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Abstract

We introduce local weighted geometric moments that are computed from an image within a sliding

window at multiple scales. When the window function satisfies a two-scale relation, we prove that

lower order moments can be computed efficiently at dyadic scales by using a multiresolution wavelet-

like algorithm. We show that B-splines are well suited window functions because, in addition to being

refinable, they are positive, symmetric, separable, and very nearly isotropic (Gaussian shape).

We present three applications of these multi-scale local moments. The first is a feature extraction

method for detecting and characterizing elongated structures in images. The second is a noise reduction

method which can be viewed as a multi-scale extension of Savitzky-Golay filtering. The third is a

multi-scale optical flow algorithm that uses a local affine model for the motion field, extending the

Lucas-Kanade optical flow method. The results obtained in all cases are promising.

Index Terms

Local Moments, Multiresolution, Weighted Least-Squares, Savitzky-Golay, Optical Flow.

I. INTRODUCTION

Global geometric moments and their invariants are widely used in many areas of image analysis,

including pattern recognition [1], image reconstruction [2], and shape identification [3]. In addition to

geometric moments, which are also known as regular or ordinary moments, a number of other moments

has been proposed. The notion of complex moments was introduced in [4] for deriving moment invariants.

Teague [5] suggested the use of orthogonal moments and introduced complex valued Zernike moments

that are defined on a unit disk. A second class of orthogonal moments is given by Legendre moments

which make use of Legendre polynomials. The usefulness of Legendre and Zernike moments has been

demonstrated, in particular, for image reconstruction [2], [6] and pattern classification [7]. The pseudo-

Zernike formulation proposed in [8] further improved these characteristics. A detailed discussion of

moment-based image analysis can be found in the monograph [9].

Some authors have applied geometric moments in a local fashion for image and texture segmentation

[10], [11] and direction-based interpolation [12]. The idea there was to compute moments locally over

some square region of interest which is moved over the image; the window functions may be overlapping

or not depending on the application. An efficient method to compute local moments inside sliding squared

windows with constant weights has recently been proposed in [13].

In this paper, we are extending the notion of local geometric moments by introducing two refinements:
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weighting and multiresolution. The idea of weighting is motivated by the observation that the square

window that has been used so far is rather anisotropic. Indeed, if the goal is to design a ”rotation-

invariant” algorithm, it makes good sense to apply an isotropic window with a radial weighting that

decreases away from the center. Multiresolution is a feature that is highly desirable for designing image

processing algorithms that have some degree of adaptability. The down-side, of course, is that these multi-

scale refinements can be computationally very expensive, especially when the size of the window is large.

The framework of wavelets [14] is a computational efficient approach to multiresolution and has proven

to be successful in many applications such as image denoising [15], [16], feature enhancement [17] and

shape analysis [18]. In this paper, we use wavelet-related concepts and propose a fast multiresolution

wavelet-like algorithm to compute multi-scale local geometric moments of different orders with a dyadic

scale progression. In particular, we will consider B-spline window functions, which become wider and

more and more Gaussian-like—also meaning isotropic—as the degree of the spline increases.

We believe that these multi-scale local geometric moments could be useful tools for devising new

algorithms based on what we call a ”sliding window” formulation of a problem. The basic assumption for

such an approach is that the spatially-varying feature (or parameter) that one is estimating is approximately

constant within the window. The unknown parameter is then estimated from the available information in

the window (which often requires the evaluation of moments). Finally, the output value is attributed to

the spatial location corresponding to the center of the window. This is a simple, yet powerful paradigm

that can be made most effective by working at the appropriate scale (multiresolution strategy). We will

illustrate these ideas in Section III by presenting three such local-moment-based algorithms:

• a new method for local shape analysis and feature extraction,

• a multi-scale noise reduction method based on Savitzky-Golay filters [19],

• a multiresolution extension of the Lucas-Kanade optical flow algorithm [20], which uses a more

refined local-affine model for the motion.

These methods are fast thanks to the wavelet-like implementation. The experimental results obtained in

all cases are encouraging.

II. THEORY

In this section, we will define weighted local geometric moments and their associated multiresolution

moment filters. We also show how these moments can be computed efficiently in a multiresolution

framework.
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A. Weighted Local Geometric Moments

Global geometric moments of order p ∈ N0 and location x0 ∈ R of a continuously-defined function f

are defined as [1]

Mp(x0) =

∫

R

(x − x0)
p f(x) dx. (1)

For localization, we introduce a positive and symmetric window function w with compact support Ω. We

then define weighted local geometric moments of order p, scale j ∈ Z and location x0 as

m(j)
p (x0) =

∫

R

(x − x0)
p w

(
x − x0

2j

)
f(x) dx. (2)

Note that the window function is dilated by a factor 2j and is centered at x0. For a given window function

w, we call

wp(x) = xp w(x) (3)

the moment filter mask of order p. Then the local weighted geometric moments can be rewritten in the

form of a convolution as

m(j)
p (x0) = 2jp

∫

R

wp

(
x − x0

2j

)
f(x) dx (4)

= 2jp
(
w(j) T

p ∗ f
)

(x0), (5)

where the multiresolution moment filters w
(j) T
p (x) = wp(−x/2j) are time reversed and dilated versions

of the basic moment filter mask (3). The normalization factor 2jp in (5) is included to simplify the

formulation of the multiresolution algorithm presented next.

