-v_{5}$ geodetic path $v_{2} v_{1} v_{5}$ and x_{1} lies on the $x_{2}-x_{3}$ geodetic path $x_{2} x_{1} x_{3}$. Hence, $V(G) \backslash\left\{x_{1}, v_{1}\right\}$ is a restrained geodetic set of G, a contradiction.
Case 2 The girth of G is 4 .
We claim that there are not two adjacent vertices each of degree at least 3. Assume to the contrary that u and v are two adjacent vertices each of degree at least 3 and let $u_{1}, u_{2} \in$ $N(u) \backslash\{v\}$ and $v_{1}, v_{2} \in N(v) \backslash\{u\}$. Since G is triangle-free, $d\left(u_{1}, u_{2}\right)=2$ and $d\left(v_{1}, v_{2}\right)=2$. Then u lies on the $u_{1}-u_{2}$ geodetic path $u_{1} u u_{2}$ and v lies on the $v_{1}-v_{2}$ geodetic path $v_{1} v v_{2}$, which implies that $V(G) \backslash\{u, v\}$ is a restrained geodetic set of G, a contradiction.

Let now $C=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ be a cycle of order 4 in G. If $n=4$, then $G=K_{2,2}$ and satisfies (ii). Let $n \geq 5$. Since G is connected, there is a vertex, say x_{1}, adjacent to some vertex in $V(C)$. Assume without loss of generality that $v_{1} x_{1} \in E(G)$. Since $d\left(x_{1}, v_{3}\right) \leq 2$, x_{1} must be adjacent to v_{3} or has a common neighbor with v_{3}, say y_{1}. Since G has no two adjacent vertices each of degree at least 3 , if $x_{1} v_{3} \in E(G)$, then $\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{4}\right)=$ $\operatorname{deg}\left(x_{1}\right)=2$ and if $y_{1} \in N\left(x_{1}\right) \cap N\left(v_{3}\right)$, then $\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{4}\right)=\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(y_{1}\right)=2$. Hence, either $G=K_{2, n-2}$ and satisfies (ii), or G is obtained from $K_{2, p}, 3 \leq p \leq n-2$, with partite sets $\left\{v_{1}, v_{3}\right\}$ and $V(G) \backslash\left\{v_{1}, v_{3}\right\}$, by subdividing $n-p-2$ edges incident to (without loss of generality) v_{3}. If y_{1} and y_{2} are subdivision vertices, then $V(G) \backslash\left\{y_{1}, v_{3}\right\}$ is a restrained geodetic set of G, a contradiction. Hence, only one edge of G is subdivided and G satisfies (iv).
Case 3 The girth of G is 3 .
Let H be the largest clique of G and let $V(H)=\left\{v_{1}, \ldots, v_{r}\right\}$. Clearly, $r \geq 3$. Since G is not a complete graph, $V(G) \backslash V(H) \neq \emptyset$. First let there exist a vertex $x \in V(G) \backslash V(H)$ such that $|N(x) \cap V(H)| \geq 2$. Assume without loss of generality that $v_{1}, v_{2} \in N(x) \cap V(H)$. By the choice of $H, V(H) \nsubseteq N(x)$. Let $v_{3} \notin N(x)$. Then obviously $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is a restrained geodetic set of G. This contradicts the fact that $g_{r}(G)=n$ by assumption.

Thus each vertex in $V(G) \backslash V(H)$ has at most one neighbor in $V(H)$. If there exist two vertices $x, y \in V(G) \backslash V(H)$ with distinct neighbors $v_{i}, v_{j} \in V(H)$, then clearly $V(G) \backslash\left\{v_{i}, v_{j}\right\}$ is a restrained geodetic set of G, a contradiction. If there is a vertex $z \in V(G) \backslash V(H)$ at distance two from $V(H)$, then we must have $N(z) \cap N\left(v_{1}\right) \neq \emptyset$ and $N(z) \cap N\left(v_{2}\right) \neq \emptyset$ because $\operatorname{diam}(G)=2$ and this leads to a contradiction as above. Therefore all vertices in $V(G) \backslash V(H)$ are adjacent to one vertex of $V(H)$, say v_{1}. Then v_{1} is a cut vertex of G. Let G_{1}, \ldots, G_{k} be the components of $G-v_{1}$. Suppose G_{r} is not a complete graph for some $1 \leq r \leq k$. Then G_{r} has a path $z_{1} z_{2} z_{3}$ and $V(G) \backslash\left\{v_{1}, z_{2}\right\}$ is a restrained geodetic set of G, a contradiction. Thus $G=K_{1} \vee\left(K_{\left|V\left(G_{1}\right)\right|} \cup K_{\left|V\left(G_{2}\right)\right|} \cup \cdots \cup K_{\left|V\left(G_{k}\right)\right|}\right)$ and the result follows. This completes the proof.

