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Biogeography-based optimization (BBO) is an evolutionary algorithm inspired by biogeography, which is the study of themigration
of species between habitats. A finite Markov chain model of BBO for binary problems was derived in earlier work, and some
significant theoretical results were obtained. This paper analyzes the convergence properties of BBO on binary problems based on
the previously derived BBOMarkov chain model. Analysis reveals that BBO with only migration and mutation never converges to
the global optimum. However, BBO with elitism, which maintains the best candidate in the population from one generation to the
next, converges to the global optimum. In spite of previously published differences between genetic algorithms (GAs) and BBO,
this paper shows that the convergence properties of BBO are similar to those of the canonical GA. In addition, the convergence rate
estimate of BBO with elitism is obtained in this paper and is confirmed by simulations for some simple representative problems.

1. Introduction

Mathematical models of biogeography describe the
immigration and emigration of species between habitats.
Biogeography-based optimization (BBO) was first presented
in 2008 [1] and is an extension of biogeography theory to
evolutionary algorithms (EAs). BBO is modeled after the
immigration and emigration of species between habitats.
One distinctive feature of BBO is that it uses the fitness
of each candidate solution to determine its immigration
and emigration rate. The immigration rate determines how
likely a candidate solution is to change its decision variables,
and the emigration rate determines how likely a candidate
solution is to share its decision variables with other candidate
solutions. Specifically, a candidate solution’s emigration rate
increases with fitness, and its immigration rate decreases
with fitness.

Although BBO is a relatively new EA, it has demonstrated
good performance on various unconstrained and constrained
benchmark functions [2–5] and on real-world optimization

problems such as sensor selection [1], economic load dispatch
[6], robot controller tuning [7], satellite image classification
[8], and power system optimization [9]. In addition, Markov
models have been derived for BBO on binary problems
[10, 11]. Reference [12] discusses the conceptual, algorithmic,
and performance differences between BBO and GAs using
bothMarkov model comparisons and benchmark simulation
results. These simulation and theoretical results confirm that
BBO is a competitive evolutionary algorithm. But until now
there have not been any theoretical results concerning its
convergence properties.

We say that an optimization algorithm converges to the
global optimum if the value of at least one of its candidate
solutions, in the limit as the generation count approaches
infinity, is equal to the global optimum of the optimization
problem. Several mathematical tools have been used to
analyze EA convergence [13–17]. Recent work includes the
analysis of EA convergence usingMarkov’s inequality, Cheby-
shev bounds, Chernoff bounds, and martingales for mini-
mumspanning tree problems,maximummatching problems,
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scheduling problems, shortest path problems, Eulerian cycle
problems, multiobjective problems, and others [18–20].

Markov chainmodels are still some of themost frequently
used methods for the analysis of EA convergence. They have
been widely used in a variety of EAs, including genetic
algorithms (GAs) [21–25] and simulated annealing [4, 26],
to prove probabilistic convergence to the global optimum.
A Markov chain is a random process which has a discrete
set of possible states 𝑠

𝑖
(𝑖 = 1, 2, . . . , 𝑇). The probability

that the system transitions from state 𝑠
𝑖
to 𝑠
𝑖
is given by 𝑝

𝑖𝑗
,

which is called a transition probability. The 𝑇 × 𝑇 matrix P
= [𝑝
𝑖𝑗
] is called the transition matrix, where 𝑇 is the total

number of possible population distributions. A population
distribution is a specific multiset of individuals with a
cardinality that is equal to the population size. AMarkov state
in [11] represents a BBO population distribution. Each state
represents a particular population distribution, that is, how
many individuals at each point of the search space there are
in the population. Probability 𝑝

𝑖𝑗
is the probability that the

population transitions from the 𝑖th population distribution
to the 𝑗th population distribution in one generation.

This paper analyzes the global convergence properties
of BBO as applied to optimization problems with binary
search spaces, based on a previously derived BBO Markov
model, and obtains the convergence rate estimate using
homogeneous finite Markov chain properties. Section 2 gives
a brief review of BBO and its Markov transition probabil-
ities. Section 3 gives some basic definitions, obtains BBOs
convergence properties, and obtains the convergence rate
estimate. Section 4 confirms the theory using simple numer-
ical simulation.The convergence properties and convergence
rates derived here are not surprising in view of previous
EA convergence results, but this paper represents the first
time that such results have been formalized for BBO. Finally,
Section 5 presents some concluding remarks and directions
for future work.

2. Biogeography-Based Optimization (BBO)

This section presents a review of the biogeography-based
optimization (BBO) algorithm with migration and mutation
(Section 2.1) and then provides a review of the Markov
transition probability of BBO populations (Section 2.2).

2.1. Overview of Biogeography-Based Optimization. This sec-
tion provides an overview of BBO.The review in this section
is very general because it applies to optimization problems
with either real domains, integer domains, binary domains,
or combinations thereof.

BBO is a new optimization approach, inspired by bio-
geography theory, to solve general optimization problems.
A biogeography habitat corresponds to a candidate solution
to the optimization problem. A multiset of biogeography
habitats corresponds to a population of candidate solutions.
Habitat suitability index (HSI) in biogeography corresponds
to the goodness of a candidate solution, which is also
called fitness in standard EA notation. Like other EAs [27],
BBO probabilistically shares information between candidate

solutions to improve candidate solution fitness. In BBO,
each candidate solution is comprised of a set of features,
which are also called independent variables or decision
variables in the optimization literature. Note that the decision
variables can be taken from sets of real numbers, integers,
binary numbers, or combinations thereof, depending on the
problem. Each candidate solution immigrates features from
other candidate solutions based on its immigration rate and
emigrates features to other candidate solutions based on its
emigration rate. BBO consists of two main steps: migration
and mutation.

Migration. Migration is a probabilistic operator that is
intended to improve a candidate solution 𝑦

𝑘
. For each

feature of a given candidate solution 𝑦
𝑘
, the candidate

solution’s immigration rate 𝜆
𝑘
is used to probabilistically

decide whether or not to immigrate. If immigration occurs,
then the emigrating candidate solution 𝑦

𝑗
is probabilistically

chosen based on the emigration rate 𝜇
𝑗
. Migration is written

as follows:

𝑦
𝑘 (

𝑟) ←󳨀 𝑦
𝑗 (
𝑟) , (1)

where 𝑟 is a candidate solution feature. In BBO, each
candidate solution 𝑦

𝑘
has its own immigration rate 𝜆

𝑘
and

emigration rate 𝜇
𝑘
. A good candidate solution has relatively

high 𝜇 and low 𝜆, while the converse is true for a poor
candidate solution. According to [1], the immigration rate 𝜆

𝑘

and emigration rate 𝜇
𝑘
of the candidate solution 𝑦

𝑘
are based

on linear functions and are calculated as

𝜆
𝑘
= 1 − fitness (𝑦

𝑘
)

𝜇
𝑘
= fitness (𝑦

𝑘
) ,

(2)

where fitness denotes candidate solution fitness value, which
is normalized to the range [0, 1]. The probabilities of immi-
grating to 𝑦

𝑘
and of emigrating from 𝑦

𝑘
are calculated as

Pr (immigration to 𝑦
𝑘
) = 𝜆
𝑘

Pr (emigration from 𝑦
𝑘
) =

𝜇
𝑘

∑
𝑁

𝑗=1
𝜇
𝑗

,

(3)

where𝑁 is the population size.

