
Adaptive and Flexible Dictionary Code Compression for
Embedded Applications

Mats Brorsson and Mikael Collin
KTH ICT Dept. of Electronic, Computer and Software Systems

Electrum 229, SE-164 40 Kista, Sweden
email: {Mats.Brorsson, Mikael.Collin}@imit.kth.se

ABSTRACT
Dictionary code compression is a technique where long instructions
in the memory are replaced with shorter code words used as index
in a table to look up the original instructions. We present a new view
of dictionary code compression for moderately high-performance
processors for embedded applications. Previous work with
dictionary code compression has shown decent performance and
energy savings results which we verify with our own measurement
that are more thorough than previously published.

We also augment previous work with a more thorough analysis
on the effects of cache and line size changes. In addition, we
introduce the concept of aggregated profiling to allow for two or
more programs to share the same dictionary contents. Finally, we
also introduce dynamic dictionaries where the dictionary contents
is considered to be part of the context of a process and show that the
performance overhead of reloading the dictionary contents on a
context switch is negligible while on the same time we can save
considerable energy with a more specialized dictionary contents.

Categories and Subject Descriptors
C.1.1. [Single Data Stream Architectures]

General terms
Measurement, Performance, Design

Keywords
Dictionary code compression, Instruction profiling, Processor
architecture, Instruction memory bandwidth, Fetch path energy

1. INTRODUCTION
As the market for consumer electronics relentlessly continue to
grow, the vast amount of processors in the world are found in
embedded applications. The gap between what typically has been
defined as desktop applications and embedded applications is also
diminishing. New novel embedded and hand-held products,
mobile phones, digital cameras, pocketPCs, PDAs and portable
game consoles, offer multimedia capabilities and high perfor-
mance communication facilities. These all require sophisticated
hardware resources and elaborate general purpose software. Yet,
embedded applications pose challenges such as limited resources

of different kinds. Examples of these requirements are limited
amount of memory, limited power budget, the need for energy con-
servation for battery-operated devices and a small form factor.

However, with the escalated complexity of embedded soft-
ware, application code size tends to grow. Larger and more
advanced programs require both larger sized memories and higher
performance and as a consequence this leads to higher power and
energy consumption. It is therefore imperative that low power and
energy consumption is considered early and in all design stages.

In this paper we are focusing on the instruction fetch path of
moderately high-performance 32-bit RISC processors for embed-
ded applications. We are presenting a working complete solution
for an instruction code compression scheme that achieves compact
code, reduced energy consumption, and smaller chip area with pre-
served performance as compared to a baseline system for a range
of typical embedded programs. The scheme is based on full-length
32-bit RISC instructions being replaced by the compiler, based on
a previously generated execution profile, to shorter code-words.
These code-words are during execution looked up in a dictionary
in an extra pipeline stage where they are substituted by the original
32-bit instruction for rest of the pipeline execution. Figure 1 shows
an outline of the architectural solution. The fetch stage (F) accesses
the instruction cache and retrieves a fetch unit of one word. With
uncompressed instructions this is exactly one instruction, with
compressed instructions it can contain up to four code words repre-
senting four instructions. The fetch stage puts the fetch units in a
buffer which can contain up to two fetch units. The decompress
stage (DP) reads from this buffer, determines whether the first ele-
ment in the buffer is a compressed instruction or not and if so,
decompresses it using the dictionary and finally puts it into a queue
for the rest of the pipeline which is identical to a processor without
code compression.

The reason for looking in particular at the instruction fetch
path is that when it comes to energy consumption, the instruction
cache has a significant and elevated role in the light of the proces-
sor-memory interface being a significant and large contributor to
the whole system energy consumption [18, 20]. The impact of
instruction fetches is further underlined considering that the
instruction cache is the most accessed memory structure. Albera

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
CASES'06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010...$5.00.

D ic tB T B

DD PF E W BM

Inst
C ach e

D ata
C ach e

Figure 1: Outline of the proposed processor pipeline, including
decompression stage and dictionary table.

113

and Bahar [1], shows that more energy is consumed by the instruc-
tion cache than in the data cache due to the higher access rate to the
instruction cache.

These observations were also made in a feasibility study of a
dictionary code compression scheme reported in [7]. This study
indicates that about 25% of the total system energy stems from the
instruction fetch path. Breakdown of the energy spent during
instruction fetch reveals that 75% originates from the instruction
cache and the majority of the rest from the branch prediction logic
since its tables are also accessed on every instruction fetch.

Dictionary-based code compression has been proposed before
(see section 2 for related work descriptions), but in contrast to pre-
viously published results we have taken a holistic approach show-
ing solutions for all problems in the entire chain of the system. In
particular, our contributions are:
• A flexible and adaptive code-word dictionary lookup scheme.

Both static and dynamic dictionaries are investigated. In the
latter case, the contents of the code-word dictionary is consid-
ered to be part of a process’ context. This is the first time
dynamic dictionaries are proposed and evaluated.

• The development of an innovative profile process. Previous
work has not taken aggregated profiles over groups of pro-
grams into account. In contrast, we have a process to aggregate
a profile based on a previous profile-execution of one or more
executables.

• Development of a working instruction set extension preserving
the existing 32-bit instruction set in coexistence with short
code-words and a compiler algorithm for generating executa-
bles using the execution profile. Previous work has not pro-
posed integrating this in the compiler making the whole
process a little bit awkward.

• A complete microarchitecture proposal implementing the
architectural support needed for the proposed scheme inte-
grated in the front-end of the processor. Most other proposals
neglect this part making it difficult to assess the final effective-
ness or effects on performance and power consumption. Part of
the architectural support needed in an earlier feasibility study
has been synthesized and checked for performance bottlenecks
[7, 17].

• A thorough evaluation using MediaBench [11] benchmarks
where area, performance and power overheads of the proposed
scheme is taken into account. Again, this is in many cases
neglected in prior art.

• An architectural exploration showing the consequences and
possibilities with smaller instruction caches and cache line
size. Previous work has shown the possibilities to reduce the
cache size, but none has shown on the possibility to also
reduce the cache line size when code compression is used.

Experiments using the Mediabench applications [11] show that
we achieve a static compression ratio is between 0.67 and 0.79
with an average of 0.75. This is in line with previous results. The
instruction cache access ratio is between 0.40 and 0.55 resulting in
a reduction in the fetch path energy consumption of 30% to 50%.
This translates to roughly 20% reduction in overall energy con-
sumption. With smaller caches the overall energy savings are
higher since the miss rate goes up. Performance-wise we show that
for some applications, we can reduce the instruction cache size
with 50% and still have the same performance-level while still sav-

ing 20% energy. Compared to the baseline architecture, for which
we cannot reduce the instruction cache for performance reasons,
we can achieve up to 30% of total energy savings with a smaller
instruction cache with a 3% performance degradation.