Theorem 8. An ordered triple (a, b, c) of positive integers is realizable as the geodetic number, the restrained geodetic number and the order of some nontrivial connected graph, respectively, if and only if one of the following holds:

1. $(a, b, c)=(3,5,5)$;
2. $(a, b, c) \in A=\cup_{i \geq 2}\{(i, i, i),(2, i+1, i+1),(i, i+1, i+1),(4, i+4, i+4)\}$;
3. $2 \leq a \leq b \leq c-2$.

Proof. First let (a, b, c) be realizable as the geodetic number, the restrained geodetic number and the order of some nontrivial connected graph G. Then we must have $2 \leq a \leq b \leq c$ and $c \neq b+1$ by (??). If $b=c$, then it follows from Theorem ?? that (a, b, c) satisfies Condition 1 or Condition 2. If $b \leq c-2$, then (a, b, c) satisfies Condition 3 .

Conversely, let the ordered triple (a, b, c) of positive integers satisfies one of the Conditions 1,2 or 3 . We consider five cases.
Case 1. $2 \leq a \leq b=c$. A graph G of order n has $g_{r}(G)=n$ if and only if G is one of the graphs stated in Theorem ??. Since $g\left(K_{n}\right)=n,(n, n, n)$ is realizable for $n \geq 2$. Since $g\left(K_{2, n-2}\right)=2,(2, n, n)$ is realizable when $n \geq 3$. It is easy to see that $g\left(K_{1} \vee\left(K_{m_{1}} \cup \cdots \cup\right.\right.$ $\left.\left.K_{m_{r}}\right)\right)=\sum_{i=1}^{r} m_{i}$ if $r \geq 2$. Hence, $(n-1, n, n)$ is also realizable for $n \geq 3$. Now consider the graph $K_{2, n-3}$ whose partite sets are $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n-3}\right\}$, where $n \geq 4$. Let
G be the graph obtained from $K_{2, n-3}$ by subdividing the edge $x_{1} y_{1}$ with a new vertex z. (This is item (iv) of Theorem ??.) If $n=5$, then $G=C_{5}$ and $(3,5,5)$ is realizable. If $n \geq 6$, then $\left\{x_{1}, x_{2}, y_{1}, z\right\}$ is a minimum geodetic set of G. Thus $(4, n, n), n \geq 6$, is realizable.
Case 2. $2 \leq a=b \leq c-2$. Let G be the graph obtained by identifying a vertex in K_{a} with an end-vertex of P_{c-a+1}. Assume S is the set of all simplicial vertices in G. Clearly, S is a restrained geodetic set of G. Now the result follows by Proposition ??.
Case 3. $2=a<b \leq c-2$. Let $G=\bar{K}_{2} \vee\left(\bar{K}_{b-2} \cup K_{c-b}\right)$. Clearly, $V\left(\bar{K}_{2}\right)$ is the unique $g(G)$-set and $V\left(\bar{K}_{b-2}\right) \cup V\left(\bar{K}_{2}\right)$ is the unique $g_{r}(G)$-set and the result follows.
Case 4. $3 \leq a<b \leq c-3$. Let $H_{1}=K_{2, b-a+1}$ be the complete bipartite graph with bipartite sets $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{b-a+1}\right\}$, and let $H_{2}=K_{a-1}$. Let $z \in V\left(H_{2}\right)$ and let G be the graph obtained from $H_{1} \cup H_{2}$ by adding a path $u_{1}, \ldots, u_{k}, k \geq 1$, and the edges $x_{1} u_{1}, x_{2} u_{1}, u_{k} z$. Note that $S=V\left(H_{2}\right) \backslash\{z\}$ is the set of all simplicial vertices of G. Clearly, $S \cup X$ is the unique $g(G)$-set and $S \cup Y$ is the unique $g_{r}(G)$-set. Thus $g(G)=a$, $g_{r}(G)=b$, and $|V(G)|=b+2+k, k \geq 1$.
Case 5. $3 \leq a<b=c-2$.