B. Two-Scale Equation

Computing local moments at coarser scales becomes more and more time consuming due to the

increasing size of the window function. However, multiresolution pyramids of local moments can be

computed efficiently, provided that the window function satisfies a two-scale equation, a concept that is

closely related to the framework of wavelets [14].

Theorem 1 (Two-Scale Equation): Let w be a function that satisfies the two-scale equation

w
(x

2

)
=

∑

l

h(l)w(x − l), (6)
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for some given filter h. Then, wp satisfies the multi-channel two-scale equation

2pwp

(x

2

)
=

p∑

k=0

(
hp,k ∗ wk

)
(x)

=

p∑

k=0

∑

l

hp,k(l)wk(x − l),

(7)

with filters hp,k, k = 0, . . . , p, given by

hp,k(l) =

(
p

k

)
lp−kh(l). (8)

In particular, we have that h0,0 = h. The proof of this theorem is given in Appendix I.

C. Efficient Multi-Scale Implementation

Theorem 1 can be used to derive fast algorithms for computing local moments m
(j)
p for scales j =

j0, . . . , j1 and orders p = 0, . . . , P . To initialize the procedure, the inner products on the finest scale j0

are computed by using (5). Due to Theorem 1, the coefficients on the subsequent coarser scales can be

determined recursively.

Corollary 1: Let m
(j)
p (n), 0 ≤ p ≤ P , be local moments at scale j and positions n ∈ Z. Then the

moments at the next coarser scale (j + 1) can be computed by

m(j+1)
p (n) =

p∑

k=0

∑

l

h
(j)
p,k(l)m

(j)
k (n + 2jl) (9)

with filter masks h
(j)
p,k given by

h
(j)
p,k = 2j(p−k)hp,k. (10)

For a proof of this corollary, we refer to Appendix II. Equation (10) means that the two-scale filters

hp,k have to be multiplied by 2(p−k) at each scale j prior to convolution. The filters h
(j)
p,k need not to be

stored separately since they are obtained by simply updating the basic filters hp,k at each scale. Equation

(9) is a multi-channel extension of the “à trous” algorithm, which is frequently used for computing

overcomplete wavelet transforms [21].

The method is easily modified for computing local moments in a sub-sampled, wavelet-like pyramid.

The recursion equation (9) then simplifies to a Mallat-like algorithm (cf. [21]):

m(j+1)
p (n) =

p∑

k=0

(
h

(j) T
p,k ∗ m

(j)
k

)
(2n), (11)

where h
(j) T
p,k (l) = h

(j)
p,k(−l) denotes the time reversed filter mask h

(j)
p,k. The corresponding block diagram

for computing moments of order 0 to 2 in a sub-sampled fashion is shown in Fig. 1.
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Fig. 1. Recursive computation of moments of order 0 to 2 using multi-channel two-scale filters.

To avoid boundary artifacts, the signals that are considered by the algorithm need to be extended

properly at the boundary. We assume that the input signal f is extended by using a mirror boundary

convention. If this signal is filtered with a symmetric filter (e.g., even moments), the output will exhibit

the same symmetry. Conversely, if the signal is filtered with an anti-symmetric filter (e.g., odd moments),

the output will be anti-symmetric at the boundary. Therefore, in order to implement the recursive two-

scale algorithms (9) and (11), one has to alternate between the right type of boundary extension of the

moments to produce an output that is consistent with the input assumptions. This is ensured by extending

even and odd order moments by mirror and anti-mirror boundary conditions, respectively. From (8) it

can be seen that the two-scale filters hp,k are symmetric or anti-symmetric, if p − k is even or odd,

respectively. Thus, the convolution with the properly extended moments m
(j)
k will result in the correct

boundary extension of the moments m
(j+1)
p . A summary of all possible cases is given in Table I.

The usage of the two-scale algorithm clearly pays off when computing lower order moments at

coarser scales. The direct computation of the moments by (5) requires O(2j) multiplications and O(2j+1)

additions per output point at scale j. On the other hand, the computational complexity of the recursive

two-scale algorithm is independent of the scale j and behaves like O(1). A detailed analysis of the

computational cost is given in the Appendix III-A.

D. Multiple Dimensions

The notion of multi-scale weighted moments can be extended to multiple dimensions in a straightfor-

ward way by using tensor products. In the two-dimensional (2D) case, we define moment filter masks
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TABLE I

BOUNDARY EXTENSION OF MOMENTS.

Order p Boundary extension Order k Boundary extension p − k Filter symmetry

of m
(j+1)
p of m

(j+1)
p of m

(j)
k of m

(j)
k of hp,k

even mirror even mirror even symmetric

even mirror odd anti-mirror odd anti-symmetric

odd anti-mirror even mirror odd anti-symmetric

odd anti-mirror odd anti-mirror even symmetric

of order (p + q) as

wp,q(x, y) = wp(x)wq(y). (12)

The moments at scale j are then given by the separable convolution

m(j)
p,q(x0, y0) = 2j(p+q)

(
w(j) T

p,q ∗ f
)

(x0, y0), (13)

where w
(j) T
p,q (x, y) = wp(−x/2j)wq(−y/2j) are the associated 2D multiresolution moment filters. For

an efficient computation of m
(j)
p,q, equations (9) and (11) are applied successively in each dimension. In

the sub-sampled discrete case, this reads

m(j+1)
p,q (n,m) =

p∑

k=0

q∑

l=0

(
h

(j) T
p,k h

(j) T
q,l ∗ m

(j)
k,l

)
(2n, 2m), (14)

where the two-scale filters h
(j) T
p,k and h

(j) T
q,l are applied separately in x- and y-directions, respectively.