The rest of the paper is organized as follows: After an account
of the most important related work we continue with a description
of the profiling process. The code generation process, based on the
profile, is described in section 4 followed by a description of the
microarchitecture. We then show the effectiveness of our approach
in section 6 followed by conclusions.

2. RELATED WORK
Several researchers and/or companies have worked with instruc-
tion memory compressions or short instructions, e.g. [10, 14, 16,
19, 21]. Other researchers have, as we, worked with dictionary
compression where instructions in the code are replaced by a short
code word. The code word acts as an index to a dictionary holding
the information needed to restore the original replaced instruction.
Decompression hereby just becomes a lookup in a small and fast
table.

In [12], Lefurgy et al., propose a dictionary compression tech-
nique with the objective to reduce static code size in memory.
Based on static occurrence frequency, common sequences of
instructions are encoded and substituted for short code words in
the object code. Depending on the native ISA, using variable
length code words of 8, 12, or 16 bits, an average static compres-
sion ratio between 0.61 to 0.74 is reported for a set of CINT95
applications. No dynamic, performance or energy measurements
are reported. Independent of the choice of ISA or whether fixed or
variable length code words are used, they conclude that the most
important factor for high compression ratio is the dictionary size.

In [13] Lekatsas et al., present a dictionary compression
method and the design of a fast, one-cycle decompression unit. In
their solution they make use of variable-length code words, of 8
and 16-bits, to compress 24-bit native instructions. An average
dynamic compression ratio of 0.65 is reported resulting in a 25%
increase in performance on average. However, they used artifi-
cially small cache memories forcing the miss rate high and the
doubled table will increase the energy consumption for which they
present no results.

Another interesting dictionary compression method is pre-
sented in [15]. Individual instructions are compressed into 32 bit
long ComPackets. In the paper the authors discuss and present an
interesting approach for selecting dictionary contents where they
mix static and dynamic profiling. On a set of MiBench and Media-
Bench applications [9, 11], an average compression ratio of 0.75
was achieved. Simulations shows an average reduction in execu-
tion time by 27% and an average 46% reduction of instruction
cache energy. Just as Lekatsas et al., they use unrealistically small
instruction caches and they do not present any microarchitecture
solution for their decompression engine so performance results for
the entire system cannot be presented.

In [2], Benini et al. presents three compression schemes that
significantly trade off code size for performance and memory traf-
fic reduction. Their best solution is based on an having a 255-entry
dictionary, containing the most frequently executed distinct
instructions. The code is organized in a manner having com-
pressed- and uncompressed code located in separate memory sec-
tions. Each instruction in the program is compressed into 8-bit

114

code words and stored in the compressed memory section. For all
instructions not present in the dictionary the non-existing 256th
index is used, indicating an uncompressed instruction which must
be fetched from the uncompressed memory section, yielding an
additional memory reference. The uncompressed section contains
all original program instructions. This technique obviously do not
improve on the static memory required. On average, including the
dictionary, 27% more memory space is needed, storing both the
entire original and the compressed program. This increase is moti-
vated by positive dynamic advantages. Experiments performed
with a model of a small pipelined processor, show that using com-
pression compared to only execution native instructions dynamic
memory ratio of average 0.35 is possible to achieve, resulting in an
significant 0.40 in fetch energy ratio.

A major complication in the design of a code compression
scheme is how branches are handled. If a compressed branch
instruction ends in the middle of a fetch unit, unused bytes are
fetched from the instruction cache. If a branch target is not aligned
to the start of a fetch unit, unused bytes are again fetched. Also, the
actual compression of branch instructions is non-trivial because of
the new address space used in the program. Most solutions men-
tioned above do not describe this process satisfactorily or not at all.

3. PROFILING
In this section we describe the profiling process used, how we can
aggregate the profiles of several executions and some results for
the MediaBench programs [11]. For the purpose of this study we
profile the execution of distinct instructions. Two instructions are
considered distinct if their corresponding bit-pattern differ in at
least one bit position. Thus two add-instructions are different if
they have different arguments.

3.1 The profiler
We are using a simulation-based profiler to gather instruction exe-
cution frequencies. Although we have used simulation, it is possi-
ble to use statistical sampling from executions on real hardware. In
[3] the authors present a very low-overhead sampling technique
which they apply for instruction and data cache miss predictions.
The same technique can be used also for instruction profiling.

Figure 2 shows an example of the output generated by the pro-
filing tool for the program pegwit encrypt from MediaBench [11].
The output file contains all distinct instructions, bit-patterns, that
were encountered during the entire program execution. The entries
are sorted in descending order based on their frequency of use.
Each entry consists of a 64-bit hexadecimal bit-pattern, the num-
ber of times that instruction was executed, and the pattern cover-
age. The pattern-coverage is the fraction of which that actual
instruction contributes with in respect to the total amount of
instructions executed when the profile was generated.

We are using two different types of coverage in this paper: pro-
file-coverage and execution-coverage. The profile-coverage is a
measure of how large fraction of the profiled program’s distinct
instructions is covered by the resulting profile. It is calculated as
the sum of the pattern-coverages for the number of instructions
that are going to be part of the profile. Execution coverage is
related but specifies how large fraction of an execution can be cov-
ered with a particular profile, which may not be based on the exe-
cuted program.

3.2 Profiling detail
A novel aspect of this paper is our ability to aggregate profiles for
two or more executables. We are using the MediaBench [11] suite
which consists of a number of applications that typically have two
or three components, or functionalities, for example, encoding and
decoding. To make some sort of coverage over the broad range of
workload configuration possible, we generate three different levels
of detail of profiles:
1 Functionality funct: The most specific of all profile methods

available. The profile is based on all instructions executed
when a special functionality of an application is executed.

2 Application appli: This profile is based on the execution of the
functionalities within an application. For the case of jpeg, the
profile is an aggregation of the most executed instructions by
both cjpeg and djpeg.

3 MediaBench bench: The least specific of all profiles. The pro-
file is an aggregation of the most frequently executed instruc-
tion patterns over all the different MediaBench applications
used in this study.

The profiler generates funct-profiles. To generate an appli-pro-
file, the profiler takes all funct-profiles belonging to an application
as input and generates a combined profile. For the jpeg application,
the cjpeg- and djpeg profiles would be constitute the input files.

The bench profile is in this context an aggregation of all pro-
grams from the MediaBench suite used in this study. A generic
number of appli-profiles are fed as input to the profiler which gen-
erates a profile based on all executed instructions over all applica-
tions employed.