Fig. 1: The graph $G_{a, b}$.
Let $H_{1}=K_{a}$ with vertex set $\left\{x_{1}, \ldots, x_{a}\right\}$ and let $H_{2}=K_{1, b-a+1}$ with $V\left(H_{2}\right)=\left\{y_{1}\right\} \cup$ $\left\{z_{1}, \ldots, z_{b-a+1}\right\}$, where y_{1} is its central vertex. Let $G_{a, b}$ be the graph obtained from $H_{1} \cup H_{2}$ by adding the edges $x_{1} y_{1}$ and $x_{2} z_{i}$ for $1 \leq i \leq b-a+1$ (see Figure 1). Clearly, $S=$ $V\left(H_{1}\right) \backslash\left\{x_{1}, x_{2}\right\}$ is the set of all simplicial vertices of $G_{a, b}$. It is easy to see that $S \cup\left\{x_{2}, y_{1}\right\}$ is the unique $g\left(G_{a, b}\right)$-set and $V\left(G_{a, b}\right) \backslash\left\{x_{1}, x_{2}\right\}$ is the unique $g_{r}\left(G_{a, b}\right)$-set.

Theorem 9. Let n, d and k be integers such that $3 \leq d<n, 2 \leq k<n$, and $n-d-k+1 \geq 0$. Then there exists a graph G of order n, diameter d and $g_{r}(G)=k$.

Proof. Let G be the graph obtained from a path $P_{d}=u_{0} u_{1} \ldots u_{d}$ of length d by adding $k-2$ pendant edges $u_{1} v_{1}, \ldots, u_{1} v_{k-2}$ and $n-d-k+1$ new vertices $w_{1}, \ldots, w_{n-k-d+1}$ and joining w_{i} to u_{0}, u_{2} for each $1 \leq i \leq n-k-d+1$. Clearly, G has order n and diameter d. By Proposition ??, the set $\left\{u_{0}, u_{d}, v_{1}, \ldots, v_{k-2}\right\}$ is the unique minimum restrained geodetic set of G and so G has the desired property.

It is well-known that for every connected $\operatorname{graph} G, \operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$. Chartrand et al. [?] showed that every three positive integers r, d, and $k \geq 2$ with $r \leq d \leq 2 r$ are realizable as the radius, the diameter and the geodetic number, respectively. Their theorem can be extended so that restrained geodetic number instead of the geodetic number, can be prescribed as well.

Theorem 10. For positive integers r, d, and $p \geq 2$ with $r \leq d \leq 2 r$, there exists a connected $\operatorname{graph} G$ with $\operatorname{rad}(G)=r, \operatorname{diam}(G)=d$ and $g_{r}(G)=p$.

Proof. If $r=1$, then we let $G=K_{p}$ or $G=K_{2} \vee\left(K_{p-1} \cup K_{1}\right)$ according to whether $d=1$ or 2 , respectively. Let $r \geq 2$. If $r=d=2$, then we let $G=\bar{K}_{2} \vee\left(K_{2} \cup K_{2}\right), G=$ $\left(K_{1} \cup K_{2}\right) \vee\left(K_{2} \cup K_{2}\right)$ or $G=K_{2, p-2}$ according to $p=2,3$ or $p \geq 4$, respectively. If $r=d \geq 3$ and $p=2$, then we let $G=C_{2 r}(r \geq 3)$.

Now assume $r=d \geq 3$ and $p \geq 3$. Let G be the graph obtained from disjoint union of a cycle $C_{2 r}=\left(x_{1}, x_{2}, \ldots, x_{2 r}\right)$ of order $2 r$ and the complete graph K_{p-2} by joining x_{1} and $x_{2 r}$ to all vertices of K_{p-2}. Clearly, $\operatorname{rad}(G)=\operatorname{diam}(G)=r$. Since the vertices of K_{p-2} lie on no geodetic path, each restrained geodetic set of G must contain $V\left(K_{p-2}\right)$. Since also $I\left[V\left(K_{p-2}\right) \cup\left\{x_{i}\right\}\right] \neq V(G)$ for each $1 \leq i \leq 2 r$, we have $g_{r}(G) \geq p$. On the other hand, the set $V\left(K_{p-2}\right) \cup\left\{x_{r}, x_{r+1}\right\}$ is a restrained geodetic set of G and hence $g_{r}(G)=p$.