Mutation.Mutation is a probabilistic operator that randomly
modifies a candidate solution feature. The purpose of muta-
tion is to increase diversity among the population, just as
in other EAs. Mutation of the 𝑖th candidate solution is
implemented as shown in Algorithm 1.

In the mutation logic (Algorithm 1), rand (𝑎, 𝑏) is a
uniformly distributed random number between 𝑎 and 𝑏, 𝑝

𝑚

is the mutation rate, and 𝐿
𝑟
and 𝑈

𝑟
are the lower and upper

search bounds of the 𝑟th independent variable. The above
logic mutates each independent variable with a probability of
𝑝
𝑚
. If mutation occurs for a given independent variable, then

that independent variable is replaced with a random number
within its search domain.

A description of one generation of BBO is given in
Algorithm 2.
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For each candidate solution feature 𝑟 in 𝑦
𝑖

If rand(0, 1) < 𝑝
𝑚

𝑦
𝑖
(𝑟) ← rand(𝐿

𝑟
, 𝑈
𝑟
)

End if

Next 𝑟

Algorithm 1

2.2. Transition Probability of Biogeography-Based Optimiza-
tion. Two main steps in BBO are significant: migration
and mutation. The transition probability of one generation
includes migration probability and mutation probability.
Consider a problemwhose search space {𝑥

1
, . . . , 𝑥

𝑛
} is binary.

The search space is the set of all bit strings 𝑥
𝑖
consisting of

𝑞 bits each. Therefore, the cardinality of the search space is
𝑛 = 2

𝑞. Suppose that BBO is currently in the 𝑡th generation.
Based on the previously derived Markov chain model for
BBO [11], the probability that migration results in the 𝑘th
candidate solution 𝑦

𝑘
are equal to 𝑥

𝑖
at generation 𝑡 + 1 is

given by

Pr (𝑦
𝑘,𝑡+1

= 𝑥
𝑖
)

=

𝑞

∏

𝑟=1

[(1 − 𝜆
𝑘
) 1
0
(𝑦
𝑘 (

𝑟) − 𝑥
𝑖 (
𝑟)) + 𝜆

𝑘

∑
𝑗∈𝜍𝑖(𝑟)

V
𝑗
𝜇
𝑗

∑
𝑛

𝑗=1
V
𝑗
𝜇
𝑗

] ,

(4)

where 1
0
is the indicator function on the set 0 (i.e., 1

0
(𝑎) = 1

if 𝑎 = 0, and 1
0
(𝑎) = 0 if 𝑎 ̸= 0), 𝑟 denotes the index of the

candidate solution feature (i.e., the bit number), 𝜆
𝑘
denotes

the immigration rate of candidate solution 𝑦
𝑘
, 𝜇
𝑗
denotes

the emigration rate of candidate solution 𝑥
𝑗
, and V

𝑗
denotes

the number of 𝑥
𝑗
individuals in the population.The notation

𝜍
𝑖
(𝑟) in (4) denotes the set of search space indices 𝑗 such that

the 𝑟th bit of 𝑥
𝑗
is equal to the 𝑟th bit of 𝑥

𝑖
. That is, 𝜍

𝑖
(𝑟) =

{𝑗 : 𝑥
𝑗
(𝑟) = 𝑥

𝑖
(𝑟)}. Note that the first term in the product on

the right side of (4) denotes the probability that 𝑦
𝑘,𝑡+1

(𝑟) =

𝑥
𝑖
(𝑟) if immigration of the 𝑟th candidate solution feature does

not occur, and the second term denotes the probability if
immigration of the 𝑟th candidate solution feature does occur.

Example 1. To clarify the notations in (4), an example is
presented. We use the notation V

𝑗
to denote the number of

𝑥
𝑗
individuals in the population. Suppose we have a two-bit

problem (𝑞 = 2, 𝑛 = 4) with a population size 𝑁 = 3. The
search space consists of the bit strings 𝑥 = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
}

= {00, 01, 10, 11}. Suppose that the individuals in the current
population are 𝑦 = {𝑥

2
, 𝑥
4
, 𝑥
4
} = {01, 11, 11}. Then we have

V
1
= 0, V

2
= 1, V

3
= 0, and V

4
= 2. To clarify the notation

𝜍
𝑖
(𝑟), we now explain how to calculate 𝜍

1
(1). We arbitrarily

number bits from left to right; that is, in any given bit string,
bit 1 is the leftmost bit and bit 2 is the rightmost bit. From the
definition of 𝜍

𝑖
(𝑟) we see that

𝜍
1 (

1) = {𝑗 : 𝑥
𝑗 (
1) = 𝑥

1 (
1)} . (5)

Since 𝑥
1
= 00, we see that 𝑥

1
(1) = 0 (i.e., the leftmost bit is 0).

Then (5) can be written as

𝜍
1 (

1) = {𝑗 : 𝑥
𝑗 (
1) = 0} . (6)

But 𝑥
𝑗
(1) = 0 for 𝑥

𝑗
∈ {00, 01}, which in turn indicates that

𝑥
𝑗
(1) = 𝑥

1
(1) for 𝑗 ∈ [1, 2]; therefore, 𝜍

1
(1) = {1, 2}. Continuing

this process, we see that

𝜍
1 (

1) = {1, 2} , 𝜍
1 (

2) = {1, 3} ,

𝜍
2 (

1) = {1, 2} , 𝜍
2 (

2) = {2, 4} ,

𝜍
3 (

1) = {3, 4} , 𝜍
3 (

2) = {1, 3} ,

𝜍
4 (

1) = {3, 4} , 𝜍
4 (

2) = {2, 4} .

(7)

Mutation. Mutation operates independently on each candi-
date solution by probabilistically reversing each bit in each
candidate solution. Suppose that the event that each bit of
a candidate solution is flipped is stochastically independent
and occurs with probability 𝑝

𝑚
∈ (0, 1). Then the probability

that candidate solution 𝑥
𝑖
mutates to become 𝑥

𝑗
can be

written as

Pr (𝑥
𝑖
󳨀→ 𝑥
𝑗
) = 𝑝

𝐻𝑖𝑗

𝑚 (1 − 𝑝
𝑚
)
𝑞−𝐻𝑖𝑗

> 0, (8)

where 𝑞 is the number of bits in each candidate solution and
𝐻
𝑖𝑗
represents the Hamming distance between bit strings 𝑥

𝑖

and 𝑥
𝑗
.

3. Convergence of Biogeography-Based
Optimization

The previous section reviewed the BBO algorithm and its
Markov model. In this section, which comprises the main
contribution of this paper, we use the results of Section 2
to analyze the convergence behavior of BBO. Section 3.1
gives some basic foundations of Markov transition matrices,
including notation and basic theorems that we will need later.
Section 3.2 reviews previously published Markov theory as
it relates to BBO. This leads to Section 3.3, which obtains
some important properties of the BBO transition matrix.
Section 3.4 uses transition matrix properties to analyze BBO
convergence to the solution of a global optimization problem.
This leads to Section 3.5, which uses the BBO convergence
analysis to obtain an estimate of the convergence rate.