3.3 Profiling results
We have through simulation with the profiler obtained the three
level of profiles as described above. In the first, the funct-profile,
every functionality of the applications gets a unique profile tailor-
made for that special functionality. In the second, we get a a profile
for each application, appli. And finally in the bench-profile, we get
a profile covering all executables in MediaBench.

One important aspect of the dictionary code compression
scheme is its ability to reduce the instruction memory bandwidth
requirement. When the possible coverage using a specific profile
of size n, is known, the possible improvement on required instruc-
tion fetch bandwidth can be estimated using the model described in
equation 1.

(eq. 1)

If we want to achieve a 50% reduction in bandwidth require-
ment, this model tells us that we need a coverage of 67%. This pro-
filing study therefore aims at distinguish how large set of patterns
is needed to obtain a coverage of 67% or higher. The selected pat-Figure 2: Profiling output file format

encrypt.pat
i bit-pattern

executed pattern-
coverageinstructions

improved bandwidth 1 1 coverage–() coverage
4

---------------------+⎝ ⎠
⎛ ⎞–=

115

terns are later used to produce the dictionary in the decompression
stage in the pipeline. Therefore the number of patterns must be
kept at a feasible size in order not to result in a too large and
thereby slow dictionary that impedes on cycle time. Also, as the
number of used patterns increases the number of bits needed to
index the dictionary it will reduce the number bits available for the
remaining instructions. A feasible number of patterns ought to be a
power of 2, between 16 and 256.

Table 1 shows the number of distinct instructions in the three
levels of profiles for all MediaBench applications and functions.
We have also conducted an experiment to study the impact of
library code on the creation of the profile. For most programs, the
fraction of library code is from negligible to less than 10%. How-
ever, for the mesa application, the fraction of executed instructions
that are from the library is significant. The difference of profiling
with the library or not, in terms of the number of distinct instruc-
tions, is smaller with larger scope of the profile. On the other hand,
the total number of distinct instructions increases greatly which
results in a smaller fraction of the profile that can fit in the dictio-
nary.

Figure 3 shows the execution coverage for programs when the
funct-profile of each functionality is used. The columns are
divided into segments showing the coverage for 16, 32, 64, 128
and 256 distinct instructions in the profile, respectively. In sum-
mary, all programs reach the 67% coverage with 256 distinct
instructions with an average coverage of 89%. 11 out of the 16
functionalities reach the goal with only 128 distinct instructions.

Table 1 also contains the number of distinct instructions for
aggregation of functionalities into application profiles. The contri-
bution of each functionality is proportional to each one of the con-
tributing functions share of the total amount of instructions
executed during generation of the profile.

Each programs execution coverage, for the different appli-pro-
files produced is presented in Figure 4. Although the coverage is
lower than for the more specialized profiles, we still get relatively
good results indicating that, at least for some programs, the func-

Table 1: The number of distinct instructions in the three levels of profiles separated whether library instructions are included (w. lib)
or not (no.lib).

Benchmark #Executed instr
(106)

Library
instr.

Funct-profile Appli-profile Bench-profile

#Dist. instr. / Profile #Dist. instr. / Profile #Dist. instr. / Profile

Appl. Function w. lib no. lib w. lib no. lib w. lib no. lib

adpcm
rawcaudio 6.6 0.2% 1098 134

1268 211

27722 22911

rawdaudio 5.5 0.3% 1078 112

g721
encode 335.9 8.8% 1591 624

1902 781
decode 337.9 11.8% 1616 616

jpeg
cjpeg 15.8 1.7% 4065 3176

6646 5384
djpeg 4.8 5.6% 4320 3190

mesa

mipmap 83.4 61.7% 7036 5645

12848 10813osdemo 28.4 68.0% 6846 5424

texgen 128.0 43.7% 8499 6951

pegwit

generate 13.2 2.0% 2784 1892

4137 3059encrypt 34.5 2.3% 3817 2804

decrypt 19.6 2.3% 3788 2782

epic
epic 55.6 4.5% 3823 1323

4673 1941
unepic 7.5 9.4% 3165 901

gsm
toast 225.5 0.3% 3572 2420

4181 3031
untoast 63.1 1.2% 2602 1359

Figure 3: Execution-coverage for the different functionalities
using their funct-profiles.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

ra
w

ca
ud

io

ra
w

da
ud

io

en
co

de

de
co

de

cj
pe

g

dj
pe

g

m
ip

m
ap

os
de

m
o

te
xg

en

ge
ne

ra
te

en
cr

yp
t

de
cr

yp
t

ep
ic

un
ep

ic

to
as

t

un
to

as
t

adpcm g721 jpeg mesa pegwit epic gsm

co
ve

ra
g

e 256

128

64

32

16

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

ra
w

ca
ud

io

ra
w

da
ud

io

en
co

de

de
co

de

cj
pe

g

dj
pe

g

m
ip

m
ap

os
de

m
o

te
xg

en

ge
ne

ra
te

en
cr

yp
t

de
cr

yp
t

ep
ic

un
ep

ic

to
as

t

un
to

as
t

adpcm g721 jpeg mesa pegwit epic gsm

co
ve

ra
ge

256

128

64

32

16

Figure 4: Execution coverage for the individual functionalities
experienced when executed using their appli-profiles.

116

tionalities contributing to an application share large portions of the
set of executed distinct instructions.

To summarize the results, the most obvious observation is the
overall reduction in peek coverage for all the individual functional-
ities. Also, the number of patterns needed in order to reach the
desired 0.67 in coverage are in some occasions increased com-
pared to when all applications use their funct-profiles. Despite the
overall reduced yield, and sometimes very severe reduction in cov-
erage for some individual applications the results considering the
appli-profiles are positive. That is important, in respect to that the
aggregated appli-profiles constitutes the “lowest common denomi-
nator” for the case when all functionalities within an application
are to be executed.

As described before the bench-profile is the least specific of all
the profiles made. Figure 5 shows the execution coverage for all
programs, and the aggregated execution coverage for the entire
MediaBench set when the bench-profile is used. Of all the profiled
instructions, only 58.8% can be covered using the profile, when
256 patterns are used. The corresponding number for using 128
patterns is 46.3%, see the left column of Figure 5.

Summarizing the results regarding the usage of bench-profile,
one significant conclusion can be made. The bench-profile is too
general and broad, trying to incorporate too many different func-
tionalities. The contributing applications are too divergent in their
usage of instructions. Looking at what levels of coverage are possi-
ble to obtain for the individual functionalities the result is weak.
Only the largest contributor to the profile shows an acceptable
behavior, due to the objective to promote high coverage for the
functionality that contributes the most to the profile. All other
functionalities depends on being as similar to the dominating func-
tionality as possible in order to achieve high coverage.

