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Abstract 
Increasingly, in VLSI designs, the integrated circuits have higher density of transistors on the small 

physical area, power consumption reduced and greater performance. An important factor that has contributed 
for this is the representation of logic functions with a reduced number of transistors. Thus, we sought an 
alternative solution to common methods, such as factorization, to generate optimized networks. This paper 
presents a graph-based structure to represent a transistor network and a technique to reduce the number of 
transistors by edges sharing. Our method can achieve non-series-parallel arrangements while methods based 
in factorization can only derive series-parallel arrangements, which may not be the best solution. Thus, when 
applied to the set of 4 input p-class logic functions, our method has advantages if compared to the good-factor 
algorithm implemented in SIS Software. Also, in other logical functions our algorithm can achieve results as 
good as those generated by techniques based in BDD. 

1. Introduction 
The micro electronics industry has brought great advances in last years, no doubt, designing digital circuits 

VLSI  becomes an increasingly task of extreme complexity and high cost of resources and time. In this context, 
aid tools are applied to support these projects, contributing to the designers manipulate more transistors and 
decreasing the development cycle. Therefore, the automatically generation of transistor networks makes simple 
some arduous tasks. Moreover, it also reduces the aggregate cost to the final product. 

This paper proposes an edge sharing method, on a graph structure, to generate optimized transistor 
networks. In our approach, the input Boolean expression is translated into a graph that is later optimized 
through edges sharing. Nowadays, alternative methods which are available in the literature has been study and 
applied in this context. They are based on graph optimizations, were each edge in the graph keeps an 
association with a transistor in the network. The main idea is try to minimize the edges in an existent graph [1] 
or to compose a new graph with a reduced number of edges [2]. These alternative methods are used because the 
common technique to optimize a transistor network is based on factorization [3-4] and this may not be an 
optimum solution [5]. In factorization method an input Boolean expression is manipulated in order to reduce 
the number of literals that compose the expression. Subsequently, this optimized expression is translated in a 
transistor network composed by a reduced number of switches. In this sense, our sharing method intent derives 
non-series-parallel arrangements in order to deliver better results than the common technique. 

2. Edges Sharing Method 
The edges sharing method considers as input a sum-of-products (SOP) expression. In order to translate the 

expression to a graph, a parser is needed. The parser will deliver one vector of literals for each product storing 
these vectors in a list. Afterward, it is started the assembly of the graph by removing vectors one at a time from 
this list and creating an edge in the graph for each literal found in the vector. As an example we will use the 
Exp. (1) which represents a ‘XOR’ with 4 inputs. Fig. 1.a shows the graph obtained of this expression. 

!A*!B*!C*D + !A*!B*C*!D + !A*B*!C*!D + !A*B*C*D + 
       A*!B*!C*!D + A*!B*C*D + A*B*!C*D + A*B*C*!D            (Exp.1) 

In the sequence, all paths in the graph are traversed in order to recognize identical edges (edges that 
represent same literals and have at least one vertex in common). If this condition is verified in the graph, then 
the identical edges are shared. This procedure consists in keeping only one of these identical edges, eliminating 
the remaining edges and merge the vertices that connect them. The vertices that will be merged are detached 
with the circumferences without fill in the figures below. This is exemplified in Fig. 1.b where the edge ‘!A’ 
was shared and the vertices 1, 5, 8 and 11 were merged. Now the edge ‘A’ will be shared generating the graph 
shown in Fig. 1.c. So, in this moment the vertices 8 and 17, one at a time, are considered the new starting point 
of the optimization process, where the algorithm sought identical edges between these two vertices and the 
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vertex 4. This way the edge ‘!B’ connected to the vertex 8 will be shared and in sequence this occurs with edge 
’B’. Afterward that, the same process is applied to the edges ‘!B’ and ‘B’ attached to the vertex 17. This is 
demonstrated in Fig. 1.d. 