Finally, let $2 \leq r<d$ and $p \geq 2$. Let $C_{2 r}=\left(x_{1}, x_{2}, \ldots, x_{2 r}\right)$ be a cycle of order $2 r$ and let $P_{d-r+1}=u_{0} u_{1} \ldots u_{d-r}$ be a path of order $d-r+1$ (and length $d-r$). Let G be the graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying x_{1} and u_{0}. Add $p-2$ new pendant edges $u_{d-r-1} w_{1}, \ldots, u_{d-r-1} w_{p-2}$. Then $\operatorname{rad}(G)=r$ and $\operatorname{diam}(G)=d$. The graph G has $p-1$ end-vertices, that is, $L=\left\{u_{d-r}, w_{1}, \ldots, w_{p-2}\right\}$. By Proposition ??, L is contained in each restrained geodetic set of G and that $I[L] \neq V(G)$. Hence, $g_{r}(G) \geq p$. On the other hand, we have $I\left[L \cup\left\{x_{r+1}\right\}\right]=V(G)$, implying that $g_{r}(G)=p$. This completes the proof.

Next we study the effect of adding an edge on the restrained geodetic number of a graph.
Lemma 11. For any connected graph G and any two nonadjacent vertices x and y of G, $g_{r}(G) \leq g_{r}(G+x y)+2$. In addition, if M^{\prime} is a geodetic set of $G+x y$, then $M^{\prime} \cup\{x, y\}$ is a geodetic set of G.

Proof. Let M^{\prime} be a geodetic set of $G+x y$. Assume there exists $z \in V(G) \backslash I_{G}\left[M^{\prime}\right]$. Then there is a $u-v$ geodesic path $P: u \ldots z \ldots v$ in $G+x y$ with $u, v \in M^{\prime}$ such that x and y are neighbors in P. Moreover, without loss of generality, there exist the following possibilities: (i) $P: u \ldots x y \ldots z \ldots v$, (ii) $P: u y \ldots z \ldots v,(u=x)$ (iii) $P: u z \ldots v,(u=x$ and $y=z)$. Hence, $I_{G}\left[M^{\prime} \cup\{x, y\}\right]=V(G)$, as is required.

The following corollary is an immediate result of Lemma ??.
Corollary 12. Let x and y be nonadjacent vertices of a connected graph G and let M^{\prime} be a $g_{r}(G+x y)$-set. If $G\left[V(G) \backslash\left(M^{\prime} \cup\{x, y\}\right)\right]$ has no isolated vertices, then $M^{\prime} \cup\{x, y\}$ is a restrained geodetic set of G and $g_{r}(G+x y) \geq g_{r}(G)-2$.

Theorem 13. For integers a and b with $a \geq 3, b \geq-2$ and $a+b \geq 2$, there exists a connected graph G and an edge $e \in E(\bar{G})$ such that $g_{r}(G)=a$ and $g_{r}(G+e)=a+b$.

Proof. We consider four cases.
Case 1. $b=-2$.
Let $H_{a,-2}$ be the graph obtained from a path $P_{6}=u_{0} u_{1} \ldots u_{6}$, by adding $a-3$ pendant edges $u_{1} v_{1}, \ldots, u_{1} v_{a-3}$ and a pendant edge $u_{4} w$. By Observation ??, the set $\left\{w, u_{0}, u_{6}, v_{1}, \ldots, v_{a-3}\right\}$ is the unique minimum restrained geodetic set of G and hence $g_{r}\left(H_{a,-2}\right)=a$. Assume $H_{a,-2}^{\prime}=H_{a,-2}+v_{a-3} w$. It is easy to see that the set $\left\{u_{0}, u_{6}, v_{1}, \ldots, v_{a-4}\right\}$ is a minimum restrained geodetic set of $H_{a,-2}^{\prime}$ and so $g_{r}\left(H_{a,-2}^{\prime}\right)=a-2$.