Using the bench-profile as a general profile is not applicable.
The bench-profile should only be considered to be used if the
workload really comprises of all the profiled functionalities and all
are executed equal amount of times. The profile used should, for
best yield, be based on the specific workload in mind. For multi
application workloads especially with an unbalanced relation
between the execution frequency of the applications, execution fre-
quency should be taken in to account, giving the more frequently
executed functionalities higher significance in the profile.

4. COMPRESSED CODE GENERATION
The concept behind the presented code compression scheme is to
encode the most frequently executed instruction in a shorter format
in order to reduce the traffic to the instruction cache and thereby
achieve better performance for smaller caches and greatly
improved energy efficiency. The key idea of the scheme is shown
in Figure 6. The instruction sequences {B,C,D} and {G,H,I,J,K} con-
stitutes loop constructions, possibly iterated several times. During
execution, the instructions inside the loops are possibly more fre-
quently executed than instructions located in non-iterated sequen-
tial sections. When we apply compression on the most frequently
executed instructions, the number of bytes fetched in order to exe-
cute the code sequence is reduced as more information is acquired
on each fetch, assuming a fetch unit of 32 bits. The density of the
code has improved, which will affect the processor-memory inter-
face, improving presumably on both performance and energy con-
sumption. As shown in Figure 6, after profiling, the bit-patterns of
the eight instructions in the two loops are each assigned and placed
in a dictionary entry. Branch instructions are marked with an extra
encoding bit in the dictionary, indicated by the black marker in the
figure. In the program code each occurrence of a dictionary
instruction is then substituted for a short dictionary code word, cor-
responding to the index position of the dictionary entry containing
the bit-pattern of the substituted instruction.

4.1 Branch instructions
Compression, translation and execution of non-path-altering
instructions, add, load and alike is rather straight-forward accord-
ing to the selected compression policy. The situation regarding
path-altering instructions is somewhat more elaborate, especially
when instructions of different lengths are allowed to be mixed
interchangeably. The issues regarding branches and jumps are
widely debated in the research literature [2, 12, 13, 14, 15, 21].

The dilemma of how to deal with and handle the implications
imposed by branch instructions can roughly be categorized into
three not entirely disjoint issues, as they influence on each other.

Address translation: Absolute and relative addresses found in
the code are no longer valid after compression as they no longer
point out the correct instructions. Solutions to this problem
involves usage of translation tables, or re-calculation of target
addresses with patching of the code afterwards, as the exact posi-
tion of the target is not known prior the compression. Our approach
is to include this in the compilation phase where we know the
exact lengths of the instructions.

Alignment: It is important to align branch targets to the start
of a fetch unit as the instruction(s) before the branch target other-

Figure 5: Execution coverage using the bench-profile.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

pr
of

ile

ra
w

c

ra
w

c
en

co
de

de
co

de

cj
pe

g
dj

pe
g

m
ip

m
ap

os
de

m
o

te
xg

en
ge

ne
ra

te

en
cr

yp
t

de
cr

yp
t

ep
ic

un
ep

ic

to
as

t

un
to

as
t

adpcm g721 jpeg mesa pegwit epic gsm

co
ve

ra
g

e

256

128

64

32

16

n-1

B
C
D
E
F
G
H
I
J
K

A

L
M

… 7
6
5
4
3
2
1
0B

C
D
G
H
I

X

J
K

A
0 1 2

E
F

3 4 5
6 7

L
M

n-1

B
C
D
E
F
G
H
I
J
K

A

L
M

… 7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0B

C
D
G
H
I

X

J
K

A
0 1 2

E
F

3 4 5
6 7

L
M

32-bit 32-bit 32-bit

original
code

compressed
code

dictionary

Figure 6: Dictionary code compression principle..

entries

117

wise would be brought into the processor completely unnecessar-
ily. There is also reason to align the actual branch instructions.
Many high-end embedded processors now employ some sort of
branch prediction. Consider the case in Figure 7 where an
unaligned branch in a fetch unit is wrongly predicted as taken. This
means that not only are instructions y and z unused because of the
taken branch, but also instructions x and B are unused when the
fetch unit needs to be re-fetched because of the branch miss-pre-
diction. Therefore, fall-through instructions should be considered
as branch targets and pushed over to the next fetch-unit. Our solu-
tion is to have variable length branch instructions that can be elon-
gated to fill up the rest of a fetch unit.

Branch compression: Given that 15-25% of all instructions in
the MediaBench programs are branch/jump-instructions, it is
important to be able to compress even these instructions. However,
this is not as easy as for other instructions. A distinct bit-pattern
that encodes a particular branch-instruction with a specific offset,
might after compression of other instructions lead to be several
totally different instructions since the branch distance for each
branch most likely now is different. We have solved this by storing
short branch offsets in the code word. On average more than 55%
of the branch offsets can be fit in eight bits making branch instruc-
tions occupy in total 16 bits in the executable.

4.2 Code word architecture
The code word architecture is shown in Figure 8. It consists of
three classes of code-words. The U-class is the uncompressed
instruction set with the exception that bit 31 is always one denoting
it as an uncompressed instruction. We have looked at the MIPS IV
ISA (which is virtually identical to the PISA instruction set used in
the SimpleScalar simulators) and found that it is indeed possible to
reencode the instructions so that there is always a 1 in bit 31.

The G-class are code words for all possible instructions except
relative branches. It is subdivided into three subclasses: G1, G2 and
G3. G1 is the target code word for the most frequent instructions as
it can be encoded in eight bits. Up to 125 G1 code words are possi-

ble. For less frequent instructions the 16 bit G2 code word can be
used. As we now can fit an eight bit index for the dictionary, we
can use up to 256 G2 code words. Finally the G3 has an addition-
ally 8 bits for a total of 24 bits. The extra bits do not carry any
information. Instead G3 code words are used when padding is
needed, for instance to align a branch target on the start of a fetch
unit. By embedding this padding into the instruction code word,
we do not need any extra decoding of padding instructions.

Finally, R1 and R2 are encodings of relative branches where
the opcode and register argument combination are looked up in the
dictionary while the offset is encoded with eight bits in the code
word. This relieves us from the need to recalculate offsets in run-
time. Again, the R2 24-bit version is used for either more unusual
branch instructions or when needed for alignment reasons. Rela-
tive branches which require more than 8-bit offsets can, unfortu-
nately, not be encoded with short code words using our approach.

4.3 Code generation
Figure 9 shows the basic flow of the code compression process.
Based on an instruction usage profile, as described in section 3, the
compiler contains a compression engine which works on basic
blocks, one at a time performing compression into code words as
described previously and ending with an alignment so that each
basic block always starts and ends at a word boundary. This means
that a single instruction is never compressed in a basic block unless
we thereby achieve a reduction of the number of fetch units in the
basic block.