3.1. Preliminary Foundations of Markov Theory. A finite
Markov chain is a random process which has a finite number
of possible state values 𝑆 = {𝑠

𝑖
} (𝑖 = 1, 2, . . . , 𝑇), where 𝑇 is

the total number of states, which is the cardinality |𝑆|. The
probability that the system transitions from state 𝑠

𝑖
to 𝑠
𝑗
at

time step 𝑡 is given by 𝑝
𝑖𝑗
(𝑡), which is called the transition

probability. The 𝑇 × 𝑇 matrix P = (𝑝
𝑖𝑗
(𝑡)) is called the

transition matrix, where 𝑝
𝑖𝑗

∈ [0, 1] for 𝑖, 𝑗 ∈ [1, 𝑇], and
∑
𝑇

𝑗=1
𝑝
𝑖𝑗
= 1 for all 𝑖. The Pmatrix is called stochastic because

the elements in each row sum to 1. If the transition probability
is independent of 𝑡, that is, 𝑝

𝑖𝑗
(𝑡
1
) = 𝑝

𝑖𝑗
(𝑡
2
) for all 𝑖, 𝑗 ∈

[1, 𝑇] and for all 𝑡
1
and 𝑡
2
, then the Markov chain is said



4 Mathematical Problems in Engineering

For each 𝑦
𝑘
, define emigration rate 𝜇

𝑘
proportional to fitness of 𝑦

𝑘
, 𝜇
𝑘
∈ [0, 1]

For each 𝑦
𝑘
, define immigration rate 𝜆

𝑘
= 1 − 𝜇

𝑘

For each 𝑦
𝑖

For each candidate solution feature 𝑟
Use 𝜆

𝑖
to probabilistically decide whether to immigrate to 𝑦

𝑖
(see (2) and (3))

If immigrating then
Use {𝜇

𝑘
} to probabilistically select the emigrating solution 𝑦

𝑘
(see (2) and (3))

𝑦
𝑖
(𝑟) ← 𝑦

𝑘
(𝑟)

End if
Next candidate solution feature
Probabilistically decide whether to mutate 𝑦

𝑖

Next solution

Algorithm 2: One generation of the BBO algorithm. 𝑦 is the entire population of candidate solutions, 𝑦
𝑘
is the 𝑘th candidate solution, and

𝑦
𝑘
(𝑟) is the 𝑟th feature of 𝑦

𝑘
.

to be homogeneous. Given an initial probability distribution
of states 𝜋(0) as a row vector, the probability distribution of
the Markov chain after 𝑡 steps is given by 𝜋(𝑡) = 𝜋(0)P𝑡.
Therefore, a homogeneous finite Markov chain is completely
specified by 𝜋(0) and P, and the limiting distribution as 𝑡 →

∞ depends on the structure of P. For homogeneous finite
Markov chains, we have the following two theorems [28, 29].

Theorem 2 (see [28, page 123]). Let P be a primitive stochastic
matrix of order 𝑇; that is, all of the elements of P𝑘 are positive
for some integer 𝑘.ThenP𝑘 converges as 𝑘 → ∞ to a stochastic
matrixwhich has all nonzero entries.That is, for all 𝑖, 𝑗 ∈ [1, 𝑇],

P∞ = lim
𝑘→∞

(𝑝
𝑖𝑗
)

(𝑘)

= (

𝜋

...
𝜋

)

𝑇×𝑇

, (9)

where 𝜋 = (𝜋
1
, . . . , 𝜋

𝑇
), and 𝜋

𝑗
̸= 0 for 1 ≤ 𝑗 ≤ 𝑇.

Theorem 3 (see [28, page 126]). Let P be a stochastic matrix
of order 𝑇 with the structure P = [

C 0
R Q ], whereC is a primitive

stochastic matrix of order 𝑚 and R, Q ̸= 0. Then P𝑘 converges
as 𝑘 → ∞ to a stochastic matrix. That is,

P∞ = lim
𝑘→∞

(𝑝
𝑖𝑗
)

(𝑘)

= (

𝜋

...
𝜋

)

𝑇×𝑇

, (10)

where 𝜋 = (𝜋
1
, . . . , 𝜋

𝑚
, 0, . . . , 0), and 𝜋

𝑗
̸= 0 for 1 ≤ 𝑗 ≤ 𝑚 <

𝑇.

We will use these theorems in Section 3.3 to derive
important properties of the BBO transition matrix and in
Section 3.4 to derive BBO convergence properties.

3.2. BBO Markov Theory. In previous work [11], the transi-
tion probability of BBO with migration and mutation was
obtained. This provides us with the probability Pr(𝑢 | V) of
transitioning in one generation from population vector v =
[V
1
, V
2
, . . . , V

𝑛
], where V

𝑖
is the number of candidate solutions

𝑥
𝑖
in the population and 𝑛 is the size of the search space, to

population vector u = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
]. BBO can be described

as a homogeneous finite Markov chain: the state of BBO is
defined as the population vector, so the element 𝑝

𝑖𝑗
of the

state transition matrix P is obtained by computing Pr(𝑢 |

V) for each possible v and each possible u. Namely, 𝑝
𝑖𝑗

=

Pr(𝑢 | V) denotes the probability that the 𝑖th population
vector, denoted as v, transitions to the 𝑗th population vector,
denoted as u, where 𝑖, 𝑗 ∈ [1, 𝑇]. Note that the cardinality
of the state space is |𝑆| = 𝑇, where 𝑇 is the total number
of possible populations; that is, 𝑇 is the number of possible
vectors v and the number of possible vectors u. The number
𝑇 can be calculated in several different ways, as discussed in
[11].

Let the 𝑁 × 𝑛 matrix M = (𝑚
𝑘𝑗
) and the 𝑛 × 𝑛

matrix U = (𝑢
𝑖𝑗
) be intermediate transition matrices corre-

sponding to only migration and only mutation, respectively,
where 𝑁 is the population size and 𝑛 is the cardinality of the
search space. Note that 𝑚

𝑘𝑗
= Pr(𝑦

𝑘,𝑡+1
= 𝑥
𝑗
) ≥ 0 and

𝑢
𝑖𝑗

= Pr(𝑥
𝑗

→ 𝑥
𝑖
) > 0. That is, 𝑚

𝑘𝑗
is the probability

that the 𝑘th individual in the population transitions to the
𝑗th individual in the search space when only migration is
considered, and 𝑢

𝑖𝑗
is the probability that the 𝑗th individual in

the search space transitions to the 𝑖th individual in the search
space when only mutation is considered. We can use [11] to
obtain the transition probability of the 𝑖th population state
vector v to the 𝑗th population state vector u as