Case 2. $b=-1$.
Suppose $C_{5}=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ is a cycle on five vertices and $K_{1, a-1}$ is a star with the center x and end-vertices y_{1}, \ldots, y_{a-1}. Let $H_{a,-1}=\left(C_{5} \cup K_{1, a-1}\right)+y_{1} u_{5}$ and $H_{a,-1}^{\prime}=H_{a,-1}+y_{1} u_{1}$. It is easy to verify that $\left\{y_{2}, \ldots, y_{a-1}, u_{2}, u_{3}\right\}$ and $\left\{y_{2}, \ldots, y_{a-1}, u_{3}\right\}$ are $g_{r}\left(H_{a,-1}\right)$-set and $g_{r}\left(H_{a,-1}^{\prime}\right)$-set, respectively. Hence, $g_{r}\left(H_{a,-1}\right)=a$ and $g_{r}\left(H_{a,-1}^{\prime}\right)=a-1$.
Case 3. $b=0$.
Let $H_{a, 0}$ be the graph obtained from a path $P_{5}=u_{1} u_{2} u_{3} u_{4} u_{5}$ by adding $a-1$ pendant edges $u_{5} v_{1}, \ldots, u_{5} v_{a-1}$. Assume $H_{a, 0}^{\prime}=H_{a, 0}+u_{1} u_{4}$. Clearly, $\left\{u_{1}, v_{1}, \ldots, v_{a-1}\right\}$ is the unique $g_{r}\left(H_{a, 0}\right)$-set and $\left\{u_{2}, v_{1}, \ldots, v_{a-1}\right\}$ is the unique $g_{r}\left(H_{a, 0}^{\prime}\right)$-set. Thus $g_{r}\left(H_{a, 0}\right)=g_{r}\left(H_{a, 0}^{\prime}\right)=a$.
Case 4. $b \geq 1$.
Let $K_{2, b}$ be a complete bipartite graph with partite sets $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, \ldots, v_{b}\right\}$, and let $K_{1, a-1}$ be a star with the center x and end-vertices $\left\{y_{1}, \ldots, y_{a-1}\right\}$. Assume $H_{a, b}=$ $\left(K_{2, b} \cup K_{1, a-1}\right)+u_{2} x$ and $H_{a, b}^{\prime}=H_{a, b}+u_{1} u_{2}$. It is easy to see that $\left\{u_{1}, y_{1}, \ldots, y_{a-1}\right\}$ and $\left\{u_{1}, y_{1}, \ldots, y_{a-1}, v_{1}, \ldots, v_{b}\right\}$ are the unique minimum restrained geodetic set of $H_{a, b}$ and $H_{a, b}^{\prime}$, respectively. Hence $g_{r}\left(H_{a, b}\right)=a$ and $g_{r}\left(H_{a, b}^{\prime}\right)=a+b$ and the proof is complete.

3 Forcing subsets in restrained geodetic sets of a graph

Let G be a connected nontrivial graph and let S be a $g_{r}(G)$-set. A subset T of S is called a forcing subset of S if S is the unique extension of T to a $g_{r}(G)$-set. The forcing restrained geodetic number $f\left(S, g_{r}\right)$ of S is defined by $f\left(S, g_{r}\right)=\min \{|T| \mid T$ is a forcing subset of $S\}$. An $f\left(S, g_{r}\right)$-set is a forcing subset of S of size $f\left(S, g_{r}\right)$. The forcing restrained geodetic number $f\left(G, g_{r}\right)$ is defined by $f\left(G, g_{r}\right)=\min \left\{f\left(S, g_{r}\right) \mid S\right.$ is a $g_{r}(G)$-set $\}$. Hence, for every connected graph $G, f\left(G, g_{r}\right) \geq 0$.

The concept of forcing numbers has been studied in different areas of combinatorics and graph theory, including the chromatic number [?], the domination number $[?, ?, ?]$ and the geodetic number $[?, ?, ?, ?, ?]$. The forcing geodetic set and the forcing geodetic number in a graph were introduced by Chartrand et al. in [?].

Observation 14. Let G be a connected graph of order $n \geq 2$.
(i) $0 \leq f\left(G, g_{r}\right) \leq g_{r}(G) \leq n$;
(ii) $f\left(G, g_{r}\right)=0$ if and only if G has a unique $g_{r}(G)$-set;
(iii) $f\left(G, g_{r}\right)=1$ if and only if G has at least two distinct $g_{r}(G)$-sets but some vertices of G belongs to exactly one $g_{r}(G)$-set;
(iv) $f\left(G, g_{r}\right) \geq 2$ if and only if every vertex of each $g_{r}(G)$-set belongs to at least two $g_{r}(G)$-sets.

The following corollaries are immediate consequences of Observations ?? and ??.
Corollary 15. For a tree $T, f\left(T, g_{r}\right)=0$.
Corollary 16. For $n \geq 1, f\left(K_{n}, g_{r}\right)=0$.
Theorem 17. Every pair a, b of integers with $0 \leq a \leq b$ and $b \geq 3$, can be realized as the forcing restrained geodetic number and the restrained geodetic number of some connected graph, respectively.