The compiler/linker also constructs the dictionary for use in
the hardware. Later we will also consider the switching of dictio-
nary contents as part of a context switch, but for now we are
assuming that the contents is fixed. Given the code word architec-
ture of Figure 8 we could potentially have five different dictionary
tables for each different G- and R-class code words. However, in

x

y

z

Un-aligned branch

Fall-through

Re-fetch of fall-

Figure 7: Excessively fetched bytes due to miss-prediction of
an unaligned branch and re-fetch of the fall-through address.

B

address

x

y

z

B

unused
taken

unused if
re-fetched

Predicted
taken branch

instruction addressthrough

 if

23 22 17 16 15 8 7 0

15 14 9 8 7 0

General
instructions

31 30 0

1 Instruction bits: (op-code, registers, immediate value)

15 14 8 7 0

00 0 0 0 0 0 8-bit index0

23 22 17 16 15 8 7 0

10 0 0 0 0 0 8-bit index 0 0 0 0 0 0 0 00

7 6 1 0

0 =0 0/1/

{
{

G1

G2

G3

R1

R2

G-class

R-class

U-class

 instruction
Uncompressed

Block A

0 =0 0/1 8-bit offset/

10 0 0 0 0 0 8-bit index0 8-bit offset

Relative

Compression bit

Figure 8: Code word bit-layout.

branch

Block B Block C

Figure 9. The code compression process.

c-code
Instruction

usage

compile
&

register
allocation

compression
pass

aligning
pass

address

gcc’

compression engine

re-encode

basic block
stream

profile

Target

.text

.data
.dictionary

binary

118

our implementation that we evaluate in section 6, we are using a
256-entry dictionary where instructions are basically stored in
descending frequency from the profile.

Figure 10 shows a practical example of how the compression
is done. It shows a part of the dictionary, as generated from the
profile. We have here highlighted the portion between indexes that
can be encoded with 7 and 8 bits, respectively. We also show a
basic block to be compressed. The first addiu-instruction can be
found in the dictionary with index c128. Since this index requires 8
bits, we encode this instruction with the G2 format. The lb-instruc-
tion is not found in the dictionary and is therefore not compressed.
It will stretch over two fetch units. The next two instructions are,
however, found in the dictionary and can be encoded with G1 code
words. The following lw and addiu are, again, encoded with G2
code words since their location in the dictionary need eight bits
indexes. The addu-instruction is encoded with eight bits and the
final branch instruction can also be indexed with eight bits making
it possible to use the R1 code word as the offset is within the limit.
Since this compression results in an unaligned end of the basic
block, the final branch-instruction is converted to an R2 code word
padding up the final byte.

We will now go over to show how this can be implemented in
hardware before showing some actual results.

5. MICROARCHITECTURE

5.1 Reference architecture
The baseline architecture we are considering consists of a five-
stage pipeline with in-order single-issue. This can be viewed as a
moderately high-performance processor for embedded systems.
There are separate instruction and data caches on-chip and the
main memory off chip. There is no branch-delay slot and therefore
it is important with branch prediction logic which also is appearing
more and more in embedded processors. Table 2 shows the base-
line architectural parameters of the processor.

5.2 Decompression stage
As mentioned before, the dictionary-based decompression engine
is based on a modification of the fetch stage followed by a decom-
pression stage between the fetch stage and the rest of the pipeline
which stays unaltered. This is shown in Figure 1. The decompres-
sion stage adds an extra cycle to the branch miss-prediction pen-
alty and therefore has a potential negative impact on performance
in case the branch prediction performs poorly. We have made a
detailed microarchitectural design taking all performance and
power consequences into account, but it is out of scope for this
paper to describe it here. The microarchitectural design can be
found in [5] and in [17] we implemented the critical part of the

microarchitecture of a previous feasibility study [7] verifying that
the decompression logic and dictionary lookup would not affect
the clock cycle time adversely.

5.3 Static versus dynamic dictionaries
The dictionary used here consists of a 32-bit wide table with 256
entries, as shown in Figure 11. About half of the table is dedicated
to primarily 8 and 16 bits G1- and R1-class code words (see section
4.2), and the rest for G2-, G3- and R2-class code words.

In most of our experiments of the compression architecture, we
consider the dictionary contents to be static, i.e., it does not change
during execution even though the executable changes. This is the
reason for why we experiment with different aggregate profiles to
allow for a limited multiprogrammed workload.

However, we are also considering the case when the dictionary
works like a register-file and is thus possible to reload at context
switches, if needed. The size of the dictionary is four times the size
of the architected register-file which would significantly add to the
context switch time. However, modern out-of-order multiple-issue
super-scalar processors have physical register files that are of the

Figure 10: Compression engine, code compression and aligning

c124

c128

$9,2($7)

c129

lb

c125

c130

c126 c127 #offs

c124

c128

$9,2($7)

c129

lb

c125

c130

c126 c127 #offs

$28,$28,-32

$9,2($7)

$2,$9,0x2

$11,32($28)

$11,$11,80

$9,0($11)

$6,$9,$2

$6,-42

addiu

lb

sll

lw

addiu

lw

addu

blez

$2,$9,0x2

$11,32($28)

$6,$9,$2

$6

$28,$28,-32

$11,$11,80

$9,0($11)

sll

lw

addu

blez

addiu

addiu

lw

0

0

0

1

0

0

0

c124

c125

c126

c127

c128

c129

c130

Basic blockDictionary

index
branch

bit

Pass 1
compression

Pass 2
aligningcode word

Dictionary construction Compilation Compression

information

Table 2: Baseline architectural parameters.

Baseline processor:

Issue width
INT/FP registers
Branch penalty
2-bit bimodal predictor
Branch target buffer (BTB)
Return stack

1 (in-order)
32/32
3 cycles for baseline
1024 entries
128 entries, direct mapped
8 entries

Memory system
L1 I-cache
L1 D-cache
TLB (D&I)
Main memory

16kB, 2-way, 32 byte blocks, 1 cycle latency
16kB, 2-way, 32 byte blocks, 1 cycle latency
128 entry, 4-way, 30 cycle miss penalty
64 cycle latency

Energy and process parameters

Feature size
Vdd
Clock frequency

0.18 μm
1.8 V
400 MHz

32−bits

Dictonary partitioning

1

0

16−24 bit code words

16−24 bit code words

2

127
8−24 bit code words

128

255
16−24 bit code words

31 bit native instruction encoding

Branch bit

031
Dictionary entry

328 256 entries

Branch bit output

Dictionary

Figure 11: Logical view of the basic dictionary design, and
organization.