𝑝
𝑖𝑗
= Pr (u | v) = ∑

𝐽∈𝑌

𝑁

∏

𝑘=1

𝑛

∏

𝑖=1

[𝑄
𝑘𝑖 (

v)]𝐽𝑘𝑖 ,

where 𝑌 ≡ {J ∈ 𝑅
𝑁×𝑛

: 𝐽
𝑘𝑖

∈ {0, 1} ,

𝑛

∑

𝑖=1

𝐽
𝑘𝑖

= 1 ∀𝑘,

𝑁

∑

𝑘=1

𝐽
𝑘𝑖

= 𝑢
𝑖
∀𝑖} ,

(11)

where 𝑄
𝑘𝑖
(v) is a single element of the product of M and

U. The matrix composed of the 𝑄
𝑘𝑖
(v) elements can be

represented as [𝑄
𝑘𝑖
(v)] = MU𝑇, where 𝑘 ∈ [1,𝑁] and 𝑖 ∈

[1, 𝑛]. 𝑄
𝑘𝑖
(v) denotes the probability that the 𝑘th migration

trial followed by mutation results in candidate solution 𝑥
𝑖
.
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Note that 𝑄
𝑘𝑖
(v) is a scalar, and transition matrix P = (𝑝

𝑖𝑗
)

is a 𝑇 × 𝑇 matrix, each element of which can be obtained by
(11).

Example 4. Here we use a simple example based on [11] to
clarify (11). Consider a simple BBO experiment in which a
trial of migration and mutation can result in one of four
possible outcomes 𝑥

1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
with probabilities 𝑄

𝑖1
,

𝑄
𝑖2
, 𝑄
𝑖3
, and 𝑄

𝑖4
, respectively. Index 𝑖 refers to the migration

trial number (i.e., the “For each 𝑦
𝑖
” loop in Algorithm 2).

Assume that the total number of trials (i.e., the population
size 𝑁) is equal to 2. Suppose that the probabilities are given
as follows:

Trial 1: 𝑄
11

= 0.1, 𝑄
12

= 0.3, 𝑄
13

= 0.5, 𝑄
14

= 0.1;
Trial 2: 𝑄

21
= 0.1, 𝑄

22
= 0.1, 𝑄

23
= 0.1, 𝑄

24
= 0.7.

In this example, we calculate the probability that 𝑥
1
and 𝑥

4

occur after two migration trials. In order to calculate this
probability, let c = [𝐶

1
, 𝐶
2
, 𝐶
3
, 𝐶
4
] denote a vector of random

variables, where𝐶
𝑖
is the total number of times that 𝑥

𝑖
occurs

after two migration trials. Based on (11), we use 𝐶
1

= 1,
𝐶
2
= 0, 𝐶

3
= 0, and 𝐶

4
= 1 to obtain

Pr (𝐶
1
= 1, 𝐶

2
= 0, 𝐶

3
= 0, 𝐶

4
= 1) = ∑

𝐽∈𝑌

2

∏

𝑘=1

4

∏

𝑖=1

[𝑄
𝑘𝑖
]
𝐽𝑘𝑖
,

(12)

where

𝑌 = {J ∈ 𝑅
2×4

: 𝐽
𝑘𝑖

∈ {0, 1} ,

4

∑

𝑖=1

𝐽
𝑘𝑖

= 1 ∀𝑘,

2

∑

𝑘=1

𝐽
𝑘𝑖

= 𝐶
𝑖
∀𝑖} .

(13)

According to (13), J belongs to 𝑌 if it satisfies the following
conditions: (1) J is a 2×4matrix; (2) each element of J is either
0 or 1; (3) the elements in each row of J add up to 1; and (4)
the elements in the 𝑖th column of J add up to 𝐶

𝑖
.

Note from [11] that the cardinality of 𝑌 is

|𝑌| =

𝑁!

(𝐶
1
! ⋅ ⋅ ⋅ 𝐶

𝑛
!)

. (14)

The number of matrices J(t) that satisfy these conditions is
calculated as 𝑁!/(𝐶

1
! ⋅ ⋅ ⋅ 𝐶

𝑛
!) = 2!/(1!1!0!1!) = 2, and the

J(t) matrices are found as follows:

J(1) = [

1 0 0 0

0 0 0 1
] , J(2) = [

0 0 0 1

1 0 0 0
] . (15)

Substituting these matrices into (12) gives

Pr (𝐶
1
= 1, 𝐶

2
= 0, 𝐶

3
= 0, 𝐶

4
= 1)

=

2

∑

𝑡=1

(𝑄
𝐽
(𝑡)

11

11
𝑄
𝐽
(𝑡)

12

12
𝑄
𝐽
(𝑡)

13

13
𝑄
𝐽
(𝑡)

14

14
) × (𝑄

𝐽
(𝑡)

21

21
𝑄
𝐽
(𝑡)

22

22
𝑄
𝐽
(𝑡)

23

23
𝑄
𝐽
(𝑡)

24

24
)

= 𝑄
11
𝑄
24

+ 𝑄
14
𝑄
21

= 0.08.

(16)

3.3. BBO Transition Matrix Properties. Recall that the migra-
tion probability and mutation probability can be calculated
by (3) and (8), respectively:𝑚

𝑘𝑗
= Pr (𝑦

𝑘,𝑡+1
= 𝑥
𝑗
) ≥ 0 and 𝑢

𝑖𝑗

= Pr (𝑥
𝑗
→ 𝑥
𝑖
) > 0. Therefore,M is a nonnegative stochastic

matrix; although it is not a transition matrix since it is not
square, each row sums to 1. We also see that U is a positive
left stochasticmatrix; that is, each of its columns sums to 1.We
now present two theorems that show that there is a nonzero
probability of obtaining any individual in the search space
from any individual in a BBO population after migration
and mutation. This means that there is a nonzero probability
of transitioning from any population vector u to any other
population vector v in one generation, which means that the
BBO transition matrix is primitive.

Theorem 5. If M is a positive stochastic matrix and U is a
positive left stochasticmatrix, then the productMU𝑇 is positive.

Proof. If M is positive and stochastic, then every entry of M
is positive; that is, 𝑚

𝑘𝑗
> 0 for 𝑘 ∈ [1,𝑁] and 𝑗 ∈ [1, 𝑛], and

∑
𝑛

𝑗=1
𝑚
𝑘𝑗

= 1 for all 𝑘. Similarly, if U is positive, then every
entry ofU is positive; that is, 𝑢

𝑖𝑗
> 0 for 𝑖, 𝑗 ∈ [1, 𝑛].Therefore,

by matrix multiplication, (MU𝑇)
𝑘𝑖

= ∑
𝑛

𝑗=1
𝑚
𝑘𝑗
𝑢
𝑖𝑗
> 0 for 𝑘 ∈

[1,𝑁] and 𝑖 ∈ [1, 𝑛].

Theorem 6. The transition matrix of BBO with migration and
mutation is primitive.

Proof. From (11) we know that if 𝑄
𝑘𝑖
(V) = [MU𝑇]

𝑘𝑖
>

0 for all 𝑘 ∈ [1,𝑁] and 𝑖 ∈ [1, 𝑛], then 𝑝
𝑖𝑗

=

∑
𝐽∈𝑌

∏
𝑁

𝑘=1
∏
𝑛

𝑖=1
[𝑄
𝑘𝑖
(k)]𝐽𝑘𝑖 > 0 for 𝑖, 𝑗 ∈ [1, 𝑇], where 𝑌 is

given in (11). So the transition matrix P = (𝑝
𝑖𝑗
) of BBO

is positive. Therefore, P is primitive since every positive
transition matrix is primitive.