 
Fig. 1 – Steps of the sharing method to a ‘XOR’ with four inputs. 

Considering the Fig. 1.d, departing from the vertices 6, 12, 15 and 21, one at a time, and traversing the 
graph toward the vertex 4, it is not possible to perform new optimizations because identical edges are not found 
between these vertices and the vertex 4. To perform new optimizations the sharing algorithm is applied from 
the end to the beginning of the graph. Thus, departing from the vertex 4 the edges ‘D’ are identified and were 
shared as the Fig. 1.e. demonstrates. In the next step the edges ‘!D’ will be shared resulting in the graph of the 
Fig. 1.f. 

Now, consider the vertices 10 and 19 as new start points of the sharing algorithm. There are two edges ‘!C’ 
connected on the vertex 10, as Fig. 1.f shows. Then it is possible to remove the edge ‘!C’ attached to the 
vertices 10 and 12 merging the vertices 12 and 15. In this case, the merging of the vertices 12 and 15 will derive 
two edges ‘C’ between the vertices 19 and 15. When this is detected, just one of these edges remains in the 
graph. Fig. 1.g shows this state of the graph. This process is applied again, but this time to the edges ‘C’ that are 
connected to the vertex 10, merging the vertices 6 and 21. This will derives two edges ‘!C’ between the vertices 
19 and 21, one of this edges will be removed resulting in the final graph illustrated by Fig. 1.h. Afterward, 
starting from the vertex 19, it is not possible to perform other optimizations. Thus, the optimization process 
ends. If any of these processes generates an invalid path, a recovery routine is invoked and the process is 
reversed. In the next session this procedure will be explained. 
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3. Validation Procedure 
To guarantee that the optimized transistor network will be the faithful representation of the original 

expression, making sure that all products described in SOP are present in the resultant graph and sure that 
sneak-paths (forbidden paths) are not introduced on the network, a validation procedure is applied. Thus, it is 
necessary to validate all paths of the graph each time an edge is shared. The paths of the graph are generated 
through a recursive algorithm applied on the adjacency matrix that represents the graph. The algorithm uses a 
list structure to store the indexes of the matrix that make up a path of the graph.  

Consider as example the simple graph illustrated by Fig. 2.a. The first step is to insert in the list the index 
‘0’ that indicates the row of matrix that represents the initial vertex of the graph. Then this row is traversed in 
searching of the literals. When the literal ‘A’ is found in the row ‘0’ and column ‘1’, as shown in Fig. 2.b, the 
index of  this column is inserted into the list, if this index has not yet been inserted. Then, the algorithm 
immediately switches to the line ‘1’ indicated by the column of the element found. Each row changing is a 
recursive call of the algorithm as Fig. 2.b demonstrates. This process is repeated recursively until the index ’2’ 
of the final vertex is reached, meaning that a path was formed. This procedure can be seen through the arrows 
in Fig. 2.b. Notice that literals in a column whose index has already been inserted in the list are ignored. 
Afterward, through the contents stored in the list it is possible to compose the path by indexing the matrix. All 
paths formed are stored in a list in order to compare with the original expression. 

Once a path is formed, the last index ‘2’, inserted into the list, is removed and the algorithm returns to the 
last cell of the matrix that was visited. Then, it continues traversing this row until finding another element, in 
this case the literal ‘C’, and it switches to the row ‘3’ indicated by the column of this element.. If the row ends 
and any other element is found the algorithm returns to the last row visited and continues searching elements. 
After forming the two paths that start with literal ‘A’ the algorithm returns to the cell with row ‘0’ and column 
‘1’, keeping in the list just the index ‘0’. Of course the algorithm travels this row finds the element ‘B’ in row 
'0’ and column ‘3’. So, all procedure explained above is applied again as shown the Fig. 2.d and Fig. 2.e. The 
process ends when it returns to the initial row ‘0’ and all cells this row were visited. 

 

Fig. 2 – Matrices for explaining the algorithm able to generate all paths of a graph. 
 