119

same magnitude as the proposed dictionary, and in these cases the
difference is not as big.

For the purpose of loading the dictionary with new information
we propose a special load instruction: LoadDictionaryEntry LDE.

LDE entry, offset(rs)
The LDE instruction loads a 32-bit word from memory into the

dictionary entry selected by the 8-bit immediate value denoted
entry. To ensure simplicity and uniform usage of the intended con-
text switch routine, the LDE instructions must not be compressed.

Furthermore, additional hardware modifications must be made
to both dictionary design and data path. First of all, the memory
elements constituting the dictionary entries now need to be volatile
SRAM cells. To support writing of data into the dictionary, a 32-bit
data-in port is added. In the processor pipeline, the WriteBack
stage needs additional data and control paths to administrate the
data to be written into the dictionary.

6. EXPERIMENTS

6.1 Experimental methodology
We have modified Wattch [4], which in turn is based on the sim-
outorder simulator from SimpleScalar [6] to model our baseline
architecture, and our code compression architecture described
above. In addition, we have added energy models for the memory
and bus interface taken from the IRAM project at Berkely [8].

Since there, for the moment, does not exist any compiler capa-
ble of generating a binaries using the proposed code word architec-
ture, all executables retain their original format. Instead the binary
is processed by an external post-compile compression tool that vir-
tually compresses the instructions, generating an image of the
compressed program organized as a translation table. The transla-
tion information is then used by the simulated pipeline front-end to
model accesses made to the original uncompressed instruction
memory space, as if compressed code actually was fetch from
compressed memory space and decompressed in the pipeline.

6.2 Baseline experiments
Figures 12 to 15 show the baseline figures of the merits of our pro-
posed dictionary compression scheme for the base architecture as
described above. In Figure 12 we show the static compression ratio
for the three levels of profiles as described in section 3. We achieve
on average 75% compression meaning that we can save 25% of the
main memory space for storing instructions. It is worth to notice
that in many cases the bench-profile achieves the highest amount
of static compression.

The dynamic compression ratio is shown in Figure 13. It is
compared to the ideal case where the branch predictor is ideal
resulting in fetching only the fetch units actually executed. In most
cases the difference is small, but for some programs, such as rawc,
the difference is, however, substantial. Overall, the dynamic com-
pression ratio is close to our goal of 50% with an average of 50.4%
when the functionality-specific profiles are used. It is easy to see,
once again, that the bench-profile is useless. In several cases the
instruction cache traffic is actually increased instead of reduced
although the ideal case shows a reduction. This is because of miss-
predicted branches. The programs raw{c|d}audio are the ones in
with the highest branch-prediction miss rate resulting in worst
dynamic compression rate for the bench-profile of all programs.

Figure 14 shows the breakdown of energy consumption for the
fetch path and Figure 15 the same for the entire processor-memory
system. The figures are normalized to the baseline architecture
without instruction compression. We achieve on average 30-50%
energy savings in the instruction fetch path which consists of the
fetch stage and the branch prediction logic, accesses to the instruc-
tion cache and then memory accesses, if needed. On average it is
40%. Unfortunately, the instruction fetch path is just a fraction of
the entire processor and in Figure 15 we can see that the total
energy savings is around 20%. Here we have also added the extra
energy consumption needed in the decompression stage.

It is expected that the performance of the dictionary compres-
sion processor is slightly worse than the baseline architecture
because of the extra branch miss-prediction penalty cycle. Figure
16 indeed shows that this is the case. We have already established
that the raw{c|d}audio programs have poor branch prediction per-
formance and this also shows up as a 8-12% worse performance
for the dictionary compression architecture as compared to the
baseline architecture, even for the most specific profile. Although
this is not very good, we will in section 6.3 show that for smaller
cache sizes, we instead will have a performance advantage of using
the code compression scheme.

6.3 Cache and line size explorations
Previous work that has showed impressive performance improve-
ment have done so with artificially small instruction cache sizes
between 128 and a few kbytes [13, 14, 15]. None of them have
investigated the impact the cache line size has on the effectiveness
of their schemes. In Figure 17 we investigate the normalized
energy consumption with varying instruction cache size for the

0

0.2

0.4

0.6

0.8

1

fu
nc

t

ap
pl

i
be

nc
h

fu
nc

t

ap
pl

i
be

nc
h

fu
nc

t

ap
pl

i
be

nc
h

fu
nc

t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i

be
nc

h
fu

nc
t

ap
pl

i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t

ap
pl

i
be

nc
h

fu
nc

t

ap
pl

i
be

nc
h

fu
nc

t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

raw c raw d encode decode cjpeg djpeg mipmap osdemo texgen generate encrypt decrypt epic unepic toast untoast Average

S
ta

ti
c

co
d

e
co

m
p

re
ss

io
n

 r
at

io

Figure 12: Static compression ratio for the different profiles.

adpcm g721 jpeg mesa pegwit epic gsm

120

Figure 13: Dynamic compression ratio compared to the ideal case when no branches are miss-predicted.

adpcm g721 jpeg mesa pegwit epic gsm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h

raw c raw d encode decode cjpeg djpeg mipmaposdemo texgengenerateencryptdecrypt epic unepic toast untoast Avg

D
yn

am
ic

 C
o

m
p

re
ss

io
n

 R
at

io

Ideal Real

Figure 14: Energy ratio of the fetch path normalized to the baseline architecture.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

raw c raw d encode decode cjpeg djpeg mipmap osdemo texgen generate encrypt decrypt epic unepic toast untoast Avg

I-cache I-mem/bus BTB Fetch-buffer

adpcm g721 jpeg mesa pegwit epic gsm

Figure 15: Energy ratio of entire processor and memory normalized to the baseline architecture.

0

0.2

0.4

0.6

0.8

1

1.2

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

fu
nc

t
ap

pl
i

be
nc

h

raw c raw d encode decode cjpeg djpeg mipmap osdemo texgen generate encrypt decrypt epic unepic toast untoast Avg

fetch DeComp decode data-path clocknet data access

adpcm g721 jpeg mesa pegwit epic gsm

121

g721application. All numbers are normalized to the baseline archi-
tecture with a 16 kB instruction cache. The g721 application is rep-
resentative of the behavior of most MediaBench functionalities.

In Figure 17 (a) we plot the energy consumption of both the
baseline architecture and the code compression architecture. The
bars show the ratio between these curves. We can here see that an 8
kB instruction cache seems to be a sweet spot for this application,
although the biggest improvement over the baseline architecture is
achieved at a 4kB instruction cache. Figure 17 (b) shows the same
for the code compression architecture but broken down in the indi-
vidual components. We see that with smaller instruction caches we
get a reduction in energy consumption in the cache to some point
when word line access power dominates and we no longer achieve
any energy gain from the instruction cache. In addition, the bus
and memory energy starts to become noticable. Previous work has
neglected the increased energy consumption of the main memory
with very small instruction caches.