Corollary 7. There exists a unique limiting distribution for the
states of the BBO Markov chain. Also, the probability that the
Markov chain is in the 𝑖th state at any time is nonzero for all
𝑖 ∈ [1, 𝑇].

Proof. Corollary 7 is an immediate consequence ofTheorems
2 and 6.

3.4. Convergence Properties of BBO. Before we obtain the
convergence properties of BBO, some precise definitions of
the term convergence are required [15]. Assume that the search
space of a global optimization problem is 𝐼 with cardinality
|𝐼| = 𝑛. Further assume that the BBO algorithm with
population size 𝑁 consists of both migration and mutation,
as shown in Algorithm 2.

Definition 8. Let 𝐴(𝑡) = {𝑎
𝑖
(𝑡) | 𝑖 ∈ [1,𝑁], 𝑎

𝑖
(𝑡) ∈ 𝐼} be

the population at generation 𝑡, where 𝑁 is the population
size, 𝑎

𝑖
(𝑡) denotes an individual representing a candidate

solution in the search space 𝐼, and𝐴(𝑡)may contain duplicate
elements; 𝑓 : 𝐼 → 𝑅 denotes a fitness function assigning real
values to individuals; 𝐼∗ = {𝑎

∗
| 𝑎
∗
= arg max{𝑓(𝑎) | 𝑎 ∈ 𝐼}}

is a subset in the search space, each member of which has
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the globally maximum fitness; and the best individuals in the
population at generation 𝑡 are 𝐼

∗
(𝑡) = {𝑎

∗

𝑗
(𝑡)} ⊂ 𝐴(𝑡), where

𝑓(𝑎
∗

𝑗
(𝑡)) ≥ 𝑓(𝑎

𝑖
(𝑡)) for all 𝑎∗

𝑗
(𝑡) ∈ 𝐼

∗
(𝑡) and for all 𝑖 ∈ [1,𝑁].

We use the notation 𝑎
∗
(𝑡) to denote an arbitrary element

of 𝐼∗(𝑡) (i.e., one of the best individuals in the population at
generation 𝑡). Because of migration and mutation, 𝑎∗(𝑡) and
its fitness will change randomly over time. As 𝑡 → ∞, the
convergence, or lack of convergence, of 𝑎∗(𝑡) to the subset
𝐼
∗ indicates whether or not the BBO algorithm is globally
convergent. That is, BBO is said to converge if

Pr( lim
𝑡→∞

𝑎
∗
(𝑡) ∈ 𝐼

∗
) = 1 ⇐⇒ Pr(𝑎∗ ∈ lim

𝑡→∞
𝐴 (𝑡)) = 1.

(17)

Note that 𝑎
∗
(𝑡) is not necessarily unique. However,

Definition 8 states that the BBO algorithm is globally
convergent if and only if (17) holds for every 𝑎

∗
(𝑡). Clearly,

the evolution of 𝑎∗(𝑡) is a homogeneous finite Markov chain,
which we call an 𝑎

∗
(𝑡)-chain.

Now we sort all the states of 𝐼 in order of descending
fitness; that is, 𝐼 = {𝐼

1
, . . . , 𝐼

𝑛
}, and 𝑓(𝐼

1
) ≥ 𝑓(𝐼

2
) ≥ ⋅ ⋅ ⋅ ≥

𝑓(𝐼
𝑛
). We define 𝑆 as the set of indices of 𝐼; that is, 𝑆 =

{1, 2, . . . , 𝑛}. Further, we define 𝑆∗ as the elements {𝑗} of 𝑆 such
that 𝐼
𝑗
∈ 𝐼
∗; that is, 𝐼

𝑗
∈ 𝐼
∗ for all 𝑗 ∈ 𝑆

∗. This leads to the
following definition.

Definition 9. Let P̂ = (𝑝
𝑖𝑗
) be the transition matrix of an

𝑎
∗
(𝑡)-chain, where 𝑝

𝑖𝑗
for 𝑖, 𝑗 ∈ [1, 𝑛] is the probability that

𝑎
∗
(𝑡) = 𝐼

𝑖
transitions to 𝑎

∗
(𝑡 + 1) = 𝐼

𝑗
. The BBO algorithm

converges to a global optimum if and only if 𝑎∗(𝑡) transitions
from any state 𝑖 ∈ 𝐼 to 𝐼

∗ as 𝑡 → ∞ with probability one,
that is, if

lim
𝑡→∞

∑

𝑗∈𝑆
∗

(
̂P𝑡)
𝑖𝑗
= 1, ∀𝑖 ∈ 𝑆. (18)

As noted earlier, there may be more than one 𝑎
∗
(𝑡)-chain

since more than one element of the search space may have
a globally maximum fitness. Definition 9 states that the BBO
algorithm converges to a global optimum if and only if
(18) holds for every 𝑎

∗
(𝑡)-chain. Also note that ̂P depends

on the other individuals in the population at generation 𝑡.
Definition 9 states that the BBO algorithm converges to a
global optimum if and only if (18) holds for every possible
̂P transition matrix for every 𝑎

∗
(𝑡)-chain.

Theorem 10. If the transition matrix ̂P = (𝑝
𝑖𝑗
) of an 𝑎

∗
(𝑡)-

chain is a positive stochastic matrix, then BBO with migration
and mutation does not converge to any of the global optima.

Proof. Since every positive matrix is also a primitive one, it
follows by Theorem 2 that the limiting distribution of P̂ is
unique with all nonzero entries. Therefore, for any 𝑖 ∈ 𝑆,

lim
𝑡→∞

∑

𝑗∈𝑆
∗

(P̂𝑡)
𝑖𝑗
= 1 − lim

𝑡→∞
∑

𝑗∈𝑆−𝑆
∗

(P̂𝑡)
𝑖𝑗

= 1 − ∑

𝑗∈𝑆−𝑆
∗

lim
𝑡→∞

(
̂P𝑡)
𝑖𝑗

= 1 −

|𝑆|

∑

𝑗=|𝑆
∗
|+1

𝜋
𝑗
< 1,

(19)

where we use the notation 𝑆 − 𝑆
∗ to denote all elements of

𝑆 that do not belong to 𝑆
∗. We see that (18) is not satisfied,

which completes the proof.

Theorem 11. If the transition matrix ̂P = (𝑝
𝑖𝑗
) of an 𝑎

∗
(𝑡)-

chain is a stochastic matrix with the structure ̂P = [
C 0
R Q ],

where C is a positive stochastic matrix of order |𝑆
∗
|, and R,

Q ̸= 0, then the BBO algorithm converges to one or more of the
global optima.