For instance, the block diagram for the second order moment m
(j+1)
1,1 is illustrated in Fig. 2.

In the two-dimensional case, the direct moment computation (13) requires O(2j+1) multiplications

and O(2j+2) additions per output point at scale j, whereas the cost of the recursive two-scale algorithm

behaves as O(1). For a detailed analysis of the computational complexity in two dimensions, we refer

to Appendix III-B.

E. B-spline Window Function

The ideal window function should be positive, with weights decreasing away from the center, refinable,

separable, and isotropic in multiple dimensions. The only choice would be a Gaussian, but it does not
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Fig. 2. Recursive computation of m
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1,1 using multi-channel two-scale filters.
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Fig. 3. Cubic B-spline β3 and its first two moment filters β3
1 and β3

2 .

satisfy a two-scale equation. However, B-splines βn satisfy a two-scale equation and rapidly converge to

Gaussians when their degree n ∈ N increases [22]. In fact, for a given number of filter tabs, B-splines

are the smoothest scaling functions in the Sobolev sense [23]; this guaranties that they converge fastest

to Gaussians in the Sobolev norm. This ensures nearly isotropy of the window in multiple dimensions.

The cubic B-spline (n = 3), β3, and its two first moment filters β3
1 and β3

2 are plotted in Fig. 3. The

corresponding two-scale filters hp,k up to order p = 2 are given in Table II.

The Fourier transform of a B-spline βn, which is the (n+1)-fold convolution of a rectangular pulse, is

given by

β̂n(ω) =

(
sin(ω/2)

ω/2

)n+1

. (15)

By definition, the Fourier transforms of the corresponding moment filters are given by

β̂n
p (ω) = ip

dp

dωp
β̂n(ω). (16)

B-splines of degree n are by construction in Cn−1, i.e., they are (n-1) times continuously differentiable;

the same also holds true for the moment filters. This implies that their Fourier transforms decay at least
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TABLE II

TWO-SCALE FILTERS hp,k UP TO ORDER p = 2 FOR β3 .
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Fig. 4. Normalized spectra of moment filters β5(x/2), β5
1 (x/2) and β5

2 (x/2).

like O(1/|ω|n) for large ω. Consequently, the Fourier transforms of the moment filters decay faster when

the spline degree increases. Fig. 4 shows the normalized spectra of the B-spline β5(x/2) and its moment

filters β5
p(x/2) for degree n = 5 and moment orders p = 0, 1, 2 at scale j = 1. It is clear from this graph

that the filters are essentially bandpass, which can be used as a justification for the downsampling of

moments at coarser scales.

III. APPLICATIONS

The fast algorithm presented above is applicable to a variety of image analysis problems, such as

image segmentation, pattern detection, and optical flow estimation, for which local solutions over sliding

windows have been proposed. These approaches can be extended by applying a multiresolution strategy

which provides adaptability while also reducing computational cost. Here, we will illustrate the concept
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by presenting new local-moment-based algorithms for three specific tasks: (1) local shape analysis and

feature extraction, (2) filtering for noise reduction, and (3) the estimation of motion fields using a local

affine model.

A. Local Shape Analysis and Feature Extraction

Effective analysis of shapes is required by many computer vision applications, in particular in biomed-

ical image analysis. One of the major issues is to determine location, orientation and size features of

filamentous or spherical bright structures in an image. Examples are segmentation and characterization of

biological cell images, the analysis of vessel distributions in medical images and the detection of DNA

filaments in electron micrograph images. The evaluation of low order moments represents a systematic

and efficient method of shape analysis. Since moments are integral-based features, they are robust against

noise. Furthermore, low order moments have a direct geometrical interpretation.

1) Geometric Interpretation of Moments: The moments mp,q have well-defined geometric interpreta-

tions. The coordinates of the local centroid are given by

x̄ = m1,0/m0,0 and ȳ = m0,1/m0,0. (17)

The distance between the window center and the local centroid allows to detect whether the sliding

window is located on the center of a bright structure or not. The so-called central moments [1] can be

expressed in terms of ordinary moments mp,q and the coordinates of the centroid. For the second order

we have

µ2,0 = m2,0 − m0,0x̄
2, µ0.2 = m0,2 − m0,0ȳ

2, (18)

µ1,1 = m1,1 − m0,0x̄ȳ. (19)

These three central moments of second order are the components of the inertia matrix

J =


 µ2,0 µ1,1

µ1,1 µ0,2


 . (20)

The local orientation of the analyzed object is given by the eigenvector corresponding to the minimal

eigenvalue of J. In fact, the local object is mapped onto an ellipsoid centered at (x̄, ȳ). The ellipsoid axes

are directed along the eigenvectors of J and the corresponding axes semi-lengths are the magnitudes of

the respective eigenvalues λ1 and λ2. The orientation angle with respect to the x-axis is given by

φ =
1

2
arctan

(
2µ1,1

µ2,0 − µ0,2

)
. (21)
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A measure for the eccentricity of the local ellipsoid is given by

ε =

(
λ1 − λ2

λ1 + λ2

)2

=

(
µ2,0 − µ0,2

)2
+ 4µ2

1,1(
µ2,0 + µ0,2

)2 (22)

and takes values between 0 and 1. It indicates whether the local object is elongated or not. The eccen-

tricity measure is independent from the local image energy and is therefore well-suited for inter-scale

comparisons.