In Figure 18 we see how the small caches sizes impact the per-
formance. While we have a slight performance disadvantage for
big instruction caches due to the extra pipeline stage, it is clearly
so that with smaller caches we improve the performance over the
uncompressed instruction set significantly. In fact, for this applica-
tion, when we reduce the cache size by half, we get about the same
performance, or better, as the uncompressed architecture with
unchanged instruction cache. It is clear that for embedded systems
where memory size is crucial, a post-cache decompression scheme
such as the one we present here is to prefer over a pre-cache
scheme that decompresses instructions into the cache.

Finally, Figure 19 investigates the effect different cache line
size have on performance and energy consumption for the same
application as above: g721 encode and decode. In this case, a 2 kB
instruction cache is used and the line size is varied from 8 bytes up
to 128 bytes. As expected, we get a trade-off between large and
small lines. In a large line we can utilize the spatial locality of code
accesses greatly and that improves performance. On the other
hand, longer cache lines are more costly to read from in terms of
energy which leads to a slight increase in energy consumption
when 128 bytes are used over 64 byte lines. However, small cache
lines are also not good for energy consumptions as they do not uti-
lize the locality and the memory needs to be consulted more often.

Figure 16: Execution time normalized to the baseline architecture.

0.85

0.9

0.95

1

1.05

1.1

1.15

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

fu
nc

t
ap

pl
i

be
nc

h
fu

nc
t

ap
pl

i
be

nc
h

raw c raw d encode decode cjpeg djpeg mipmap osdemo texgen generate encrypt decrypt epic unepic toast untoast

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

adpcm g721 jpeg mesa pegwit epic gsm

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

1 kB 2 kB 4kB 8kB 1 6 kB 1 kB 2 kB 4 kB 8kB 1 6 kB

g7 2 1 e n c o d e g 7 2 1 d ec o d e

ra tio b as e _ lin e v a r ia b le

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1k
B

2k
B

4k
B

8k
B

16
kB 1k
B

2k
B

4k
B

8k
B

16
kB

g721encode g721decode

data mem & bus

clock

datapath

decode

dictionary

decomp_buffer

inst mem & bus

inst-cache

bpred

a) b)

Figure 17: Normalized energy consumption for the g721 application for different cache sizes.

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

1k
B

2k
B

4k
B

8k
B

16
kB 1k
B

2k
B

4k
B

8k
B

16
kB

g 72 1e nc o de g 721 de c o de

N
o

rm
al

iz
ed

 e
xe

cu
tio

n
tim

e

b as e _ line var ia b le

Figure 18: Normalized execution time for the g721
application for different cache sizes.

122

6.4 Impact of dynamic dictionaries
Previous work on dictionary code compression have always con-
sidered the dictionary to be static and never looked at multipro-
grammed workloads, which are becoming more and more common
also in embedded systems. We present a novel idea that the dictio-
nary contents is part of a process’ context and reloaded each time
there is a context switch. Of course, if needed, several processes/
threads could share the same dictionary context, reducing the num-
ber of times the dictionary needs to be reloaded. The idea is to
investigate the trade-off in performance and energy of using as
specific dictionary contents as possible for each program and
change dictionary contents when a context switch occurs. We com-
pare the results to the case of using an aggregated profile to deter-
mine the dictionary contents.

We model the extra time and energy to reload the dictionary
assuming an extra 256 LDE-instructions that always miss in the
cache. With this assumption, the time needed to load the dictionary
is ~34000 cycles or 85 μs. In addition of modelling the energy and
time for retrieving dictionary contents from the memory, we have
also modelled the extra energy a write port to the dictionary mem-
ory entails. The application execution times and the number of
context-switches performed during execution of each application
using period times between context switches is shown in Table 3.
The number of required switches is calculated using equation 2.

(eq. 2)

The base case used in this experiment is the case for when all
applications are simulated using dictionary contents based on the
appli-profile, which is an aggregated profile of the functionalities
within the application. For the case denoted all, which includes all
the 16 individual test programs, the bench-profile was used. Per-
formance and energy measurement for all these base cases were
obtained using a fixed contents dictionary.

To further visualize the extent of the extra overhead, an addi-
tional comparison point is added to the graphs, denoted ideal,
which implies that loading the dictionary with each programs’ cor-
responding funct-profile comes without any cost. All results, both
performance and energy ratio for the different applications are
shown in Figure 20, normalized to the above described base-case.

Figure 20 (a) shows the results regarding performance ratio
and the imposed overhead in execution time for loading new dic-
tionary contents. Note the magnified scale on the y-axis. It is obvi-
ous that the overhead of reloading the dictionary is negligible with
a 1% increase in execution time in the worst case.

Figure 20 (b) shows the results regarding energy consumption.
Although we can achieve energy savings of up to 4% as compared
to the case with aggregated profiles, some applications, such as
adpcm and pegwit, actually exhibit a worse energy consumption
using context switching of dictionary contents based on specific
profiles. The overhead of making the context switch is not worth-
while considering that the functionalities in these applications are
very similar when it comes to their specific profiles. However,
when we compare to the case where we use the bench-profile
(“all” in Figure 20), the energy savings is considerate.

In a real system, the mix of programs determines whether
dynamic reloading of dictionary contents should be done at context
switch or not. For programs that share similar profiles, time and

Table 3: Number switches as function of execution & operating
system period time.

Application Application Execution
time

OS_period time

10 ms 50 ms 100 ms

adpcm 43.8 ms 6 2 2

g721 2.35 s 237 49 25

jpeg 75.7 ms 9 3 2

mesa 909 ms 92 20 11

pegwit 522 ms 54 12 7

epic 239 ms 25 6 4

gsm 962 ms 98 21 11

all 5.11 s 512 104 53

0.8

1.3

1.8

2.3

2.8

3.3

3.8

128 64 32 16 8 128 64 32 16 8

g721enc ode g721decode

ex e_time energy

Figure 19: Normalized execution times and energy
consumption for the g721 application for different cache line

sizes given a 2 kB instruction cache.

switches application_exe_time
OS_period

--- 1+=

0.99

0.995

1

1.005

1.01

1.015

adpcm g721 jpeg mes a pegw it epic gs m all

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

 r
at

io

Ideal 10m s 50m s 100m s

Figure 20: a; Performance and energy ratio when taking the loading of dictionary during task switches into account for the seven
applications and for a work load consisting of all applications.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

adpc m g721 jpeg mesa pegw it epic gs m all

N
o

rm
al

iz
ed

 e
n

er
g

y
ra

ti
o

Ideal 10m s 50m s 100m sa) b)

123

energy can be saved by not reloading the dictionary, although the
overall overhead is anyway negligible.