Proof. FromTheorem 3, we see that, for all 𝑖, 𝑗 ∈ 𝑆,

̂P∞ = lim
𝑡→∞

(𝑝
𝑖𝑗
)

𝑡

= (

𝜋

...
𝜋

)

|𝑆|×|𝑆|

, (20)

where 𝜋 = (𝜋
1
, . . . , 𝜋

|𝑆
∗
|
, 0, . . . , 0), 𝜋

𝑗
̸= 0 for 1 ≤ 𝑗 ≤ |𝑆

∗
|, and

∑
|𝑆
∗
|

𝑗=1
𝜋
𝑗
= 1. It follows directly that, for any 𝑖 ∈ 𝑆,

lim
𝑡→∞

∑

𝑗∈𝑆
∗

(P̂𝑡)
𝑖𝑗
= ∑

𝑗∈𝑆
∗

lim
𝑡→∞

(P̂𝑡)
𝑖𝑗
=

|𝑆
∗
|

∑

𝑗=1

𝜋
𝑗
= 1. (21)

We see that (18) is satisfied which completes the proof.

Theorems 10 and 11 can be applied directly to determine
the global convergence of BBO if the structure of the
transition matrix of the Markov chain can be determined, as
we will show in the remainder of this section. In particular,
we will formalize the observation that the transitionmatrix of
BBOwithout elitism satisfies the conditions ofTheorem 10 (as
stated inTheorem 6).Wewill further show that the transition
matrix of the 𝑎

∗
(𝑡)-chain of BBO with elitism satisfies the

conditions of Theorem 11.

Elitism. We now discuss a modified BBO which uses elitism,
an idea which is also implemented in many EAs. There
are many ways to implement elitism, but here we define
elitism as the preservation of the best individual at each
generation in a separate partition of the population space.
This enlarges the population size by one individual; the elite
individual increases the population size from 𝑁 to 𝑁 + 1.
However, note that the population size is still constant (i.e.,
equal to 𝑁 + 1) from one generation to the next. The elite
individual does not take part in recombination or mutation
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but is maintained separately from the other 𝑁-members of
the population. At each generation, if an individual in the𝑁-
member main population is better than the elite individual,
then the elite individual is replaced with a copy of the better
individual.

Relative to a standard 𝑁-member BBO population, elite
BBO increases the number of possible population distribu-
tions by a factor of 𝑛, which is the search space size. That
is, each possible population distribution of the 𝑁-member
main population could also include one of 𝑛 elite individuals.
The number of possible population distributions increases
by a factor of 𝑛, from 𝑇 (see Section 3.1) to 𝑛𝑇. We order
these new states so that each group of 𝑛 states has the same
elite individual. Also, the elite individual in the 𝑚th group
of 𝑛 states is the 𝑚th best individual in the search space, for
𝑚 = 1, . . . , 𝑛.

The elitist-preserving process can be represented by an
upgrade transitionmatrixO, which contains the probabilities
that each population distribution of the (𝑁 + 1)-member
population transitions to some other population distribution
after the elitist-preserving step. That is, the element in the
𝑖th row and 𝑗th column of O, denoted as 𝑂(𝑖, 𝑗), is the
probability that the 𝑖th population distribution transitions to
the 𝑗th population distribution after the step inwhich the elite
individual is replaced with the best individual from the 𝑁-
member main population. The upgrade matrix is similar to
the one in [29]; it does not include the effects of migration
or mutation but only includes the elitism-preserving step.
The upgradematrix only includes the probability of changing
the elite individual; it does not include the probability of
changing the 𝑁-member main population, since it does not
include migration or mutation. If there are no individuals
in the 𝑁-member main population that are better than the
elite individual, then the elite individual does not change.
The structure of the upgrade matrix O can be written
as

O = (

O
11

0 ⋅ ⋅ ⋅ 0

O
21

O
22

d
...

... d d 0
O
𝑛1

⋅ ⋅ ⋅ O
𝑛,𝑛−1

O
𝑛𝑛

), (22)

where each O
𝑖𝑗
matrix is 𝑇 × 𝑇, where 𝑇 is the number

of population distributions in an EA with a population
size of 𝑁 and search space cardinality of 𝑛. O

11
is the

identity matrix since the first 𝑛 population distributions have
the global optimum as their elite individual, and the elite
individual can never be improved from the global optimum.
Matrices O

𝑎𝑎
with 𝑎 ≥ 2 are diagonal matrices composed

of all zeros and ones. Since the population distributions are
ordered by grouping common elite individuals and since
elite individuals in the population distribution ordering are
in order of decreasing fitness, the super block diagonals in
O are zero matrices as shown in (22); that is, there is zero
probability that the 𝑖th population distribution transitions to

the 𝑗th population distribution if 𝑖 < 𝑗. So the Markov chain
of elite BBO can be described as

P+ = diag (P)O

= (

P 0 ⋅ ⋅ ⋅ 0

0 P d
...

... d d 0
0 ⋅ ⋅ ⋅ 0 P

)(

O
11

0 ⋅ ⋅ ⋅ 0

O
21

O
22

d
...

... d d 0
O
𝑛1

⋅ ⋅ ⋅ O
𝑛,𝑛−1

O
𝑛𝑛

)

= (

PO
11

0 ⋅ ⋅ ⋅ 0

PO
21

PO
22

d
...

... d d 0
PO
𝑛1

⋅ ⋅ ⋅ PO
𝑛,𝑛−1

PO
𝑛𝑛

),

(23)

whereP is the𝑇×𝑇 transitionmatrix described in Section 3.1.

Example 12. To explain the update matrix O described in
(22), a simple example is presented. Suppose there exists a
search space consisting of 𝑛 = 3 individuals which are 𝑥 =

{𝑥
1
, 𝑥
2
, 𝑥
3
}where the fitness of 𝑥

1
is the lowest and the fitness

of 𝑥
3
is the highest. Suppose the main population size is

𝑁 = 1, so the elitist population size is𝑁+ 1 = 2. So there are
nine possible populations before the elitist-preserving step,
and they are {𝐶

1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
, 𝐶
6
, 𝐶
7
, 𝐶
8
, 𝐶
9
} = {{𝑥

3
, 𝑥
3
},

{𝑥
3
, 𝑥
2
}, {𝑥
3
, 𝑥
1
}, {𝑥
2
, 𝑥
3
}, {𝑥
2
, 𝑥
2
}, {𝑥
2
, 𝑥
1
}, {𝑥
1
, 𝑥
3
}, {𝑥
1
, 𝑥
2
},

{𝑥
1
, 𝑥
1
}}. Note that the first element in each population is

the elite individual and the last 𝑁 element (𝑁 = 1 in
this example) is the main population. Also note that the
populations are ordered in such a way that the first three have
the most fit individual as their elite individual, the next three
have the second most fit individual as their elite individual,
and the last three have the least fit individual as their elite
individual. The update matrixO is a 9 × 9matrix.