2) Multi-Scale Detection Strategy: Brighter elongated structures or filaments can be extracted by

evaluating the various moment features and putting thresholds on eigenvalues or eccentricity measures.

Since the elongated structures of interest can have different sizes, we propose to detect them at multiple

scales j0 ≤ j ≤ j1, where j0 and j1 are the finest and coarsest scale at which relevant structures are

expected. A simple strategy, which was applied in our experiments, is described in the following: At each

image pixel (nx, ny) we compute the local moments m
(j)
p,q for (p + q) ≤ 2. From these we derive the

local orientations and eccentricities ε(j). To decide whether or not a local object is part of a filamentous

structure, we compute the figure of merit

γ(j) = ε(j)e−(x̄2+ȳ2)/(2(2j+1)σ2). (23)

The second factor in (23) assigns more weight to cases where the local centroid (x̄, ȳ) is close to the

center of the local window. The parameter σ controls the range of the centroid around the window origin

to be accepted. The multi-scale approach also helps us to detect cases where the local structure is located

symmetrically at the periphery of the window function. To avoid these cases, the figure of merit γ (j) is

set to zero, if m
(j−1)
0,0 < m

(j)
0,0. This means that the local mean of the gray values at the next finer scale

has to be greater than the local mean at the current scale.

The figure of merit (23) will be maximal at a scale that approximately matches the size of the elongated

shape to detect. Therefore, we integrate the figures of merit at different scales to obtain a final estimate

for the goodness of local fit by

γ = max
j0≤j≤j1

γ(j). (24)

3) Application: Detection of DNA Filaments: The structure of DNA molecules can be visualized by

cryo-electron-microscopy (CEM) [24]. Because of the physical process involved, the resulting images

have very low contrast to avoid destruction of the specimen (cf. Fig. 6). Biologists are highly interested

in an automatic detection of the thin strands of DNA, but the task is challenging because of the poor

signal-to-noise ratio (near 0 dB).

September 17, 2003 DRAFT
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The proposed moment-based algorithm was tested on synthetic and real images. Fig. 5(a) and 5(b)

show a synthetic circular DNA strand with two different levels of additive Gaussian noise, respectively.

In this experiment, we used a B-spline window of degree 3 at scales j = 2, 3.

The algorithm is compared with the so-called structure tensor method [25], a standard method to

estimate local orientations of image patterns. Instead of the inertia tensor (20), this method uses the

structure tensor

S =




〈
w, I2

x

〉
〈w, IxIy〉

〈w, IxIy〉
〈
w, I2

y

〉


 , (25)

where w(x, y) denotes a window function and Ix, Iy denote the partial derivatives of the image intensity

I(x, y). The computation of the local orientation and eccentricity measure is analog to (21) and (22),

respectively. As in [25], we interpret the estimated eccentricity as a figure of merit and use a Gaussian

as a window function. For the standard deviation of the Gaussian window, we used σ = 1.7 which

corresponds to the effective width of the B-spline window at the finest scale j = 2 of the moment-based

algorithm.

The estimated eccentricities of the structure tensor approach are shown in Fig. 5(c) and 5(d) for the

two different noise levels, respectively. Fig. 5(e) and 5(f) show the corresponding figures of merit of the

proposed moment-based algorithm. For the lower noise level both methods detect the circular structure

well. However, the figure of merit of the moment-based algorithm is much thinner around the true

structure since the eccentricity measure is weighted by the distance of the window center to the centroid

of the local image content as described in (23). This feature is not available in the structure tensor

approach. In the case of the higher noise level, the moment based algorithm still detects the elongated

object fairly well (Fig. 5(f)). In contrast, the structure tensor approach degrades significantly (Fig. 5(d)).

This is probably due to the fact that this method uses derivatives which are sensitive to noise, whereas

the proposed approach is integral-based.

The moment-based detection algorithm was also applied to real images as shown in Fig. 6(a). Since the

intensity in CEM-images may vary globally, the original images were first normalized in a pre-processing

step. We used moments of order zero (local average) at scale j = 2 for local background subtraction.