Proof. We have already seen that $f\left(K_{b}, g_{r}\right)=0$ and $g_{r}\left(K_{b}\right)=b$. Thus, we assume that $0<a \leq b$. We consider the following cases.
Case 1. $a=b-1$.
Let $D_{a, a+1}$ be the graph with vertex set $V\left(D_{a, a+1}\right)=\left\{x_{1}, x_{2}\right\} \cup\left\{u_{i}, v_{i} \mid 1 \leq i \leq a+1\right\}$ and edge set $E\left(D_{a, a+1}\right)=\left\{x_{1} x_{2}\right\} \cup\left\{x_{1} u_{i}, x_{2} v_{i}, u_{i} v_{i} \mid 1 \leq i \leq a+1\right\}$ (see Figure 2).

Obviously, $\left\{u_{1}, \ldots, u_{a}, v_{1}\right\}$ is a restrained geodetic set of $D_{a, a+1}$ and hence $g_{r}\left(D_{a, a+1}\right) \leq$ $a+1$. Let S be an arbitrary $g_{r}\left(D_{a, a+1}\right)$-set. If $u_{i}, v_{i} \notin S$ for some $1 \leq i \leq a+1$, then we must have a geodesic path P containing the path $x_{1} u_{i} v_{i} x_{2}$, which is a contradiction because $x_{1} x_{2} \in E\left(D_{a, a+1}\right)$. Therefore $\left|S \cap\left\{u_{i}, v_{i}\right\}\right| \geq 1$ for each $1 \leq i \leq a+1$ and hence $g_{r}\left(D_{a, a+1}\right)=|S| \geq a+1$. Thus $g_{r}\left(D_{a, a+1}\right)=a+1$.

Now we show that $f\left(D_{a, a+1}, g_{r}\right)=a$. If S is a $g_{r}\left(D_{a, a+1}\right)$-set, then $\left|S \cap\left\{u_{i}, v_{i}\right\}\right|=1$ for each $1 \leq i \leq a+1$. Since the sets $\left\{u_{1}, \ldots, u_{a+1}\right\}$ and $\left\{v_{1}, \ldots, v_{a+1}\right\}$ are not $g_{r}\left(D_{a, a+1}\right)$-set, we must have $S \cap\left\{u_{1}, \ldots, u_{a+1}\right\} \neq \emptyset$ and $S \cap\left\{v_{1}, \ldots, v_{a+1}\right\} \neq \emptyset$. It is easy to see that every set S of vertices with $\left|S \cap\left\{u_{i}, v_{i}\right\}\right|=1$ for each $1 \leq i \leq a+1, S \cap\left\{u_{1}, \ldots, u_{a+1}\right\} \neq \emptyset$ and $S \cap\left\{v_{1}, \ldots, v_{a+1}\right\} \neq \emptyset$ is a $g_{r}\left(D_{a, a+1}\right)$-set. It follows that every set S of vertices of order at most $a-1$ with $\left|S \cap\left\{u_{i}, v_{i}\right\}\right| \leq 1$ for each $1 \leq i \leq a+1$, can be extended to at least two $g_{r}\left(D_{a, a+1}\right)$-sets. Thus $f\left(D_{a, a+1}, g_{r}\right) \geq a$. On the other hand, clearly the set $\left\{u_{1}, \ldots, u_{a}\right\}$ is a forcing subset of the $g_{r}\left(D_{a, a+1}\right)$-set $\left\{u_{1}, \ldots, u_{a}, v_{1}\right\}$. Thus $f\left(D_{a, a+1}, g_{r}\right) \leq a$ and hence $f\left(D_{a, a+1}, g_{r}\right)=a$.

Fig. 2: The graph $D_{a, a+1}$

Fig. 3: The graph $D_{a, b}$

Case 2. Assume $1 \leq a \leq b-2$.
Let $D_{a, b}$ be a graph obtained from $K_{b-a-1} \cup D_{a, a+1}$ by joining x_{1} and x_{2} to all vertices of K_{b-a-1} (see Figure 3). Let S be a $g_{r}\left(D_{a, b}\right)$-set. Since the vertices of K_{b-a-1} lie on no geodetic path, we have $V\left(K_{b-a-1}\right) \subseteq S$. An argument similar to that described in Case 1 shows that $\left|S \cap\left\{u_{i}, v_{i}\right\}\right| \geq 1$ for each $1 \leq i \leq a+1$. Thus $g_{r}\left(D_{a, b}\right)=|S| \geq b$. On the other hand, it is easy to see that the set $\left\{u_{1}, \ldots, u_{a+1}, v_{1}\right\}$ is a restrained geodetic set of $D_{a, b}$, implying that $g_{r}\left(D_{a, b}\right) \leq b$. Thus $g_{r}\left(D_{a, b}\right)=b$.