The population 𝐶
1

= {𝑥
3
, 𝑥
3
} transitions to the popu-

lation 𝐶
1

= {𝑥
3
, 𝑥
3
} with probability 1; that is, 𝑂(1, 1) =

1. Population 𝐶
1
cannot transition to any other population

𝐶
𝑖
(𝑖 ̸= 1); that is, 𝑂(1,𝑖) = 0 for 𝑖 ̸= 1. Similarly, population

𝐶
2
= {𝑥
3
, 𝑥
2
} transitions to𝐶

2
with probability 1 since the elite

𝑥
3
is better than the main-member population 𝑥

2
; therefore,

𝑂(2, 2) = 1, and 𝑂(2, 𝑖) = 0 for 𝑖 ̸= 2. Continuing with this
reasoning, we obtain theOmatrix as follows:

O =
[

[

O
11

O
12

O
13

O
21

O
22

O
23

O
31

O
32

O
33

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

1

0 1

0 0 1

1 0 0 0

0 0 0 0 1

0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(24)

where eachO
𝑖𝑗
matrix is 3 × 3 and the blank elements are 0.
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Now we consider the convergence of the 𝑎
∗
(𝑡)-chain,

which is the sequence of elite individuals in the elite BBO
algorithm. If the elite individual is equal to the global
optimum, we call this an absorbing state of the 𝑎

∗
(𝑡)-chain.

Recall that the elite individual in elite BBO can only be
replaced by one with better fitness.Therefore, the 𝑎∗(𝑡)-chain
of elite BBO contains three classes of states: (1) at least one
absorbing state, (2) nonabsorbing states which transition to
absorbing states in one step, and (3) nonabsorbing states
which transition to nonabsorbing states in one step. So the
transition matrix ̂P of the 𝑎

∗
(𝑡)-chain, which we introduced

in (18)–(21), can be written as

P̂ = (

I
𝑘

0
R Q) , (25)

where I
𝑘
is a 𝑘 × 𝑘 unit matrix corresponding to optimal

individuals (𝑘 is the number of optima), R is a matrix of
order (|𝑆| − 𝑘) × 𝑘 corresponding to nonabsorbing states that
transition to absorbing states (|𝑆| is the cardinality of the state
space 𝑆, so |𝑆| − 𝑘 is the number of nonabsorbing states), and
Q is a matrix of order (|𝑆| − 𝑘) × (|𝑆| − 𝑘) corresponding to
nonabsorbing states that transition to nonabsorbing states.
Thematrix ̂P of (25) has the same structure as thematrix ̂P in
Theorem 11. It follows fromTheorem 11 that the 𝑎∗(𝑡)-chain of
elite BBO is globally convergent.

These results are similar to the canonical GA [29], which
is proven to never converge to the global optimum, but
elitist variants of which are proven to converge to the global
optimum.We sum up these results in the following corollary.

Corollary 13. BBO with migration and mutation does not
converge to any of the global optima, but elite BBO, which
preserves the best individual at each generation, converges to
the global optimum.

Proof. This is an immediate consequence of Theorems 6 and
10 (the nonconvergence of BBO without elitism),Theorem 11
(the convergence of BBO with elitism), and the discussion
above.

3.5. Convergence Rate. The previous subsection analyzed the
convergence properties of elite BBO, and this subsection
discusses its convergence rate. The transition matrix of elite
BBO after 𝑡 steps can be found from (25) as follows:

̂P𝑡 = (

I
𝑘

0

N
𝑡
R Q𝑡) , (26)

where N
𝑡
= I + Q + Q2 + ⋅ ⋅ ⋅ + Q𝑡−1 = (I −Q)

−1
(I − Q𝑡). If

‖Q‖ < 1 the limiting distribution of theMarkov chain of BBO
can be found from ̂P∞, which can be written as

̂P∞ = lim
𝑡→∞

̂P𝑡 = [

I
𝑘

0

(I −Q)
−1R 0

] . (27)

Modified BBO with elitism has been proven to converge to a
global optimum in the previous subsection, and there exists a
limiting distribution 𝜋∗ = 𝜋(0)̂P∞, where 𝜋(0) = [𝜋

1
(0), . . .,

𝜋
𝑘
(0), 𝜋
𝑘+1

(0),. . ., 𝜋
|𝑠|
(0)]= [𝜋

1
(0),𝜋
2
(0)] (recall that 𝑘 is the

number of global optima). The convergence rate estimate of
elite BBO can be obtained as follows.

Theorem 14. If ‖Q‖ = 𝜌 < 1, the convergence rate of elite BBO
satisfies ‖𝜋(t) − 𝜋∗‖ ≤ 𝑂(𝜌

𝑡
).

Proof. Consider

󵄩
󵄩
󵄩
󵄩
𝜋 (t) − 𝜋∗󵄩󵄩󵄩

󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝜋 (0) P̂𝑡 − 𝜋 (0) P̂∞󵄩󵄩󵄩󵄩

󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜋 (0) [[ I
𝑘

0
N
𝑡
R Q𝑡] − [

I
𝑘

0
(I −Q)

−1R 0]]
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

[𝜋1 (
0) 𝜋
2 (
0)] [

0 0
(N
𝑡
− (I −Q)

−1
)R Q𝑡]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝜋
2 (
0) [(N𝑡 − (I −Q)

−1
)R Q𝑡]󵄩󵄩󵄩󵄩

󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝜋
2 (
0)󵄩󵄩󵄩
󵄩
(

󵄩
󵄩
󵄩
󵄩
󵄩
N
𝑡
− (I −Q)

−1󵄩󵄩
󵄩
󵄩
󵄩
⋅ ‖R‖ + 󵄩

󵄩
󵄩
󵄩
󵄩
Q𝑡󵄩󵄩󵄩󵄩

󵄩
)

=
󵄩
󵄩
󵄩
󵄩
𝜋
2 (
0)󵄩󵄩󵄩
󵄩
(

󵄩
󵄩
󵄩
󵄩
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𝜋
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≤
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𝜋
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󵄩
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󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝜋
2 (
0)󵄩󵄩󵄩
󵄩
(

‖R‖
1 − ‖Q‖

+ 1) ‖Q‖
𝑡
= 𝑂 (𝜌

𝑡
) .

(28)

Note that elite BBO is guaranteed to converge to a global
optimum regardless of the initial state. In addition, note that
we can improve the convergence rate bound by decreasing the
parameter 𝜌. That is, reducing the number of nonabsorbing
states which transition to other nonabsorbing states can
accelerate the convergence of elite BBO. In spite of differences
between GAs and BBO [12], we see fromTheorem 14 that the
convergence rate of BBOwith elitism is very similar to that of
GAs [22, Theorem 5].

4. Simulation Results

Theorem 14 gives the upper bound of the convergence rate
estimate of elite BBO. In this section, we use simulation
experiments to confirm this theorem. Note that in (28) the
parameter 𝜌 is a norm: 𝜌 = ‖Q‖. Here we define ‖ ⋅ ‖ as
the infinity norm ‖ ⋅ ‖

∞
; that is, ‖Q‖

∞
= max

𝑖
(∑
𝑛

𝑗=1
𝑞
𝑖𝑗
),

where 𝑞
𝑖𝑗
is the element in the 𝑖th row and the 𝑗th column

of matrix Q. Now note that the transition matrix ̂P in (25)
can be obtained from (11) and (23) using elementary matrix
transformations. We can thus use Theorem 11 to check for
BBO convergence, and we can use Theorem 14 to estimate
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Table 1: Convergence rate comparisons for the three-bit unimodal
one-max problem 𝑓

1
.