Then we computed for each pixel the figure of merit γ as described above. In particular, we used a

B-spline window of degree 3 at scales j = 2, 3. The figures of merit were then thresholded to suppress

values that correspond to non-significant structures. The final figures of merit are visualized in Fig. 6(b)

in form of a needle diagram. The length of the needles is proportional to the size of the figure of merit

at each pixel. The direction of the needles corresponds to the local orientation of the object. We see that
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(a) Synthetic elongated

structure with additive

Gaussian noise (SNR =

28.14 dB)

(b) Synthetic elongated

structure with additive

Gaussian noise (SNR =

8.15 dB)

(c) Figure of merit of struc-

ture tensor-based algo-

rithm applied to (a)

(d) Figure of merit of struc-

ture tensor-based algo-

rithm applied to (b)

(e) Figure of merit of

moment-based algorithm

applied to (a)

(f) Figure of merit of

moment-based algorithm

applied to (b)

Fig. 5. Comparison of moment-based and inertia tensor-based detection of elongated structures for different noise levels.
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(a) Original CEM-image (b) Estimated local orienta-

tion

Fig. 6. A CEM-image and detected DNA strands.

the two DNA strands contained in the image together with their local orientation were clearly detected.

Failures due to the high noise content in the image are very sparse.

B. Multi-Scale, Weighted Savitzky-Golay Smoothing Filters

Savitzky-Golay filtering [19] can be thought of as a generalized moving average filter. The idea of

Savitzky-Golay filtering is to find filter coefficients that preserve higher order polynomials. These filter

coefficients are derived by a least-squares fitting of a polynomial of given degree within a sliding window.

The smoothed points are computed by replacing each data point with the value of the fitted polynomial at

the window center. For this reason, a Savitzky-Golay filter is also called a digital smoothing polynomial

filter or a least-squares smoothing filter. A crucial point is the choice of the size of the window function. A

small window preserves narrow features of the underlying signal, but filters less; larger windows smooth

more, but lead to blurring of image details.

Originally, this approach was proposed for one-dimensional signals and used a box-shaped window

function of fixed length [19]. Here, we propose a multi-dimensional extension based on a weighted least

squares criterion. We also propose a new multi-scale filtering strategy whereby the final smoothed image

is obtained by combining results from different scales using a hypothesis test.

1) Weighted Savitzky-Golay Filtering: Let us consider a two-dimensional polynomial of degree d

Pd(x, y) =
∑

0≤p+q≤d

ap,q xpyq, (26)

which is specified by the Na = (d + 1)(d + 2)/2 polynomial coefficients ap,q. Let w denote a window

function with discrete support Ω of cardinality NΩ which is located at (m0, n0). To fit the polynomial
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locally to an image I(m,n), we minimize the weighted least-squares functional

r2 =
∑

(m,n)∈Ω

w(m,n)
(
Pd(m,n) − I(m + m0, n + n0)

)2
. (27)

By differentiating (27) with respect to each of the unknown polynomial coefficients ap,q, we obtain the

corresponding normal equations A
T
WAa = A

T
Wb, where

{
A

T
WA

}
p1,q1;p2,q2

=
∑

(m,n)∈Ω

mp1+p2nq1+q2 w(m,n), (28)

{
A

T
Wb

}
p1,q1

=
∑

(m,n)∈Ω

mp1nq1 w(m,n)· (29)

I(m + m0, n + n0),

and

{a}p2,q2
= ap2,q2

, (30)

with 0 ≤ p1 + q1 ≤ d and 0 ≤ p2 + q2 ≤ d. The index-tuples (p1, q1) and (p2, q2) denote the row and

column indices of the matrix and vectors, respectively. The NΩ×NΩ diagonal matrix W is composed by

the weights w(m,n). Since A
T
WA does not depend on the image data, the matrix and its inverse can

be computed once and forever in advance. The right hand side vector A
T
Wb is nothing but a discrete

version of the local moments (13) of order zero to d. The smoothed image point at the window center

is equal to the polynomial coefficient a0,0, which is given by the inner product of the corresponding row
{
(AT

WA)−1
}

0,0
of the matrix inverse and the right hand side A

T
Wb.

2) Multi-Scale Strategy: In order to find a trade-off between the conflicting requirements of noise

reduction and conservation of image details, we propose a multi-scale framework of the introduced

weighted Savitzky-Golay filtering. We assume that the image is locally given by the model: polynomial

signal + noise, i.e.,

I = Pd + ε, (31)

where ε ∼ N(0, σ2) corresponds to Gaussian white noise of zero mean and common variance σ2. Thus,

the residual (27) gives the expected squared deviation of the image data from the given polynomial Pd

due to noise. As shown in the appendix, the normalized residual corresponds to a linear combination of

NΩ − Na independent χ2
1-distributed random variables, i.e.,

r2

σ2
∼

NΩ−Na∑

n=1

λ(n)χ2
1, (32)
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where the coefficients λ(n) are given by the NΩ − Na non-zero eigenvalues of the matrix

W −WA
(
A

T
WA

)−1
A

T
W. (33)

For a proof and the computation of the probability density function of (32) we refer to Appendix IV.

Note that for uniform weights the resulting distribution (32) corresponds to a χ2
NΩ−Na

distribution with

NΩ − Na degrees of freedom. Asymptotically, r2/σ2 is normally distributed with mean

E

(
r2

σ2

)
=

NΩ−Na∑

n=1

λ(n) (34)

and variance

var
(

r2

σ2

)
= 2

NΩ−Na∑

n=1

λ(n)2. (35)

When working on real images, (32) enables us to detect image regions for which the chosen polynomial

degree or window size are not adequate. More specifically, we apply a two-sided hypothesis test on r2/σ2

with a given significance level α. In order to avoid cases where the degree of the polynomial is too high

for the given image structure and tends to fit the noise, we reject results for which the residual is below

the confidence interval. This usually happens when using small windows in flat image regions. On the

other hand, we also reject results for which the residual is above the confidence interval. In this case,

image details like edges cannot be fitted closely by the polynomial. The aim is to use locally a window

as large as possible to achieve maximum noise reduction. Consequently, we compute smoothed image

versions using windows at scales j = j0, . . . , j1. Recall that the images of moments (29) can be computed

efficiently for different scales by using (9). The final smoothed image is obtained by choosing for each

pixel the output value from the coarsest scale for which the normalized residual remains inside the

confidence interval.