Now let S be a $g_{r}\left(D_{a, b}\right)$-set and let F be a forcing set of S. As above, we must have $|F| \geq a$. It is easy to see that the set $\left\{u_{i} \mid 1 \leq i \leq a\right\}$ is a forcing set of the restrained geodetic set $V\left(K_{b-a-1}\right) \cup\left\{u_{1}, \ldots, u_{a}, v_{1}\right\}$, which implies that $f\left(D_{a, b}, g_{r}\right)=a$.
Case 3. $a=b$.
We consider three subcases.
Subcase $3.1 a=b=2 k, k \geq 2$
For $1 \leq i \leq k$, suppose G_{i} is a copy of $K_{3,3}$ with bipartite sets $X_{i}=\left\{u_{1}^{i}, u_{2}^{i}, u_{3}^{i}\right\}$ and
$Y_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}\right\}$. Let $M_{2 k}$ be the graph obtained from $\cup_{i=1}^{k} G_{i}$ by adding two new vertices x_{1}, x_{2}, adding the edge $x_{1} x_{2}$ and joining x_{1} to u_{j}^{i} and x_{2} to v_{j}^{i} for each $1 \leq i \leq k$ and $j=1,2,3$ (see Figure 4).

It is easy to see that the set $\left\{u_{1}^{i}, v_{1}^{i} \mid 1 \leq i \leq k\right\}$ is a restrained geodetic set of $M_{2 k}$, implying that $g_{r}\left(M_{2 k}\right) \leq 2 k$. Assume S is a $g_{r}\left(M_{2 k}\right)$-set. We claim that $\left|S \cap X_{i}\right| \geq 1$ and $\left|S \cap Y_{i}\right| \geq 1$ for each $1 \leq i \leq k$. Assume to the contrary that $S \cap X_{i}=\emptyset$ (the case $S \cap Y_{i}=\emptyset$ is similar) for some i, say $i=1$. It follows that $Y_{1} \subseteq S$. A similar argument shows that $\left|S \cup V\left(G_{i}\right)\right| \geq 2$ for each $i \geq 2$, which implies that $|S| \geq 2 k+1$, a contradiction. Thus $\left|S \cap X_{i}\right| \geq 1$ and $\left|S \cap Y_{i}\right| \geq 1$ for each $1 \leq i \leq k$, implying that $|S| \geq 2 k$ and hence $g_{r}\left(M_{2 k}\right)=|S|=2 k$. Moreover, we must have $\left|S \cap X_{i}\right|=1$ and $\left|S \cap Y_{i}\right|=1$ for each $1 \leq i \leq k$.

Now let S be a $g_{r}\left(M_{2 k}\right)$-set and let F be a forcing set of S. We claim that $F=S$. Suppose to the contrary that $F \subset S$. We may assume without loss of generality that $u_{1}^{1} \in(S \backslash F)$. It is easy to see that $\left(S \backslash\left\{u_{1}^{1}\right\}\right) \cup\left\{u_{2}^{1}\right\}$ is a $g_{r}\left(M_{2 k}\right)$-set containing F, a contradiction. Hence, $f\left(M_{2 k}, g_{r}\right)=|F|=|S|=g_{r}\left(M_{2 k}\right)$.

Fig. 4: The graph $M_{2 k}$

Fig. 5: The graph $H_{2 k+3}$

Subcase 3.2 $a=b=2 k+3, k \geq 1$.
Let $H_{2 k+3}$ be the graph obtained from $M_{2 k}$ by adding new vertices $z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}$ and adding the edges $z_{1} z_{2}, z_{1} z_{3}, z_{2} z_{3}, w_{1} w_{2}, w_{1} w_{3}, w_{2} w_{3}, z_{1} w_{1}, z_{1} w_{3}, z_{2} w_{2}, z_{3} w_{1}, z_{3} w_{3}$, and $x_{1} z_{i}$ and $x_{2} w_{i}$ for $i=1,2,3$ (see Figure 5).