7. CONCLUSION
To summarize, we have presented a code compression scheme,
based on off-line instruction profiling to determine the dictionary
contents used in the decompression of instructions that takes place
in a new pipeline stage directly after the fetch stage in an ordinary
five-stage pipelined RISC-processor. A novel aspect of the pre-
sented scheme is the way we can produce aggregated profiles so
that a combination of programs can make use of the dictionary
code compression. Also we show the effects of cache size and line
size on energy consumption and performance which never has
been done before. In addition, we have a detailed microarchitec-
tural model, reported elsewhere, outlining all potential perfor-
mance problems in detail, all modelled in our simulation model. In
particular, previous work have not satisfactorily described prob-
lems that occur with branch instructions, in particular when branch
prediction schemes are taken into account. Finally we are first in
showing that the dictionary contents very well can be part of a pro-
cess’ context with negligible performance overhead and substan-
tial energy savings. With smaller cache sizes, the performance
overhead will be converted into a significant performance gain of
using dynamic dictionaries.

Our scheme achieves a good static and dynamic compression
when functionality-specific profiles are used to determine the dic-
tionary contents. This results in fetch-path energy savings of up to
50%. Our scheme can be augmented with multiple dictionaries for
different code word classes, although this will increase the over-
head of reloading the dictionary on context switches. However, by
using different aggregation on different tables, this should be pos-
sible to reduce. One might also consider having different dictionar-
ies for library code and the source code. Different dictionaries for
operating system code and the user-level code etc.

We also believe that the scheme is possible to extend to super-
scalar processors with even more performance and energy gains as
with one fetch from the instruction cache memory, we get in aver-
age two instructions that could potentially be issued in parallel.

Acknowledgment: The research in this paper has been sup-
ported by the HiPEAC European Network of Excellence.

REFERENCES
[1] G. Albera and R. I. Bahar, Power and Performance Tradeoffs

using Various Caching Strategies, in Proceedings of the Inter-
national Symposium on Low Power Electronics and Design,
Monterey, CA, August 1998, pp. 64-69.

[2] L. Benini, F. Menichelli, and M Olivieri, A class of code com-
pression schemes for reducing power cosumption in embed-
ded microprocessor systems, IEEE Transactions on
Computers, Volume 53, Issue 4, April 2004 Page(s):467 - 482

[3] E. Berg and E. Hagersten, Fast Data-Locality Profiling of
Native Execution, in Proceedings of ACM SIGMETRICS’05,
Banff, Canada, June 2005, pp. 169-180.

[4] D. Brooks, V. Tiwari V., and M. Martonosi, Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions, in Proceedings of the 27th International Symposium on
Computer Architecture, ISCA'00, June 2000, pp. 83-94.

[5] M. Brorsson and M. Collin, A Microarchitecture for Profile-
Based Code Compression using Code Word Dictionaries,
Technical report, Dept. of Electronic, Computer and Software
systems, Royal Institute of Technology, May 2006. Submitted
for publication.

[6] D. Burger and T. M. Austin, The SimpleScalar Tool Set, Ver-
sion 2.0, Computer Architecture News, June 1997, pp. 13-25.

[7] M. Collin and M. Brorsson. “Low Power Instruction Fetch
using Profiled Variable Length Instructions”, in Proceedings
of the IEEE International SoC Conference, Sept. 17-20, Port-
land, Oregon, 2003.

[8] R. Fromm et al., The Energy Efficiency of IRAM Architec-
tures, in Proceedings of the 24th Annual International Sympo-
sium on Computer Architecture, ISCA'97, Denver, CO, 2-4
June 1997, pp. 327-337.

[9] M. R. Guthaus, J. S. Ringenberg, D Ernst, T. Austin, T.
Mudge, and R. Brown, MiBench: A free, commercially repre-
sentative embedded benchmark suite IEEE 4th Annual Work-
shop on Workload Characterization, Austin, TX, December
2001.

[10] K. D. Kissell. MIPS16: High-density MIPS for the Embedded
Market, in Proceedings of Real Time Systems'97 (RTS97),
1997.

[11] C. Lee, et al., MediaBench: A Tool for Evaluating and Syn-
thesizing Multimedia and Communication Systems, in Pro-
ceedings of the 30th International Symposium on
Microarchitecture, Dec 2997, pp. 330-335.

[12] C. Lefurgy, P. Bird, I-C. Chen, and T. Mudge, Improving
Code Density Using Compression Techniques, in Proceed-
ings of the 30th Annual International Symposium on Microar-
chitecture, MICRO’30, December 1997, pp. 194-203.

[13] H. Lekatsas, J. Henkel, and V. Jakkula, Design of an One-
cycle Deompression Hardware for Performance Increase in
Embessded Systems, in Proceedings of the Design Automa-
tion Conference DAC2002 (June 2002), pp. 34-39.

[14] H. Lekatsas, J. Henkel, and W. Wolf, Code Compression for
Embedded System Design, in Proceedings of the 37th Design
Automation Conference, June 2000, pp. 516-521.

[15] E.W. Netto, R. Azevedo, P. Centoducatte, and G Araujo,
Multi-Profile Based Code Compression in Proceedings of the
41st Design Automation Conference, June 7-11, 2004
Page(s):244 - 249.

[16] R. Phelan, Improving ARM Code Density and Performance,
ARM Ltd white paper, June 2003.

[17] Sleeba B., Collin M., and Brorsson M. An ASIC implementa-
tion and evaluation of a profiled low-energy instruction set
architecture extension. Technical report, KTH Microelectron-
ics and Information Technology, Oct 2003. http://
web.it.kth.se/~matsbror/papers/sleeba_variable_asic.pdf

[18] C. L. Su, C. Y. Tsui, and A. M. Despain, Saving power in the
control path of embedded processors, IEEE Design Test
Comput., vol. 11, no. 4, pp. 24--30, 1994.

[19] J. L. Turley, Thumb Squeezes ARM code size, Microprocessor
Report, 9(4), pp. 1-5, 27 March 1995.

[20] N. Vijaykrishnan et al., Energy-driven Integrated Hardware-
Software Optimizations using SimplePower, in Proceedings
of the 27th Annual International Symposium on Computer
Architecture, ISCA’00, June 2000, pp. 95-106.

[21] A. Wolfe and A. Chanin, “Executing Compressed Programs
on an Embedded RISC Architecture”, in Proceedings of
MICRO´25, December 1992, pp.81-91.

124