3) Numerical Results: In order to demonstrate the performance of weighting and multi-scale filtering,

we have applied the algorithm to an image containing additive Gaussian white noise. Fig. 7(a) shows the

original image and Fig. 7(b) shows the image after adding Gaussian white noise of standard deviation

σ = 20.0 resulting in a signal-to-noise ratio of 20.40 dB. Results were computed for a B-spline window

of degree 3 and a fitting polynomial of degree 2.

Fig. 8 illustrates the effect of using B-spline weighting. The left column displays the filtered outputs

of B-spline-weighted Savitzky-Golay filtering at scales j = 1, . . . , 3. Window sizes were 7, 15 and 31

pixels at each scale, respectively. The right column corresponds to the case of using a squared window
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(a) Original image (b) Noisy image (SNR =

20.40 dB)

Fig. 7. Original and noisy image.

with constant weights one. Here, the support was chosen to be the effective duration of the B-spline

windows, resulting in window sizes of 3, 5 and 9 pixels, respectively.

Fig. 9(a) shows the final output image of the multi-scale, B-spline-weighted method. Smoothed image

versions at scales j = 1, . . . , 3 were combined to the final output image using a double-sided hypothesis

test on the normalized residuals (32) with a significance level α = 0.01. The signal-to-noise ratio of the

final image is 27.30 dB, which is significantly larger than the signal-to-noise ratios at the single scales

(26.25 dB, 24.55 dB, 21.63 dB for scales j = 1, . . . , 3). Also visually, the final output image seems to

be superior to the single scale outputs. Image details like edges are well preserved, whereas flat image

regions are fairly smoothed.

The result is compared with two standard denoising algorithms. The first is a wavelet soft-thresholding

method. The noisy image was decomposed in a 3-level wavelet transform pyramid using orthogonal Battle-

Lemarié wavelets [26]. We used the same order of spline (n = 3) for the methods to be comparable.

We also optimized the method by selecting the threshold T = 26, yielding the maximum signal-to-noise

ratio (SNR = 24.89 dB). From Fig. 9(c) it can be seen that the wavelet-based smoothed image is clearly

more blurred and suffers from typical ringing artifacts. The second comparison method is the adaptive

Wiener filter [27]. This filter corresponds to a pixel-wise adaptive Wiener method based on statistics

derived from a local neighborhood of each pixel. The maximum signal-to-noise ratio of 25.96 dB was

obtained for a filter size of (5 × 5) pixels. As can be seen from Fig. 9(d), the Wiener filter preserves

image details well, but smoothes less in flat image regions.

In the present approach, different scales are combined in an exclusive fashion which leads to some
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(a) B-spline-weighted at

scale j = 1 (SNR =

26.25 dB)

(b) Non-weighted at scale

j = 1 (SNR = 22.67 dB)

(c) B-spline-weighted at

scale j = 2 (SNR =

24.55 dB)

(d) Non-weighted at scale

j = 2 (SNR = 25.49 dB)

(e) B-spline-weighted at

scale j = 3 (SNR =

21.63 dB)

(f) Non-weighted at scale

j = 3 (SNR = 23.88 dB)

Fig. 8. Images (a) to (f) demonstrate the effect of B-spline weighting at scales j = 1, . . . , 3.
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(a) Final multi-scale,

B-spline-weighted

Savitzky-Golay output

(SNR = 27.30 dB)

(b) Final multi-scale, non-

weighted Savitzky-Golay

output (SNR = 26.42 dB)

(c) Wavelet thresholded im-

age (SNR = 24.89 dB)

(d) Wiener filtered image

(SNR = 25.96 dB)

Fig. 9. Comparison of different smoothing methods.

artifacts near edge regions. Although the proposed multi-scale denoising algorithm performs best in terms

of signal-to-noise-ratio, it may be possible to improve the visual perception of the output further by using

a more progressive weighted combination.

C. Optical Flow Estimation

The estimation of motion from an image sequence is a classical problem in computer vision. Among

others, the optical flow technique has been proven to be a successful approach to this problem [28].

Let I(x, y, t) denote the intensity of pixels at location r = (x, y) and time t in an image sequence.

Gradient-based optical flow estimation relies on the assumption that the intensity of a particular point in
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(37)

a moving pattern does not change with time. The constant intensity assumption can be expressed as [29]

Ix(r, t)u(r, t) + Iy(r, t) v(r, t) + It(r, t) = 0. (36)

Ix, Iy and It denote the spatial and temporal derivatives of the image intensity. The velocities u and v

are, respectively, the x- and y-components of the optical flow we wish to estimate.

1) Local Affine Motion: A very popular optical flow algorithm is the Lucas-Kanade method [20],

which estimates the motion locally, assuming the motion to be constant within a window of support Ω.