Mutation
rate

Theoretical analysis
Average generation

number using
simulation

Parameter 𝜌 Convergence
time 𝑡

BBO GA BBO GA BBO GA
0.1 0.87 0.85 99.20 90.45 87.58 82.39
0.01 0.68 0.73 35.82 44.16 42.12 50.18
0.001 0.30 0.44 11.47 16.81 11.63 17.37
The table shows the convergence time 𝑡 in seconds, the corresponding 𝜌
based on (11) and (28), and the generation number of first finding an all-
optimal population using BBO and GA, averaged over 25 Monte Carlo
simulations.

the convergence rate of BBO. That is, we define 𝜋(t) − 𝜋
∗

as the error between a BBO population distribution and a
distribution that includes at least one optimal solution. We
then define the convergence criteria as an arbitrarily small
error (e.g., ‖𝜋(t) − 𝜋

∗
‖ = 10

−6). We can then estimate the
time 𝑡 to convergence from (28) as follows:

𝑡 ≈ log
𝜌
10
−6
. (29)

Test functions are limited to three-bit problems with a search
space cardinality of eight and a population size of four. The
three fitness functions that we examine are

𝑓
1
= (1 2 2 3 2 3 3 4) ,

𝑓
2
= (4 2 2 3 2 3 3 4) ,

𝑓
3
= (4 1 1 2 1 2 2 3) ,

(30)

where 𝑓
1
is a unimodal one-max problem, 𝑓

2
is a multi-

modal problem, and 𝑓
3
is a deceptive problem. Note that

all three problems are to be maximized. Fitness values are
listed in binary order, so the first element of each fitness
function corresponds to the bit string 000, the second
element corresponds to the bit string 001, and so on. For the
BBO parameters, we use a maximum immigration rate and
maximum emigration rate of 1, and we use linear migration
curves as described in (2). We test elite BBO with three
different mutation rates which are applied to each bit in
each individual at each generation: 0.1, 0.01, and 0.001. Note
that we do not test with a zero-mutation rate because the
theory in this paper requires that themutation rate be positive
(see Theorem 5). Convergence is not guaranteed unless the
mutation rate is positive.

Numerical calculations show that the transition matrices
for these three problems satisfy the convergence conditions
of Theorem 11, which indicates that the BBO algorithm
converges to one or more of the global optima. As a heuristic
test of Theorem 14, we use simulations to record the gen-
eration number of first obtaining a population in which all
individuals are optimal, and all results are computed from 25
independent runs. Tables 1, 2, and 3 show comparisons of the
theoretical convergence time 𝑡, the corresponding parameter

Table 2: Convergence rate comparison for the three-bit multimodal
problem 𝑓

2
.

Mutation
rate

Theoretical analysis
Average generation

number using
simulation

Parameter 𝜌 Convergence
time 𝑡

BBO GA BBO GA BBO GA
0.1 0.61 0.59 27.95 25.16 26.09 24.87
0.01 0.11 0.17 6.26 7.95 6.17 7.72
0.001 0.04 0.05 4.29 4.76 4.18 4.63
The table shows the convergence time 𝑡 in seconds, the corresponding 𝜌
based on (11) and (28), and the generation number of first finding an all-
optimal population using BBO and GA, averaged over 25 Monte Carlo
simulations.

Table 3: Convergence rate comparison for the three-bit deceptive
problem 𝑓

3
.

Mutation
rate

Theoretical analysis
Average generation

number using
simulation

Parameter 𝜌 Convergence
time 𝑡

BBO GA BBO GA BBO GA
0.1 0.96 0.95 338.43 270.13 289.55 256.37
0.01 0.48 0.52 18.82 21.49 20.65 22.44
0.001 0.25 0.29 9.97 11.14 9.92 11.08
The table shows the convergence time 𝑡 in seconds, the corresponding 𝜌
based on (11) and (28), and the generation number of first finding an all-
optimal population using BBO and GA, averaged over 25 Monte Carlo
simulations.

𝜌, and the generation number of first finding an all-optimal
population, averaged over 25 independent simulations.

Tables 1–3 show time to convergence and time to finding
an optimum, for both BBO and GA. The table confirms
the statement following Theorem 14 that the convergence
behavior of BBO is similar to that of GA. The tables show
that GA converges slightly faster than BBO for highmutation
rates, but BBOconverges slightly faster for lowmutations, and
this latter behavior is more important in practice because low
mutations rates provide faster convergence.

Several things are notable about the results in Tables 1–
3. First, the mutation rate affects the convergence rate of
BBO. For all test problems, the convergence rate improves
when the mutation rate decreases. We can accelerate the
convergence of BBO by decreasing the mutation rate. This
may provide practical guidance for BBO tuning for real-
world problems. Second, by analyzing the relationship of
the parameter 𝜌 and the convergence time 𝑡 in Tables 1–3,
we see that the convergence time 𝑡 is exponentially related
to the parameter 𝜌, as predicted by Theorem 14. Third, the
theoretical results and simulation results match well for most
of the test problems, which confirms the convergence rate
estimate provided byTheorem 14.
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The three-bit problems analyzed above are small, and
the results do not tell us how convergence rates scale with
the problem dimension. Also, the transition matrix grows
faster than exponentiallywith the problemdimension and the
population size [11], so realistically sized problems cannot be
directly analyzed with the methods in this paper. However,
our methods could be used to study the effect of BBO tuning
parameters on small problems, which could provide guidance
for larger, real-world problems. Also, similar population
distributions could be grouped into the same Markov model
state to reduce the transition matrix dimension of large
problems to a manageable size [16], which could make
the methods in this paper practical for realistically sized
problems.

5. Conclusion

In this paper we modeled BBO as a homogeneous finite
Markov chain to study convergence, and we obtained new
theoretical results for BBO. The analysis revealed that BBO
with only migration and mutation does not converge to
the global optimum. However, an elite version of BBO that
maintains the best solution in the population from one
generation to the next converges to a population subset
containing at least one globally optimal solution. In other
words, BBOwith elitism will converge to the global optimum
in any binary optimization problem.

In addition, an upper bound for the BBO convergence
rate was obtained in Theorem 14. We used simulations to
confirm this theorem for a unimodal one-max problem, a
multimodal problem, and a deceptive problem.The results in
this paper are similar to those of the canonical GA [29], and
so our results are not surprising, but this paper represents the
first time that such results have been formalized for BBO.

The results in this paper are limited to binary problems
but can easily be extended to discrete problems with any
finite alphabet. This is due to the simple fact that any discrete
problem can be reduced to a binary problem.

For future work there are several important directions.
First, it is of interest to study how to improve BBO con-
vergence time and robustness based on these results. The
second important direction for future work is to study the
asymptotic convergence of variations of BBO, including par-
tial emigration-based BBO, total immigration-based BBO,
and total emigration-based BBO [12]. The theorems in this
paper provide the foundation to study these variations, so
we do not need additional theoretical tools to analyze their
convergence. The third important direction for future work
is to develop hybrid BBO, which combines BBO with other
EAs, and study their convergence behaviors using the theory
presented here. Finally, it would be of interest to extend these
results to continuous optimization problems, which are the
types of problems to which real-world implementations of
BBO are typically applied.
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