The next step consists in comparing each path with the products that compose the original expression. If a 
path that does not belong to SOP has been introduced, a routine checks if this path is sensitized or not 
sensitized. When thinking in a transistor network, a path cannot be sensitized if it contains both polarities, for 
example ‘A’ and ‘!A’. In order words, this path is not a valid path. If the new path introduced is not sensitized 
he is accepted, because it does not change the logical behavior of the circuit. Otherwise, the graph needs to be 
restored to step before the optimization that generated the new path, and this optimization is discarded. For this, 
a restore routine is invoked, this is responsible for recovering the edges and vertices that were eliminated from 
the graph and reconnect them.  

To perform the recovery process it is necessary to store some information as the literal represented by 
removed edges and what vertices were merged. Finally, if necessary, with this information the graph can be 
recovered without compromising the functionality of the circuit which it represents. Notice that all original 
products of the Expression (1) are present in the graph of the Fig. 1.h. However, by sharing edges, some new 
paths were also introduced. All these paths are allowed because are paths that cannot be sensitized. Another 
interesting fact is that the proposed approach may derive Wheatstone bridge networks like methods proposed 
by [1] and [2]. The example illustrated in Fig. 1.h presents some bridge configuration. It is a benefit over 
optimization approaches based on factorization that can only derive series-parallel networks. 

4. Experimental Results 
Our algorithms were implemented in Java language. As output, the technique shows the optimized 

networks using the Prefuse graphics library [7] and generates a Spice netlist of the optimized circuit. To 
describe our edges sharing method we used the Exp. (1), referring to a ‘XOR’ with four inputs. The achieved 
network was compared to the result obtained by others techniques described in [5], as BDD, OpBDD, LBBDD, 
CSP and to the good-factor algorithm from SIS Software [8]. Our method reaches the same result like the BDD, 
OpBDD and LBBDD methods, with 12 transistors, overcoming the SIS with 16 transistors and CSP, NCSP 
with 22 transistors. 

Finally, the set of 4 input p-class logic functions was used as benchmark to evaluate our proposed 
algorithm. This set is composed by 3982 logic functions. Each logic function was applied to SIS software as 
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well as to our solution. When running in SIS, the two available algorithms were used, the quick-factor and the 
good-factor. However, our proposed method was able to deliver better solutions, reducing the total number of 
switches in the networks as Tab. 1 illustrates. This is due to the ability of generating networks with Wheatstone 
bridge arrangements. Our approach was capable to reduce up to 4 transistors in some generated networks if 
compared to the SIS. On the other hand, the good-factor achieves some smaller transistor networks. On these 
130 cases our algorithm was not able to generate bridge configuration, generating networks that are purely 
series-parallel arrangements. 

 
Tab. 1 – Results for the set of 4 input p-class logic functions. 

 Total transistor count 
Our solution 35598 
Good-factory 37723 
Quick-factory 38341 

  
Our solution compared to SIS # of logic functions 

decreasing transistor count 1644 
exact same transistor count 2208 
increasing transistor count 130 

5. Conclusions and Future Works 
This paper presented an edges sharing method to derive optimized transistor networks. The algorithm was 

implemented in Java language and a graph interface using Prefuse library is available. To describe our 
algorithm step by step, we use an 'XOR' with 4 inputs. The optimized network presents the same result of the 
methods in [5] for a ‘XOR’ with 4 inputs, surpassing the SIS solution. Nevertheless, when using the set of 4 
input p-class logic functions, our solution is able to perform a considerable reduction of the total transistor 
count. Moreover, it is capable to deliver 1644 networks with less transistor count, if comparing to the good-
factor solution, reduce up to 4 transistors in some networks.  The optimized transistor networks generate by our 
approach are validated ensuring the logical behavioral of the network. As future work we intend to evaluate the 
complexity of the algorithm. Also, we intend to compare the proposed solution with the method described in 
[4]. 
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