In order to account for more complex motions, such as rotation, divergence, and shear, we extend this

approach to a local affine model for the motion. If (x0, y0) denotes the center of the local window, this

model is defined as

u(x, y) = u0 + ux(x − x0) + uy(y − y0),

v(x, y) = v0 + vx(x − x0) + vy(y − y0).

(38)

The parameters u0 and v0 correspond to the motion at the window center and ux, uy, vx, and vy are,

respectively, the first order spatial derivatives of u and v. The local motion components can be estimated

by minimizing the weighted least-squares criterion
∫

R

w(x − x0, y − y0)
(
Ix u + Iy v + It

)2
dx dy. (39)

The symmetric window function w gives more weight to constraints at the center of the local region than

to those at the periphery. By differentiating (39) with respect to each of the six unknown parameters, we
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obtain the so-called normal equations A
T
WAv = A

T
Wb in terms of local moments of orders zero to

two of the spatial and temporal derivatives of I as defined in (37).

2) Coarse-To-Fine Multi-Scale Strategy: It is obviously difficult to estimate large motions at fine

scales. A way around this problem is to apply a coarse-to-fine strategy. At each scale j0 ≤ j ≤ j1 we

compute the local moments on a grid which is sub-sampled by 2j in each dimension. These sub-sampled,

multi-scale local moments can be computed efficiently by using (11).

The motion vectors are cascaded through each resolution level as initial estimates and are then replaced

if they do not already exceed a scale-dependent size. For each local estimate, we compute the confidence

measure

1 − sin θ = 1 −

∥∥W1/2 (Av − b)
∥∥

l2∥∥W1/2 b
∥∥

l2

∈ [0, 1]. (40)

The argument θ corresponds to the angle between the vectors W
1/2

b and W
1/2

Av and characterizes

how close W
1/2

b is to the image of W
1/2

A. A local estimate is replaced only if its confidence measure

is larger than the corresponding one at the next coarser scale. Otherwise, the coarser scale estimator is

kept. Furthermore, a solution of a local linear system is regarded as not admissible if the linear system is

either ill-conditioned or if the length of the estimated central motion vector exceeds some scale-dependent

limit. Finally, a motion estimate is set to zero if the local mean of the time derivative at the given location

is below a pre-defined noise level.

The final motion estimates at the finest scale j0 are then interpolated by B-splines to obtain a continuous

representation of the motion field.

3) Numerical Results: The performance of the algorithm was tested on synthetic and real image

sequences. In particular, we used the well known synthetic sequence “Yosemite”. Since the exact motion

field is known, the error of the estimated motion field was computed using the angular error measure as

defined in [28]. As real data we used the “Rubik Cube” sequence1. One frame of each sequence and its

corresponding estimated motion field are shown in Fig. 10 and 11. All sequences were prefiltered with a

Binomial filter of variance σ2 = 1.5 and a B-spline window of degree 5 at scales j = 2, . . . , 4 was used

for moment computation.

The angular error of the “Yosemite” sequence is 6.33◦ ± 9.98◦ with a flow field density of 100%. The

error of the corresponding adaptation of the Lucas-Kanade approach (same window, same multiresolution

strategy, locally constant motion model) is 7.43◦±12.72◦. Barron & al. [28] report an average angular error

of an optimized Horn and Schunk method [29] (spatio-temporal prefiltering, 4-point central differences

1All sequences were downloaded from Barron & al.’s FTP site at ftp://csd.uwo.ca/pub/vision.
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(a) Frame (b) Estimated motion

Fig. 10. One frame of the Yosemite sequence and its corresponding estimated motion field.

(a) Frame (b) Estimated motion

Fig. 11. One frame of the Rubik Cube sequence and its corresponding estimated motion field.

for differentiation) of 11.26◦ ± 16.41◦ with a flow field density of 100%. Their implementation of an

improved version of the original Lucas-Kanade method (spatio-temporal prefiltering, rejecting unreliable

estimates) only produced a reasonable error for a very sparse velocity field with a density of 35.1%.

The rotational movement in the “Rubik Cube” sequence is also clearly recovered. The obtained results

also compare favorably with all other methods evaluated in the survey of Barron & al.

IV. CONCLUSIONS

We have introduced B-spline-weighted, local geometric moments within windows of dyadic sizes. The

weighting ensures isotropy in multiple dimensions and the scalability allows adaptability to local image

contents. Computational efficiency was achieved by developing a Mallat-like algorithm to compute these

moments at multiple scales.
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Local moments provide a powerful set of features that can be used in many sliding window type algo-

rithms. In particular, we demonstrated their usefulness on three different image analysis problems: feature

extraction, noise reduction, and optical flow estimation. We proposed basic, moment-based algorithms

with promising experimental results. Certain aspects of these generic algorithms can be further improved

by tuning them to special applications. Besides the applications mentioned, these moments could also be

useful for applications like pattern classification and image segmentation.

APPENDIX I

PROOF OF THEOREM 1

In order to prove the multi-channel two-scale equation (7), we deduce from (3) and (6) that

wp

(x

2

)
=

1

2p

∑

l

h(l)xpw(x − l).