It is easy to verify that the set $\left\{u_{1}^{i}, v_{1}^{i} \mid 1 \leq i \leq k\right\} \cup\left\{x_{1}, x_{2}, w_{1}\right\}$ is a restrained geodetic set of $H_{2 k+3}$, this implies $g_{r}\left(H_{2 k+3}\right) \leq 2 k+3$. If S is a $g_{r}\left(H_{2 k+3}\right)$-set, then as in Case 2, we can see that $\left|S \cap X_{i}\right| \geq 1$ and $\left|S \cap Y_{i}\right| \geq 1$ for each $1 \leq i \leq k$, and $\left|S \cap\left\{z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right\}\right| \geq 3$. Hence, $g_{r}\left(H_{2 k+3}\right)=2 k+3$. Since every set of vertices $S \subset V\left(H_{2 k+3}\right)$ with $\left|S \cap\left\{z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right\}\right|=3,\left|S \cap X_{i}\right|=1$ and $\left|S \cap Y_{i}\right|=1$ for each $1 \leq i \leq k$, is a restrained geodetic set of $H_{2 k+3}$ whenever the set $S \cap\left\{z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right\}$ is
not one of $\left\{z_{1}, z_{3}, w_{3}\right\},\left\{w_{1}, z_{3}, w_{3}\right\},\left\{z_{1}, w_{1}, z_{3}\right\}$ and $\left\{z_{1}, w_{1}, w_{3}\right\}$, we deduce that for every $g_{r}\left(H_{2 k+3}\right)$-set $S, f\left(S, g_{r}\right)=|S|$. It follows that $f\left(M_{2 k}, g_{r}\right)=g_{r}\left(M_{2 k}\right)$.

Subcase $3.2 \quad a=b=3$.
For $1 \leq i \leq 3$, let R_{i} be the graph obtained from a complete bipartite graph $K_{2,3}$ with partite sets $\left\{u_{i}, v_{i}\right\}$ and $\left\{x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right\}$ by joining x_{1}^{i} to x_{2}^{i} and x_{2}^{i} to x_{3}^{i}. Assume H_{3} results from $R_{1} \cup R_{2} \cup R_{3}$ by adding the edges $v_{1} u_{2}, v_{2} u_{3}$ and $v_{3} u_{1}$. It is easy to see that $f\left(H_{3}, g_{r}\right)=$ $g_{r}\left(H_{3}\right)=3$.

Acknowledgements

The authors thanks the referees for their helpful comments and suggestions which helped improve the exposition and readability of the paper.

References

[1] H. Abdollahzadeh Ahangar, F. Fujie-Okamoto and V. Samodivkin, On the forcing connected geodetic number and the connected geodetic number of a graph, Ars Combin., to appear.
[2] F. Buckley, F. Harary, and L.V. Quintas, Extremal results on the geodetic number of a graph, Scientia 2 (1988), 17-26.
[3] G. Chartrand, H. Gavlas, R. C. Vandell and F. Harary, The forcing domination number of a graph, J. Combin. Math. Combin. Comput. 25 (1997), 161-174.
[4] G. Chartrand, F. Harary, H. C. Swart and P. Zhang, Geodomination in graphs, Bull. Inst. Combin. Appl. 31 (2001), 51-59.
[5] G. Chartrand, F. Harary and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999), 45-58.
[6] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in graphs, Discuss. Math. Graph Theory 20 (2000), 129-138.
[7] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1-6.
[8] F. Harary, E. Loukakis and C. Tsourus, The geodetic number of a graph, J. Differential Geom. 16 (1981), 185-190.
[9] C. Hernando, T. Jiang, M. Morac, I. M. Pelayo and C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math. 293 (2005), 1623-1628.
[10] H. Karami, S.M. Sheikholeslami and M. Toomanian, Bounds on the forcing domination numbers of a graph, Util. Math., 83 (2010), 171-178.
[11] A. Khodkar and S.M. Sheikholeslami, The forcing domination number of some graphs, Ars Combin. 82 (2007), 365-372.
[12] S.E. Mahmoodian, R. Naserasr and M. Zaker, Defining sets in vertex colorings of graphs and Latin rectangles, Discrete Math. 167 (1997), 451-460.
[13] R. Muntean and P. Zhang, On geodomination in graphs, Congr. Numer. 143 (2000), 161-174.
[14] L.-D. Tong, The (a, b)-forcing geodetic graphs, Discrete Math., 309 (2009) 1623-1628.
[15] L.-D. Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Appl. Math., 309 (2009) 1623-1628.
[16] D. B. West, Introduction to graph theory (Second Edition), Prentice Hall, USA, 2001.
[17] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin., 62 (2002) 3-15.