Using the fact that

xp =
(
(x − l) + l

)p
=

p∑

k=0

(
p

k

)
lp−k(x − l)k

and applying the definition

(x − l)kw(x − l) = wk(x − l),

we directly obtain (7).

APPENDIX II

PROOF OF COROLLARY 1

By definition (5) we have that

m(j+1)
p (n) = 2(j+1)p

∫

R

wp

(
x − n

2j+1

)
f(x) dx

= 2(j+1)p

∫

R

wp

(
1

2

x − n

2j

)
f(x) dx.

Using the two-scale equation (7) it follows that

m(j+1)
p (n)

= 2(j+1)p

∫

R

1

2p

p∑

k=0

∑

l

hp,k(l)wk

(
x − n

2j
− l

)
f(x) dx

= 2jp
p∑

k=0

∑

l

hp,k(l)

∫

R

wk

(
x − (n + 2jl)

2j

)
f(x) dx.
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Fig. 12. 1D computational complexity per output point for direct moment computation and usage of two-scale algorithm.

Applying definition (5) yields

m(j+1)
p (n) = 2jp

p∑

k=0

∑

l

hp,k(l)
1

2jk
m

(j)
k (n + 2jl)

=

p∑

k=0

∑

l

hp,k(l)2
j(p−k)m

(j)
k (n + 2jl).

By defining h
(j)
p,k(l) = 2j(p−k)hp,k(l), we obtain (9).

APPENDIX III

COMPUTATIONAL COMPLEXITY

In the following, we analyze the computational complexity of the recursive two-scale algorithm in the

one and two-dimensional case.

A. Computational Complexity in 1D

We assume that the length of the discretized window function w is 2N + 1 and has a corresponding

two-scale filter of length 2N + 3. Since the window function is symmetric, the direct calculation of (5)

requires 2j(N+1) multiplications and 2j+1(N+1)−2 additions per output point at scale j, independently

of the order p. On the other hand, since the two-scale filters are either symmetric or anti-symmetric, the

two-scale algorithms (9) and (11) require (p + 1)(N + 2) multiplications and 2(p + 1)(N + 1) + p

additions for moment order p and are independent of the scale. The computational complexities for

scales j = 1, . . . , 5, moment orders p = 0, 1, 2 and N = 1 are plotted in Fig. 12. Obviously, the use of
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Fig. 13. 2D computational complexity per output point for direct moment computation and usage of two-scale algorithm.

the two-scale algorithm starts paying off at scales j = 1, 2, 3 for moment orders p = 0, 1, 2, respectively.

Since in practice usually low order moments are used, the proposed computation scheme is much more

efficient at coarser scales.

B. Computational Complexity in 2D

For the two-scale algorithm (14), the number of multiplications and additions per output point at scale

j are 2(p + 1)(q + 1)(N + 2) and 4(p + 1)(q + 1)(N + 1) + (p + 1)(q + 1)− 1, respectively; in contrast,

the direct computation (13) requires 2j+1(N + 1) multiplications and 2j+2(N + 1) − 4 additions. The

computational complexities for scales j = 1, . . . , 5, moment orders 0 ≤ p+ q ≤ 2 and N = 1 are plotted

in Fig. 13. The two-scale algorithm clearly pays off at coarser scales.

APPENDIX IV

COMPUTATION OF THE PROBABILITY DENSITY FUNCTION OF A WEIGHTED LEAST-SQUARES

RESIDUAL

Let Ax = b̂ be an overdetermined linear system of size n × p, n > p, and maximum rank p. We

assume that the noisy observation b̂ is given by b̂ = b + ε, where ε ∼ N(0, σ2
I) is jointly normally

distributed and b = Ax.

The weighted least-squares estimator x is obtained by minimizing

r2 =
(
Ax− b̂

)T
W

(
Ax− b̂

)
,
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where W is a diagonal (n × n)-matrix of weights. Using the fact that x =
(
A

T
WA

)−1
A

T
Wb̂ and

that b̂ = Ax + ε, we obtain

r2 = ε
T
C ε, (41)

where C = W−WA
(
A

T
WA

)−1
A

T
W. Since C is symmetric, it can be decomposed as C = U

T
ΛU,

where U is an orthogonal matrix and Λ is a real diagonal matrix containing the eigenvalues of C.

Therefore, (41) can be expressed as

r2 = (Uε)T
Λ (Uε)

= η
T
Λη,

where η = Uε is also a N(0, σ2
I)-distributed random variable due to the orthogonality of U. Since C

is by construction of rank (n − p), we have that

r2 =

n−p∑

k=1

λ(k)η2(k),

where λ(k) denote the non-zero diagonal elements of Λ.

Now, the η(k)/σ ∼ N(0, 1) are independently normally distributed so that their squares follow a χ2
1-

distribution. Consequently, the probability density function (pdf) of r2/σ2 is given by the convolution of

χ2
1-pdf’s dilated and scaled by the factors λ(k). Since the characteristic function (Fourier transform of

the pdf) of a χ2
1-distribution is given by

fχ2
1
(ω) =

1

(1 − 2iω)1/2
,

the characteristic function of r2/σ2 is given by

fr2/σ2(ω) =

n−p∏

k=1

1
(
1 − 2iλ(k)ω

)1/2
.

For n sufficiently large, the pdf converges to a Gaussian as a consequence of the central limit theorem.
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